請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97099
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 闕居振 | zh_TW |
dc.contributor.advisor | Chu-Chen Chueh | en |
dc.contributor.author | 賴音醍 | zh_TW |
dc.contributor.author | Yin-Ti Lai | en |
dc.date.accessioned | 2025-02-27T16:11:20Z | - |
dc.date.available | 2025-02-28 | - |
dc.date.copyright | 2025-02-27 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2025-02-10 | - |
dc.identifier.citation | 1. Ren, Z., et al., Strategies Toward Efficient Blue Perovskite Light‐Emitting Diodes. Advanced Functional Materials, 2021. 31(30).
2. Zhang, L., et al., Advances in the Application of Perovskite Materials. Nanomicro Lett, 2023. 15(1): p. 177. 3. Protesescu, L., et al., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX(3), X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett, 2015. 15(6): p. 3692-6. 4. Xia, Y., et al., Domain Distribution Management of Quasi‐2D Perovskites toward High‐Performance Blue Light‐Emitting Diodes. Advanced Functional Materials, 2023. 33(35). 5. Brittman, S., G.W. Adhyaksa, and E.C. Garnett, The expanding world of hybrid perovskites: materials properties and emerging applications. MRS Commun, 2015. 5(1): p. 7-26. 6. Jang, J.H., et al., Materials, Device Structures, and Applications of Flexible Perovskite Light‐Emitting Diodes. Advanced Electronic Materials, 2023. 9(9). 7. Zhu, P. and J. Zhu, Low‐dimensional metal halide perovskites and related optoelectronic applications. InfoMat, 2020. 2(2): p. 341-378. 8. Saki, Z., et al., Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells. Energy & Environmental Science, 2021. 14(11): p. 5690-5722. 9. Shi, Y., et al., A Strategy for Architecture Design of Crystalline Perovskite Light-Emitting Diodes with High Performance. Adv Mater, 2018. 30(25): p. e1800251. 10. Zheng, X., et al., Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nature Energy, 2023. 8(5): p. 462-472. 11. Li, L., et al., Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nature Energy, 2022. 7(8): p. 708-717. 12. Yoon, E., et al., Understanding the Synergistic Effect of Device Architecture Design toward Efficient Perovskite Light‐Emitting Diodes Using Interfacial Layer Engineering. Advanced Materials Interfaces, 2020. 8(3). 13. Chen, X., et al., Phosphine oxide additives for perovskite light-emitting diodes and solar cells. Chem, 2023. 9(3): p. 562-575. 14. Zhao, J., et al., High-Speed Fabrication of All-Inkjet-Printed Organometallic Halide Perovskite Light-Emitting Diodes on Elastic Substrates. Adv Mater, 2021. 33(48): p. e2102095. 15. Sun, C., et al., Perovskite light-emitting diodes toward commercial full-colour displays: progress and key technical obstacles. Light: Advanced Manufacturing, 2023. 4(3). 16. Nair, G.B. and S.J. Dhoble, A perspective perception on the applications of light-emitting diodes. Luminescence, 2015. 30(8): p. 1167-75. 17. Liu, S., et al., Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia Materials, 2023. 15(1). 18. Veldhuis, S.A., et al., Perovskite Materials for Light-Emitting Diodes and Lasers. Adv Mater, 2016. 28(32): p. 6804-34. 19. Wei, Z. and J. Xing, The Rise of Perovskite Light-Emitting Diodes. J Phys Chem Lett, 2019. 10(11): p. 3035-3042. 20. Yu, R., et al., Frontiers in Green Perovskite Light‐Emitting Diodes. Laser & Photonics Reviews, 2023. 18(4). 21. Bhattarai, S., et al., A detailed review of perovskite solar cells: Introduction, working principle, modelling, fabrication techniques, future challenges. Micro and Nanostructures, 2022. 172. 22. Fakharuddin, A., et al., Perovskite light-emitting diodes. Nature Electronics, 2022. 5(4): p. 203-216. 23. Zhao, C., D. Zhang, and C. Qin, Perovskite Light-Emitting Diodes. CCS Chemistry, 2020. 