請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9710完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成(li-chen fu) | - |
| dc.contributor.author | Chih-Hsien Lin | en |
| dc.contributor.author | 林志憲 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:36:54Z | - |
| dc.date.available | 2010-08-05 | - |
| dc.date.available | 2021-05-20T20:36:54Z | - |
| dc.date.copyright | 2008-08-05 | - |
| dc.date.issued | 2008 | - |
| dc.date.submitted | 2008-07-26 | - |
| dc.identifier.citation | [1] S. Devasia, E. Eleftheriou, and S. O. R. Moheimani, 'A survey of control issues in nanopositioning,' IEEE Transactions on Control Systems Technology, vol. 15, pp. 802-23, 2007.
[2] G. Binnig, C. F. Quate, and C. Gerber, 'Atomic force microscope,' Physical Review Letters, vol. 56, pp. 930-3, 1986. [3] S. Salapaka, A. Sebastian, J. P. Cleveland, and M. V. Salapaka, 'High bandwidth nano-positioner: A robust control approach,' Review of Scientific Instruments, vol. 73, p. 3232, 2002. [4] M. Sitti and H. Hashimoto, 'Controlled pushing of nanoparticles: modeling and experiments,' IEEE/ASME Transactions on Mechatronics, vol. 5, pp. 199-211, 2000. [5] S. Verma, W.-J. Kim, and H. Shakir, 'Multi-axis maglev nanopositioner for precision manufacturing and manipulation applications,' IEEE Transactions on Industry Applications, vol. 41, pp. 1159-1167, 2005. [6] H. Brian Armstrong, louvry, D. Pierre, and W. Carlos Canudas de, 'A survey of models, analysis tools and compensation methods for the control of machines with friction,' Automatica, vol. 30, pp. 1083-1138, 1994. [7] J. Swevers, F. Al-Bender, C. G. Ganseman, and T. A. P. T. Projogo, 'An integrated friction model structure with improved presliding behavior for accurate friction compensation,' IEEE Transactions on Automatic Control, vol. 45, pp. 675-686, 2000. [8] 黃宣翰, “Design and Implementation of a New 3-DOF Electromagnetic- Nanopositioner Utilizing Flexure Mechanism.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2005. [9] 吳兆開, “A Novel 6-DOF Electromagnetic Precision Positioner Utilizing Flexure Mechanism,” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2006. [10] S.T. Smith, Flexures: Elements of Elastic Mechanisms, Gordon & Breach, Amsterdam, 2000 [11] S. Salapaka, “Control of the Nanopositioning Devices,” in Proc. of Conference on Decision and Control, 2003. [12] S. H. Chang, C. E. Tseng, and H. C. Chien, “An ultra-precision XYθZ piezo micropositioner Part I: Design and analysis,” in IEEE Transactions on Ultrasonic, Ferroelectric, and Frequency Control, Vol.46, no.4, pp.897-905, Jul. 1999. [13] B. J. Yi, G. B. Chung, H. Y. Na, W. K. Kim, and I. H. Suh, “Design and Experiment of a 3-DOF Parallel Micromechanism Utilizing Flexure Hinges,” in IEEE Trans. on Robotics and Automation, Vol.19, no.4, 2003 [14] S. Awtar, “Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms,” Ph. D. Dissertation, Dept. Mech. Eng., Massachusetts Institute of Technology, Cambridge, MA, Feb. 2004. [15] Y. Li and Q. Xu, “A Novel Design and Analysis of a 2-DOF Compliant Parallel Micromanipulator for Nanomanipulation”, IEEE Transactions on Automation Science and Engineering, Vol. 3, No. 3, pp. 247 – 254, July 2006. [16] Q. Yao, J. Dong, P.M. Ferreira, “Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage,” International Journal of Machine Tools & Manufacture, Vol. 47, p.p. 946–961, 2007 [17] R. C. Hibbeler, “Mechanics of Materials,” Fourth edition, Prentice Hall, 2000. [18] H. A. Sodano and J. S. Bae, “Eddy Current Damping in Structures,” The Shock and Vibration Digest, Vol. 36, No. 6, pp. 469–478, Nov. 2004. [19] J. -S. Bae, M. K. Kwak, D. J. Inman, “Vibration suppression of a cantilever beam using eddy current damper,” Journal of Sound and Vibration, vol. 284, pp. 805-824, June 2005. [20] Products P-280 and P-762, Physik Instrumente Product Catalog, 2001, MicroPostioning, NanaoPositioning, NanoAutomation: Solutions for Cutting-Edge Technologies [21] F. L. Fischer, 1981, “Symmetrical 3 DOF Compliance Structure”, US Patent 4447048 [22] A. R Smith., S. Gwo, and C. K. Shih, “A new high resolution two-dimensional micropositioning device for scanning probe microscopy”, Review of Scientific Instruments, Vol. 64, no. 10, pp 3216-3219, 1994 [23] N. G. Dagalakis, J. A. Kramer, E. Amatucci, R. Bunch, “Kinematic Modelling and Analysis of Planer Micro-positioner”, in Proceedings of ASPE Annual Meeting, pp 135-138, 2001 [24] “Agilent Technologies