Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97083
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏恒巍zh_TW
dc.contributor.advisorHen-Wei Weien
dc.contributor.author郭東隴zh_TW
dc.contributor.authorTung-Lung Kuoen
dc.date.accessioned2025-02-26T16:22:14Z-
dc.date.available2025-02-27-
dc.date.copyright2025-02-26-
dc.date.issued2025-
dc.date.submitted2025-02-12-
dc.identifier.citation中國畜牧學會。2010。畜牧要覽:飼料與營養篇。第112-113頁。中國畜牧學會。屏東,臺灣。
石彥國。2011。食品擠壓與膨化技術。第3、112-114頁。科學出版社。北京,中國。
朱選、楊會軍、劉當慧、金征宇。2001。羽毛粉的膨化加工。飼料研究。1:37-39。
何武順。2001。飼用羽毛粉的加工方法。糧食與飼料工業。2:22-24。
宋存江。2014。發酵工程原理與技術。第184-185頁。高等教育出版社。北京,中國。
沈添富。2005。家禽學。第51-52頁。華香園出版社。臺北,臺灣。
段明文。2008。不同用量的膨化羽毛粉飼餵海蘭蛋雞的效果觀察。雲南畜牧獸醫。3:15-16。
洪平。1986。飼料原料要覽(含添加物)。第211-213頁。臺灣養羊雜誌社。臺南,臺灣。
張麗萍、李開雄。2009。畜禽副產物綜合利用技術。第238-239頁。畜禽副產物綜合利用技術。北京,中國。
張寶貴、韓長秀、畢成良。2011。儀器分析。第151-173頁。蒼海圖書資訊股份有限公司。臺中,臺灣。
許振忠、賴元亮、彭玄桂。2009。飼料鏡檢手冊2009年版。第2-4頁。中華民國飼料檢驗學會。臺北,臺灣。
郭東隴。2015。羽毛發酵產物之生產及應用於肉雞飼糧之影響。碩士論文。國立嘉義大學動物科學系,嘉義,臺灣。
農業部。2024。112年農業統計年報。第122-123頁。行政院農業部。臺灣。
魏恒巍、許佳鳳、陳保基。2005。以試管試驗方法評估國產羽毛粉之品質。中畜會誌。34:39-46。
Abdel-Fattah, A. M., M. S. El-Gamal, S. A. Ismail, M. A. Emran, and A. M. Hashem. 2018. Biodegradation of feather waste by keratinase produced from newly isolated Bacillus licheniformis ALW1. J. Genet. Eng. Biotechnol. 16:311-318. doi:10.1016/j.jgeb.2018.05.005
Abdel-Naby, M. A., H. A. El-Refai, and M. H. A. Ibrahim. 2017. Structural characterization, catalytic, kinetic and thermodynamic properties of Keratinase from Bacillus pumilus FH9. Int. J. Biol. Macromol. 105:973-980. doi:10.1016/j.ijbiomac.2017.07.118
Ablimit, N., F. Zheng, Y. Wang, J. Wen, H. Wang, K. Deng, Y. Cao, Z. Wang, and W. Jiang. 2024. Bacillus velezensis strain NA16 shows high poultry feather-degrading efficiency, protease and amino acid production. Ecotoxicol. Environ. Saf. 278:116353. doi:10.1016/j.ecoenv.2024.116353
Adler, S. A., R. Slizyte, K. Honkapaa, and A. K. Loes. 2018. In vitro pepsin digestibility and amino acid composition in soluble and residual fractions of hydrolyzed chicken feathers. Poult. Sci. 97:3343-3357. doi:10.3382/ps/pey175
Akahane, K., S. Murozono, and K. Murayama. 1977. Soluble proteins from fowl feather keratin. I. Fractionation and properties. J. Biochem. 81:11-18. doi:10.1093/oxfordjournals.jbchem.a131425
Alcaraz, L. D., G. Moreno-Hagelsieb, L. E. Eguiarte, V. Souza, L. Herrera-Estrella, and G. Olmedo. 2010. Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics. 11:332. doi:10.1186/1471-2164-11-332
Alibardi, L. 2010. Ultrastructure of the feather follicle in relation to the formation of the rachis in pennaceous feathers. Anat. Sci. Int. 85:79-91. doi:10.1007/s12565-009-0060-z
Amornthewaphat, N., S. Lerdsuwan, and S. Attamangkune. 2005. Effect of extrusion of corn and feed form on feed quality and growth performance of poultry in a tropical environment. Poult. Sci. 84:1640-1647. doi:10.1093/ps/84.10.1640
AOAC. 1990. Official Methods of Analysis of the Association of Official Analytical Chemists. 15th ed. Page Association of Official Analytical Chemists, Arlington, VA, USA.