2(4): p. 859-869. 24. Zhang, Q., et al., Light Out‐Coupling Management in Perovskite LEDs—What Can We Learn from the Past? Advanced Functional Materials, 2020. 30(38). 25. Quan, L.N., et al., Perovskites for Light Emission. Adv Mater, 2018. 30(45): p. e1801996. 26. Liu, X.K., et al., Metal halide perovskites for light-emitting diodes. Nat Mater, 2021. 20(1): p. 10-21. 27. Le, K., N. Heshmati, and S. Mathur, Potential and perspectives of halide perovskites in light emitting devices. Nano Converg, 2023. 10(1): p. 47. 28. Berger, E., et al., Recent developments in perovskite-based precursor inks for scalable architectures of perovskite solar cell technology. Sustainable Energy & Fuels, 2022. 6(12): p. 2879-2900. 29. Shi, Z., et al., Hole-Injection Layer-Free Perovskite Light-Emitting Diodes. ACS Appl Mater Interfaces, 2018. 10(38): p. 32289-32297. 30. Yuan, F., et al., Hole Transport Layer Free Perovskite Light-Emitting Diodes With High-Brightness and Air-Stability Based on Solution-Processed CsPbBr(3)-Cs(4)PbBr(6) Composites Films. Front Chem, 2022. 10: p. 828322. 31. Li, P., et al., Multiple-quantum-well perovskite for hole-transport-layer-free light-emitting diodes. Chinese Chemical Letters, 2022. 33(2): p. 1017-1020. 32. Zhou, L., et al., Self‐Assembled Molecule Doping Enables High‐Efficiency Hole‐Transport‐Layer‐Free Perovskite Light‐Emitting Diodes. Advanced Functional Materials, 2023. 33(36). 33. Puerto Galvis, C.E., et al., Challenges in the design and synthesis of self-assembling molecules as selective contacts in perovskite solar cells. Chem Sci, 2024. 15(5): p. 1534-1556. 34. Wang, S., H. Guo, and Y. Wu, Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells. Materials Futures, 2023. 2(1). 35. Gedda, M., et al., High‐Efficiency Perovskite–Organic Blend Light‐Emitting Diodes Featuring Self‐Assembled Monolayers as Hole‐Injecting Interlayers. Advanced Energy Materials, 2022. 13(33). 36. Chen, B., et al., Self-assembled monolayers as hole transport layers for efficient thermally evaporated blue perovskite light-emitting diodes. Chemical Engineering Journal, 2023. 476. 37. Li, W., et al., Reducing Nonradiative Losses of Air‐Processed Perovskite Films via Interface Modification for Bright and Efficient Light Emitting Diodes. Advanced Functional Materials, 2023. 34(7). 38. Shin, Y.S., et al., A Multifunctional Self‐Assembled Monolayer for Highly Luminescent Pure‐Blue Quasi‐2D Perovskite Light‐Emitting Diodes. Advanced Optical Materials, 2022. 10(20). 39. Zhang, C., et al., A hole injection monolayer enables cost-effective perovskite light-emitting diodes. Journal of Materials Chemistry C, 2023. 11(8): p. 2851-2862. 40. Zhao, Y., et al., Post‐Assembled Alkylphosphonic Acids for Efficient and Stable Inverted Perovskite Solar Cells. Advanced Functional Materials, 2024. 41. Deng, X., et al., Co-assembled Monolayers as Hole-Selective Contact for High-Performance Inverted Perovskite Solar Cells with Optimized Recombination Loss and Long-Term Stability. Angew Chem Int Ed Engl, 2022. 61(30): p. e202203088. 42. Chen, C.H., et al., Enhancing the Performance of 2D Tin-Based Pure Red Perovskite Light-Emitting Diodes through the Synergistic Effect of Natural Antioxidants and Cyclic Molecular Additives. Small, 2024: p. e2307774. 43. Ban, M., et al., Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat Commun, 2018. 9(1): p. 3892. 44. Li, X., et al., Bifunctional Molecule for Highly Efficient Green Perovskite Light‐Emitting Diodes. Advanced Optical Materials, 2023. 12(3). 45. Wang, Q., et al., Molecularly Designing a Passivation ETL to Suppress EQE Roll-off of PeLEDs. ACS Energy Letters, 2023. 8(9): p. 3710-3719. 