NanoStepper”, MIT Technology Review, pp. 14. June 2003. [25] J. G. Bednorz., et al, 1985, Piezoelectric XY Positioner, US Patent 452 0570 [26] J. W. Ryu, D. G. Gweon, and K. S. Moon., “Optimal Design of a Flexure hinge based X-Y-θwafer stage”, Journal of Precision Engineering, Vol.21 no.1, pp 18-28, 1997 [27] T. B. Eom and J. Y. Kim, “Long Range Stage for the Metrological Atomic Force Microscope”, in Proceedings of ASPE 2001 Annual Meeting, pp. 156-159, 2000 [28] Kanai et al, “An Elastic Fine Positioning Mechanism Applied to Contactless X-Y Table”, Bulletin of JSPE, Vol 17, no. 4, pp 265-266, 1983 [29] J. N. Juang, “Applied System Identification,” Amazon.com, 1993. [30] L. Ljung, “System identification : Theory for the user,” Upper Saddle River, NJ : PTR Prentice Hall, 2nd edition, 1999. [31] D. Guang-Ren, W. Zhan-Yuan, B. Chris, and H. David, 'Robust magnetic bearing control using stabilizing dynamical compensators,' IEEE Transactions on Industry Applications, vol. 36, pp. 1654-1660, 2000. [32] D. Guang-Ren and D. Howe, 'Robust magnetic bearing control via eigenstructure assignment dynamical compensation,' IEEE Transactions on Control Systems Technology, vol. 11, pp. 204-215, 2003. [33] S. Peng and S. Shyh-Pyng, 'Robust H∞ control for linear discrete-time systems with norm-bounded nonlinear uncertainties,' IEEE Transactions on Automatic Control, vol. 44, pp. 108-111, 1999. [34] K. Oui-Serg, L. Sang-Ho, and H. Dong-Chul, 'Positioning performance and straightness error compensation of the magnetic levitation stage supported by the linear magnetic bearing,' IEEE Transactions on Industrial Electronics, vol. 50, pp. 374-378, 2003. [35] X. Yuanqing and J. Yingmin, 'Robust sliding-mode control for uncertain time-delay systems: an LMI approach,' IEEE Transactions on Automatic Control, vol. 48, pp. 1086-1091, 2003. [36] M. Torres, H. Sira-Ramirez, and G. Escobar, 'Sliding mode nonlinear control of magnetic bearings,' Proceedings of the IEEE International Conference on Control Applications, vol. 1, pp. 743-748, 1999. [37] S. L. Edmond and J. K. Pieper, 'Discrete sliding mode control of magnetic bearings,' Proceedings of the IEEE International Conference on Control Applications, pp. 658-663, 2000. [38] H. Sung-Kyung and R. Langari, 'Robust fuzzy control of a magnetic bearing system subject to harmonic disturbances,' IEEE Transactions on Control Systems Technology, vol. 8, pp. 366-371, 2000. [39] K. Ki-Seok and K. Youdan, 'Robust backstepping control for slew maneuver using nonlinear tracking function,' IEEE Transactions on Control Systems Technology, vol. 11, pp. 822-829, 2003. [40] P.A. Ioannou, and J. Sun, 'Robust Adaptive Control,' Prentice Hall, 1998. [41] 洪紹剛, “Design and Control of Novel Atomic Force Microscope Systems,” Ph.D. Dissertation. The National Taiwan University, Taiwan, R.O.C., 2007. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9710 | - |
| dc.description.abstract | 本論文提出一種以電磁力產生驅動與減低結構振動的平面式定位平台,可用於精密定位相關應用。平台本體採用一體成型之平行撓性結構做為導引機構,其運動來自結構本身的彈性變型。藉著一個近似均勻強度的磁場與四組線圈,本論文提出一種線性電磁制動器的設計,做為提供驅動平台移動與轉動的力量來源。為了減輕撓性結構天生的共振問題,亦提出了以渦電流效應提高系統阻尼的電磁式阻尼器,其非接觸式的特性較一般接觸式的阻尼器更適合用於本論文所訴求之精密運動控制系統。本新型精密定位平臺達成三大目標:第一,擁有大移動行程的能力(此指公釐的範疇); 第二,精密定位的能力; 第三,採用簡潔的機構設計。
為了要在系統參數變化與外在擾動干擾下達到系統穩定與強健性的目標,本論文提出一個強健適應性滑動模式控制器,提升系統在定位與循跡需求上的效能。控制器包含具有強健性的滑動模式控制器,與線上估測系統參數同時調變控制器的適應律。本論文設計的平台最大行程可達到3x3mm2,定位解析度為10μm。透過在時域與頻域上的分析,撓性結構的共振現象可以有效地被渦電流阻尼器減輕。實驗結果亦證實本論文所設計之平面精密定位平台具有所訴求之精密定位與循跡之能力。 | zh_TW |
| dc.description.abstract | This thesis proposes a novel planar electromagnetic actuated and damped positioning stage for precision positioning applications. The moving stage is suspended by the monolithic parallel flexure mechanism, whose motion comes from the elastic deformation of the flexure. A linear electromagnetic actuator which consists of a near-uniform magnetic field and four coils is designed and implemented to provide the propelling force and torque for 3-DOF motions. In order to suppress the vibration of the flexure suspension mechanism, an eddy current damper is designed and integrated with the electromagnetic actuator. Since the electromagnetic damper experiences no contact, it is obviously more adequate than other kinds of contact damper to be incorporated into precision motion control. The three salient features of the novel system design in the research include: (1) to have large moving range (in mm level), (2) to achieve precision positioning, and (3) to design a compact mechanism.