Arora, S., R. Rani, and S. Ghosh. 2018. Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. J. Biotechnol. 269:16-34. doi:10.1016/j.jbiotec.2018.01.010
Ashayerizadeh, A., B. Dastar, M. S. Shargh, A. R. S. Mahoonak, and S. Zerehdaran. 2018. Effects of feeding fermented rapeseed meal on growth performance, gastrointestinal microflora population, blood metabolites, meat quality, and lipid metabolism in broiler chickens. Livest. Sci. 216:183-190. doi:10.1016/j.livsci.2018.08.012
Barekatain, R., L. F. Romero, J. O. B. Sorbara, and A. J. Cowieson. 2021. Balanced nutrient density for broiler chickens using a range of digestible lysine-to-metabolizable energy ratios and nutrient density: Growth performance, nutrient utilisation and apparent metabolizable energy. Anim. Nutr. 7:430-439. doi:10.1016/j.aninu.2020.12.003
Barone, J. R., W. F. Schmidt, and N. T. Gregoire. 2006. Extrusion of feather keratin. J. Appl. Polym. Sci. 100:1432-1442. doi:10.1002/app.23501
Bedford, M. R., and H. L. Classen. 1993. An in vitro assay for prediction of broiler intestinal viscosity and growth when fed rye-based diets in the presence of exogenous enzymes. Poult. Sci. 72:137-143. doi:10.3382/ps.0720137
Bertsch, A., and N. Coello. 2005. A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Bioresour. Technol. 96:1703-1708. doi:10.1016/j.biortech.2004.12.026
Beryl, G. P., B. Thazeem, M. Umesh, K. Senthilkumar, M. N. Kumar, and K. Preethi. 2021. Bioconversion of feather composts using proteolytic Bacillus mycoides for their possible application as biofertilizer in agriculture. Waste Biomass Valorization. 12:6795-6809. doi:10.1007/s12649-021-01472-4
Bhange, K., V. Chaturvedi, and R. Bhatt. 2016. Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agro industrial waste. Biotechnol. Rep. 10:94-104. doi:10.1016/j.btre.2016.03.007
Bhari, R., M. Kaur, and R. Sarup Singh. 2021. Chicken feather waste hydrolysate as a superior biofertilizer in agroindustry. Curr. Microbiol. 78:2212-2230. doi:10.1007/s00284-021-02491-z
Bhari, R., M. Kaur, R. S. Singh, A. Pandey, and C. Larroche. 2018. Bioconversion of chicken feathers by Bacillus aerius NSMk2: A potential approach in poultry waste management. Bioresour. Technol. Rep. 3:224-230. doi:10.1016/j.biteb.2018.07.015
Brandelli, A., L. Sala, and S. J. Kalil. 2015. Microbial enzymes for bioconversion of poultry waste into added-value products. Food Res. Int. 73:3-12. doi:10.1016/j.foodres.2015.01.015
Bryan, D., and H. L. Classen. 2020. In vitro methods of assessing protein quality for poultry. Animals. 10:551. doi:10.3390/ani10040551
Callegaro, K., N. Welter, and D. J. Daroit. 2018. Feathers as bioresource: microbial conversion into bioactive protein hydrolysates. Process Biochem. 75:1-9. doi:10.1016/j.procbio.2018.09.002
Camire, M. E. 1991. Protein functionality modification by extrusion cooking. J. Am. Oil Chem. Soc. 68:200-205.