46. Ren, Z., et al., High-Performance Blue Perovskite Light-Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasi-2D Perovskite Layers. Adv Mater, 2021. 33(1): p. e2005570. 47. Zhang, X.Y., et al., Temperature dependent optical characteristics of all-inorganic CsPbBr3 nanocrystals film. Materials Today Physics, 2020. 15. 48. Lao, X., et al., Luminescence and thermal behaviors of free and trapped excitons in cesium lead halide perovskite nanosheets. Nanoscale, 2018. 10(21): p. 9949-9956. 49. Xiong, W., et al., Efficient and Bright Blue Perovskite LEDs Enabled by a Carbazole-Phosphonic Acid Interface. ACS Energy Letters, 2023. 8(7): p. 2897-2903. 50. Jang, C.H., et al., Multifunctional Conjugated Molecular Additives for Highly Efficient Perovskite Light-Emitting Diodes. Adv Mater, 2023. 35(24): p. e2210511. 51. Zhang, D., et al., Self-Stabilized Quasi-2D Perovskite with an Ion-Migration-Inhibition Ligand for Pure Green LEDs. ACS Energy Letters, 2024. 9(3): p. 1133-1140. 52. Liu, A., et al., Multiple Phase Regulation Enables Efficient and Bright Quasi-2D Perovskite Light-Emitting Diodes. Nano Lett, 2023. 23(23): p. 11082-11090. 53. Yu, Z., et al., Phosphonic acid based bifunctional additive for high-performance blue perovskite light-emitting diodes. Nano Energy, 2024. 125. 54. Lv, X., et al., High-performance all-inorganic perovskite light-emitting diodes enabled by a self-assembled molecule additive via defect passivation and strain relaxation. Journal of Alloys and Compounds, 2023. 969. 55. Lin, Y.K., et al., Realizing High Brightness Quasi-2D Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-Off via Multifunctional Interface Engineering. Adv Sci (Weinh), 2023. 10(26): p. e2302232. 56. Zeng, X., et al., High Curvature PEDOT:PSS Transport Layer Toward Enhanced Perovskite Light-Emitting Diodes. Small, 2023. 19(47): p. e2304411. 57. Lee1†, Y., et al., Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. SCIENCE ADVANCES, 2021. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97099 | - |
dc.description.abstract | 近年來,有機無機混摻鈣鈦礦由於具有易製備、高溶液相容性、可調節能隙及窄發光頻譜等特性,在全世界引起廣泛的關注與研究。其中,準二維鈣鈦礦(Quasi-2D perovskites)由於增強的量子侷限效應(Quantum Confinement Effect)和能量傳輸效應,具有顯著提升的光致發光效率,使其成為適合製備發光二極體之候選材料。經過幾年來的努力,鈣鈦礦發光二極體(PeLEDs)的效率已大幅提升。至今,綠光鈣鈦礦發光二極體的外部量子效率(EQE)已超過28%,顯示了極佳的應用潛力。
為了進一步實現商業化進程,降低生產成本和簡化製造過程為提升實際應用競爭力的關鍵。因此,部分研究開始致力於開發無電洞傳輸層(HTL-free)鈣鈦礦發光二極體,以簡化元件製程提升製造效率。然而,由於ITO和鈣鈦礦發光層之間存在較大之功函數勢壘,導致無電洞傳輸層之元件因電荷注入的不平衡而效率不彰。 在本論文的第二章中,我們提出了利用摻雜自組裝小分子來提升無電洞傳輸層鈣鈦礦發光二極體的效率。我們透過將自組裝小分子摻入鈣鈦礦前驅溶液中,在旋塗製備薄膜及加熱退火的過程當中,我們發現這些小分子會自組裝於ITO基板表面,形成類似電洞傳輸層之沈積層,從而成功調節ITO基板表面之功函數,有效將地鈣鈦礦發光層及ITO之間的能障,大幅提升電洞注入效率與載子之輻射複合。此外,我們亦發現這些小分子能與鈣鈦礦產生互相作用,其磷酸端之P=O基團中的氧原子可通過其孤對電子鈍化鈣鈦礦中未配位的鉛離子缺陷,而溴末端基則可鈍化鈣鈦礦薄膜中的鹵素空位。因此,元件的外部量子效率及亮度皆有顯著提升。由此可見,自組裝分子摻雜策略可為製備高性能無電洞傳輸層鈣鈦礦發光二極體之提供一可能的發展方向。 在第三章中,我們提出了實驗室未來可能的研究方向,包括表面鈍化策略和開發可撓式鈣鈦礦發光二極體。表面鈍化策略廣泛應用於減少鈣鈦礦表面的缺陷,透過此方法得以改善薄膜特性,從而提高元件性能。我們亦討論了發展可撓式鈣鈦礦發光二極體(flexible PeLEDs)的可能性,相較於傳統PeLEDs,可撓式鈣鈦礦發光二極體具有柔韌性及較輕量等優勢,適合可穿戴和便攜式設備之應用。由於鈣鈦礦的低剪切係數,其特性非常適用於可撓式元件。通過選擇合適的材料並改進各層的設計,可以提升可撓式鈣鈦礦發光二極體的耐久性和效率。 | zh_TW |
dc.description.abstract | In recent years, organic and inorganic hybrid perovskites have attracted considerable interests and research around the world due to the properties such as easy preparation, high solution compatibility, tunable bandgap, and narrow emission spectrum. Among them, quasi-2D perovskites are suitable for the development of light-emitting diodes (LEDs) due to their enhanced quantum confinement effect and efficient funneling effect, which significantly increase the photoluminescence efficiency. After several years of efforts, the efficiency of perovskite LEDs (PeLEDs) has been greatly improved. To date, the external quantum efficiency (EQE) of green PeLEDs has exceeded 28%, demonstrating excellent application potential.