For the purpose of gaining system robustness and stability, a robust adaptive sliding-mode controller is proposed to enhance the system performance for both regulation and tracking tasks. The developed robust adaptive control architecture consists of two components: 1) sliding mode controller, and 2) robust adaptive law. With the designed controller, the stage can achieve high positioning resolution, where the tracking error in each axis is kept within 10μm. Experiment results show the vibration of the flexure mechanism can be suppressed by the eddy current damper successfully in a series of time-domain and frequency domain tests. Besides, the designed traveling range of the positioning stage is 3mm x 3mm in planar motion, and tracking and contouring performance are also examined to assure the appealing dynamic property of the stage. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:36:54Z (GMT). No. of bitstreams: 1
ntu-97-R95921010-1.pdf: 2818717 bytes, checksum: 173ab8b98206df88fb2f439e44fdea3e (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii Table of Contents iv List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 Motivation and goal 1 1.2 Literature Survey 3 1.2.1 Precision positioning utilizing flexure mechanism 3 1.2.2 Our previous research 6 1.3 Contribution 7 1.4 Thesis Organization 8 Chapter 2 Preliminary 11 2.1 Basic Theories of Electromagnetic 11 2.1.1 Lorentz force principle 11 2.1.2 Eddy current phenomenon 13 2.2 Properties of Permanent Magnet 15 2.3 Basic Theories of Energy Methods 20 2.3.1 External work and strain energy 20 2.3.2 Strain energy for bending moment 22 2.3.3 Castigiano’s theorem 23 2.4 Flexure Mechanism 24 2.5 Measurement Error 33 2.5.1 Abbe principle and Abbe error 34 2.5.2 Cosine error 34 Chapter 3 Mechatronic Design 37 3.1 Design Strategies 37 3.1.1 High positioning accuracy 38 3.1.2 Long planar stroke 39 3.1.3 Fast positioning 39 3.1.4 Compact system 40 3.2 Electromagnetic Actuation and Damper 40 3.2.1 Near-Uniform Magnetic Field 42 3.2.2 The proposed electromagnetic actuator 43 3.2.3 Eddy current damper 45 3.3 3-DOF Flexure Mechanism 46 3.4 Measurement System 49 3.5 Integrated Positioning Stage 51 Chapter 4 Modeling and System Identification 53 4.1 Force Allocation 53 4.2 Sensing Methodology 55 4.3 Dynamic Formulation 58 4.4 System Identification 60 Chapter 5 Controller Design 65 5.1 Adaptive Sliding Mode Controller Design 66 5.1.1 Problem statement 66 5.1.2 Sliding surface 68 5.1.3 Adaptive sliding mode control law 68 5.1.4 Stability Analysis 70 5.2 Numerical Simulation Results 77 Chapter 6 Experimental Results 81 6.1 Hardware and Experimental Environment 81 6.2 The Vibration Suppression 84 6.3 Results 87 6.3.1 Step and regulation response 88 6.3.2 Sinusoidal tracking response 90 6.3.3 Circular contouring 92 6.3.4 Spiral motion 93 Chapter 7 Conclusions 97 Reference 99 | - |
| dc.language.iso | en | - |
| dc.subject | 適應性滑動模式控制 | zh_TW |
| dc.subject | 結構減震 | zh_TW |
| dc.subject | 平行式撓性機構 | zh_TW |
| dc.subject | 渦電流阻尼器 | zh_TW |
| dc.subject | 電磁制動器 | zh_TW |
| dc.subject | 精密運動控制 | zh_TW |
| dc.subject | Parallel flexure mechanism | en |
| dc.subject | Adaptive sliding mode control | en |
| dc.subject | Electromagnetic actuation | en |
| dc.subject | Eddy current damper | en |
| dc.subject | Precision motion control | en |
| dc.subject | Vibration suppression | en |
| dc.title | 新型電磁致動與減震之三自由度撓摺結構精密定位平台 | zh_TW |
| dc.title | A Novel Electromagnetic Actuated and Damped 3-DOF Precision Positioning Stage with Flexure Suspension | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 96-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 顏家鈺,胡竹生,陳永耀,劉昌煥 | - |
| dc.subject.keyword | 精密運動控制,結構減震,平行式撓性機構,電磁制動器,渦電流阻尼器,適應性滑動模式控制, | zh_TW |
| dc.subject.keyword | Precision motion control,Vibration suppression,Parallel flexure mechanism,Electromagnetic actuation,Eddy current damper,Adaptive sliding mode control, | en |
| dc.relation.page | 101 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2008-07-29 | - |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf | 2.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