Chaney, A. L., and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130-132. doi:10.1093/clinchem/8.2.130
Cheftel, J. C. 1986. Nutritional effects of extrusion-cooking. Food Chem. 20:263-283. doi:10.1016/0308-8146(86)90096-8
Cheng, X., L. Huang, X. R. Tu, and K. T. Li. 2010. Medium optimization for the feather-degradation by Streptomyces fradiae VarS-221 using the response surface methodology. Biodegradation. 21:117-122. doi:10.1007/s10532-009-9286-7
Chu, P. H., M. A. Jenol, L. Y. Phang, M. F. Ibrahim, P. Purkan, S. Hadi, and S. Abd-Aziz. 2024. Innovative approaches for amino acid production via consolidated bioprocessing of agricultural biomass. Environ. Sci. Pollut. Res. 31:33303-33324. doi:10.1007/s11356-024-33534-0
Clench, M. H. 1970. Variability in body pterylosis, with special reference to the genus passer. The Auk. 87:650-691. doi:10.2307/4083702
Cooke, T. F., C. R. Fischer, P. Wu, T. X. Jiang, K. T. Xie, J. Kuo, E. Doctorov, A. Zehnder, C. Khosla, C. M. Chuong, and C. D. Bustamante. 2017. Genetic mapping and biochemical basis of yellow feather pigmentation in budgerigars. Cell. 171:427-439. doi:10.1016/j.cell.2017.08.016
Coward-Kelly, G., V. S. Chang, F. K. Agbogbo, and M. T. Holtzapple. 2006. Lime treatment of keratinous materials for the generation of highly digestible animal feed: 1. Chicken feathers. Bioresour. Technol. 97:1337-1343. doi:10.1016/j.biortech.2005.05.021
da Gioppo, N. M., F. G. Moreira-Gasparin, A. M. Costa, A. M. Alexandrino, C. G. de Souza, and R. M. Peralta. 2009. Influence of the carbon and nitrogen sources on keratinase production by Myrothecium verrucaria in submerged and solid state cultures. J. Ind. Microbiol. Biotechnol. 36:705-711. doi:10.1007/s10295-009-0540-0
da Rosa, C. E., C. M. B. Pinilla, P. Stincone, J. Q. Pereira, A. P. M. Varela, F. Q. Mayer, and A. Brandelli. 2022. Genomic characterization and production of antimicrobial lipopeptides by Bacillus velezensis P45 growing on feather by-products. J. Appl. Microbiol. 132:2067-2079. doi:10.1111/jam.15363
Daroit, D. J., and A. Brandelli. 2014. A current assessment on the production of bacterial keratinases. Crit. Rev. Biotechnol. 34:372-384. doi:10.3109/07388551.2013.794768
De Azeredo, L. A., M. B. De Lima, R. R. Coelho, and D. M. Freire. 2006. Thermophilic protease production by Streptomyces sp. 594 in submerged and solid-state fermentations using feather meal. J. Appl. Microbiol. 100:641-647. doi:10.1111/j.1365-2672.2005.02791.x
de Oliveira, C. C., A. K. S. de Souza, and R. J. S. de Castro. 2019. Bioconversion of chicken feather meal by Aspergillus niger: Simultaneous enzymes production using a cost-effective feedstock under solid state fermentation. Indian J. Microbiol. 59:209-216. doi:10.1007/s12088-019-00792-3
De Pilli, T., A. Derossi, R. A. Talja, K. Jouppila, and C. Severini. 2011. Study of starch-lipid complexes in model system and real food produced using extrusion-cooking technology. Innovative Food Sci. Emerging Technol. 12:610-616. doi:10.1016/j.ifset.2011.07.011
de Q. Souza, G. E., G. R. M. Burin, G. I. B. de Muniz, and H. J. Alves. 2023. Valorization of feather waste in Brazil: Structure, methods of extraction, and applications of feather keratin. Environ. Sci. Pollut. Res. 30:39558-39567. doi:10.1007/s11356-023-25788-x
Devi, S., A. Chauhan, R. Bishist, N. Sankhyan, K. Rana, and N. Sharma. 2023. Production, partial purification and efficacy of keratinase from Bacillus halotolerans L2EN1 isolated from the poultry farm of Himachal Pradesh as a potential laundry additive. Biocatal. Biotransform. 41:222-242. doi:10.1080/10242422.2022.2029851
Dimkić, I., T. Janakiev, M. Petrović, G. Degrassi, and D. Fira. 2022. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms- A review. Physiol. Mol. Plant Pathol. 117:101754. doi:10.1016/j.pmpp.2021.101754
Ding, Q. B., P. Ainsworth, A. Plunkett, G. Tucker, and H. Marson. 2006. The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. J. Food Eng. 73:142-148. doi:10.1016/j.jfoodeng.2005.01.013
Draper, C. I. 1944. The nutritive value of corn oil meal and feather proteins. Iowa Agr. Exp. Sta. Res. Bul. 326:163-184.