In order to realize commercialization, reducing production costs and simplifying the manufacturing process are the keys to enhancing the competitiveness of practical applications. Therefore, some researches have started to develop hole-transporting layer free (HTL-free) PeLED in order to simplify the device manufacturing process and improve the manufacturing efficiency. However, due to the large work function barrier between ITO and the perovskite layer, the efficiency of HTL-free PeLEDs are not satisfactory due to the imbalance of charge injection. Herein, in Chapter 2, we proposed the use of doped self-assembled small molecules to enhance the efficiency of PeLEDs. By doping the self-assembled small molecules into the perovskite precursor solution, we found that these small molecules would self-assemble on the ITO substrate during the spin-coating preparation of the thin film and the annealing process, forming a deposition layer similar to the hole-selective layer, which successfully regulate the work function of the TIO surface and effectively reduce the energy barrier between the perovskite layer and ITO, and greatly improve the efficiency of the hole injection and radiative recombination of the carriers. In addition, we also found that these small molecules interact with perovskite The oxygen atoms in the P=O group at the phosphate end can passivate uncoordinated Pb2+ ions in perovskite through its lone electrons, while the bromine head group can passivate the halide vacancies in the perovskite film. As a result, the external quantum efficiency (EQE) and brightness of the device is significantly improved. Thus, the self-assembled molecular doping strategy can provide a possible direction for the fabrication of high-performance HTL-free PeLEDs. In Chapter 3, we proposed possible future research directions for our lab, including surface passivation strategies and the development of flexible PeLEDs. Surface passivation strategies are widely used to minimize the defects on the perovskite surface, through which the film properties can be improved to enhance the device performance. We also discussed the possibility of developing flexible PeLEDs (flexible PeLEDs), which have the advantage of flexibility and light weight over rigid PeLEDs, making them suitable for wearable and portable device applications. Due to the low shear moduli and mechanical stiffness of perovskite, its characteristics are very suitable for flexible devices. By choosing the right materials and improving the design of each layer of the device, the durability and efficiency for flexible PeLEDs can be improved. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:11:20Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-27T16:11:20Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 i
Abstract iii Contents vi Table Captions viii Figure Captions ix Chapter 1. Introduction 1 1.1 Introduction to Light-Emitting Diodes 1 1.1.1 Background 1 1.1.2 Characteristics of LEDs 2 1.1.3 Working Principle of LEDs 3 1.2 Perovskite light-emitting diodes (PeLEDs) 4 1.2.1 Introduction of perovskite 4 1.2.2 Performance matrices of PeLEDs 6 1.2.3 Composition Engineering 8 1.2.4 Dimensional Engineering 10 1.2.5 Deposition Engineering 13 1.3 Background Overview 17 1.3.1 Hole-transporting-layer-free (HTL-free) PeLEDs 18 1.3.2 Self-assembled molecules (SAM) 21 Figures 25 Chapter 2. Incorporating Self-Assembled Molecules to Improve the Performance of Hole-Transporting-Layer Free Perovskite Light-Emitting Diodes 34 2.1 Introduction 34 2.2 Experimental Section 36 2.2.1 Materials 36 2.2.2 Precursor solution preparation 37 2.2.3 Device fabrication 38 2.2.4 Film and Device Characterization 39 2.3 Result and Discussion 40 2.3.1 Effects of doping self-assembled molecules on film properties 40 2.3.2 Interaction between perovskite and PACz SAMs 46 2.3.3 Electrical Characterization and Carrier Dynamics between Interfaces 50 2.3.4 Device performance of the fabricated PeLEDs 55 2.4 Conclusion 57 Figures 59 Tables 69 Chapter 3. Future work 72 3.1 Surface passivation engineering 73 3.2 Flexible PeLEDs 75 3.2.1 Mechanical properties of perovskite 75 3.2.2 Flexible substrates and electrodes 76 Figures 79 Chapter 4. Conclusion 83 Reference 85 | - |
dc.language.iso | en | - |
dc.title | 透過摻雜自組裝小分子提升無電洞傳輸層鈣鈦礦發光二極體之性能 | zh_TW |
dc.title | Incorporating Self-Assembled Molecules to Improve the Performance of Hole-Transporting-Layer Free Perovskite Light-Emitting Diodes | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 曾宗亮;呂宥蓉;郭宗枋 | zh_TW |
dc.contributor.oralexamcommittee | Zong-Liang Tseng;Yu-Jung Lu;Tzung-Fang Guo | en |
dc.subject.keyword | 鈣鈦礦發光二極體,準二維鈣鈦礦,無電洞傳輸層,自組裝小分子,缺陷鈍化, | zh_TW |
dc.subject.keyword | Perovskite light-emitting diodes,quasi-2D perovskite,hole-transporting-layer free,self-assembled small molecules,defect passivation, | en |
dc.relation.page | 88 | - |
dc.identifier.doi | 10.6342/NTU202500019 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-02-10 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 化學工程學系 | - |
dc.date.embargo-lift | 2025-02-28 | - |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 14.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。