Farhadi, D., A. Karimi, A. A. Sadeghi, J. Rostamzadeh, and M. R. Bedford. 2019. Effect of a high dose of exogenous phytase and supplementary myo-inositol on mineral solubility of broiler digesta and diets subjected to in vitro digestion assay. Poult. Sci. 98:3870-3883. doi:10.3382/ps/pez104
Feroz, S., N. Muhammad, J. Ratnayake, and G. Dias. 2020. Keratin-based materials for biomedical applications. Bioact. Mater. 5:496-509. doi:10.1016/j.bioactmat.2020.04.007
Galván, I., and F. Solano. 2016. Bird integumentary melanins: Biosynthesis, forms, function and evolution. Int. J. Mol. Sci. 17:520. doi:10.3390/ijms17040520
Guan, L. Y., M. W. Shi, and J. J. Long. 2023. A novel and green method for recycling of waste feather for down via flash explosion with supercritical carbon dioxide. Sci. Total Environ. 870:162044. doi:10.1016/j.scitotenv.2023.162044
Gungor, E., A. Altop, and G. Erener. 2021. Effect of raw and fermented grape pomace on the growth performance, antioxidant status, intestinal morphology, and selected bacterial species in broiler chicks. Animals. 11:364. doi:10.3390/ani11020364
Gupta, R., and P. Ramnani. 2006. Microbial keratinases and their prospective applications: An overview. Appl. Biochem. Biotechnol. 70:21-33. doi:10.1007/s00253-005-0239-8
Gupta, R., R. Rajput, R. Sharma, and N. Gupta. 2013. Biotechnological applications and prospective market of microbial keratinases. Appl. Biochem. Biotechnol. 97:9931-9940. doi:10.1007/s00253-013-5292-0
Hamma, S., N. Boucherba, Z. Azzouz, M. Le Roes-Hill, O.-N. Kernou, A. Bettache, R. Ladjouzi, R. Maibeche, M. Benhoula, H. Hebal, Z. Amghar, N. Allaoua, K. Moussi, P. Rijo, and S. Benallaoua. 2024. Statistical optimisation of Streptomyces sp. DZ 06 keratinase production by submerged fermentation of chicken feather meal. Fermentation. 10:500. doi:10.3390/fermentation10100500
Han, Y., and C. M. Parsons. 1991. Protein and amino-acid quality of feather meals. Poult. Sci. 70:812-822. doi:10.3382/ps.0700812
Hasan, M. J., P. Haque, and M. M. Rahman. 2022. Protease enzyme based cleaner leather processing: A review. J. Cleaner Prod. 365:132826. doi:10.1016/j.jclepro.2022.132826
Hashem, A. M., A. Abdel-Fattah, S. Ismail, M. El-Gamal, M. Esawy, and M. A. Emran. 2018. Optimization, characterization and thermodynamic studies on B. licheniformis ALW1 keratinase. Egypt. J. Chem. 61:591-607.
Hasni, M. S., H. A. Sahito, M. A. Memon, M. I. Sanjrani, M. A. Gopang, and N. A. Soomro. 2014. Effect of feeding various levels of feather meal as a replacement of fish meal on the growth of broiler. Int. J. Agric. Innov. Res. 3:505-511.
Hejdysz, M., S. A. Kaczmarek, and A. Rutkowski. 2016. Effect of extrusion on the nutritional value of peas for broiler chickens. Arch. Anim. Nutr. 70:364-377. doi:10.1080/1745039x.2016.1206736
Ho, W. K. W., L. Freem, D. Zhao, K. J. Painter, T. E. Woolley, E. A. Gaffney, M. J. McGrew, A. Tzika, M. C. Milinkovitch, and P. Schneider. 2019. Feather arrays are patterned by interacting signalling and cell density waves. PLoS Biol. 17:e3000132.
Holkar, C. R., S. S. Jain, A. J. Jadhav, and D. V. Pinjari. 2018. Valorization of keratin based waste. Process Saf. Environ. Prot. 115:85-98. doi:10.1016/j.psep.2017.08.045
Hong, D., D. Ragland, and O. Adeola. 2001. Additivity and associative effects of metabolizable energy and amino acid digestibility in barley and canola meal for White Pekin ducks. Poult. Sci. 80:1600-1606. doi:10.1093/ps/80.11.1600
Hong, D., D. Ragland, and O. Adeola. 2002. Additivity and associative effects of metabolizable energy and amino acid digestibility of corn, soybean meal, and wheat red dog for White Pekin ducks. J. Anim. Sci. 80:3222-3229. doi:10.2527/2002.80123222x
Hongtrakul, K., R. D. Goodband, K. C. Behnke, J. L. Nelssen, M. D. Tokach, J. R. Bergström, W. B. Nessmith, Jr., and I. H. Kim. 1998. The effects of extrusion processing of carbohydrate sources on weanling pig performance. J. Anim. Sci. 76:3034-3042. doi:10.2527/1998.76123034x
Huang, H. J., B. C. Weng, Y. D. Hsuuw, Y. S. Lee, and K. L. Chen. 2021. Dietary supplementation of two-stage fermented feather-soybean meal product on growth performance and immunity in finishing pigs. Animals. 11:1527. doi:10.3390/ani11061527
Huang, H. J., Y. S. Lee, B. C. Weng, C. Y. Lin, Y. D. Hsuuw, and K. L. Chen. 2023. Two-stage fermented feather meal-soybean meal product improves the performance and immunity of lactating sows and piglets. Fermentation. 9:82. doi:10.3390/fermentation9020082
Iwe, M. O., D. J. van Zuilichem, W. Stolp, and P. O. Ngoddy. 2004. Effect of extrusion cooking of soy-sweet potato mixtures on available lysine content and browning index of extrudates. J. Food Eng. 62:143-150. doi:10.1016/S0260-8774(03)00212-7
Jagadeesan, Y., S. Meenakshisundaram, S. Pichaimuthu, and A. Balaiah. 2024. A scientific version of understanding “Why did the chickens cross the road”? - A guided journey through Bacillus spp. towards sustainable agriculture, circular economy and biofortification. Environ. Res. 244:117907. doi:10.1016/j.envres.2023.117907
Jagadeesan, Y., S. Meenakshisundaram, V. Saravanan, and A. Balaiah. 2020. Sustainable production, biochemical and molecular characterization of thermo-and-solvent stable alkaline serine keratinase from novel Bacillus pumilus AR57 for promising poultry solid waste management. Int. J. Biol. Macromol. 163:135-146. doi:10.1016/j.ijbiomac.2020.06.219
Jaishankar, J., and P. Srivastava. 2017. Molecular basis of stationary phase survival and applications. Front. Microbiol. 8:2000. doi:10.3389/fmicb.2017.02000
Jazi, V., F. Boldaji, B. Dastar, S. R. Hashemi, and A. Ashayerizadeh. 2017. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. Br. Poult. Sci. 58:402-408. doi:10.1080/00071668.2017.1315051
Kamiloglu, S., M. Tomas, G. Ozkan, T. Ozdal, and E. Capanoglu. 2024. In vitro digestibility of plant proteins: strategies for improvement and health implications. Curr. Opin. Food Sci. 57:101148. doi:10.1016/j.cofs.2024.101148
Kaur, P., and T. Satyanarayana. 2005. Production of cell-bound phytase by Pichia anomala in an economical cane molasses medium: Optimization using statistical tools. Process Biochem. 40:3095-3102. doi:10.1016/j.procbio.2005.03.059
Kim, J. M., W. J. Lim, and H. J. Suh. 2001. Feather-degrading Bacillus species from poultry waste. Process Biochem. 37:287-291. doi:10.1016/S0032-9592(01)00206-0
Kim, W. K., and P. H. Patterson. 2000. Nutritional value of enzyme- or sodium hydroxide-treated feathers from dead hens. Poult. Sci. 79:528-534. doi:10.1093/ps/79.4.528
Kowata, K., M. Nakaoka, K. Nishio, A. Fukao, A. Satoh, M. Ogoshi, S. Takahashi, M. Tsudzuki, and S. Takeuchi. 2014. Identification of a feather β-keratin gene exclusively expressed in pennaceous barbule cells of contour feathers in chicken. Gene. 542:23-28. doi:10.1016/j.gene.2014.03.027
Kumar, R., S. Balaji, T. S. Uma, A. B. Mandal, and P. K. Sehgal. 2010. Optimization of influential parameters for extracellular keratinase production by Bacillus subtilis (MTCC9102) in solid state fermentation using Horn meal- a biowaste management. Appl. Biochem. Biotechnol. 160:30-39. doi:10.1007/s12010-008-8452-4
Kuo, T. L., and H. W. Wei. 2024. The Bioavailability of solid-state fermented feather meal using a novel feather-degrading bacterium Bacillus velezensis PN1 in broilers. Animals. 14:3254. doi:10.3390/ani14223254
Lakshmi, P. J., C. M. K. Chitturi, and V. V. Lakshmi. 2013. Efficient degradation of feather by keratinase producing Bacillus sp. Int. J. Microbiol. 2013:608321. doi:10.1155/2013/608321
Lateef, A., I. A. Adelere, and E. B. Gueguim-Kana. 2015. Bacillus safensis LAU 13: A new source of keratinase and its multi-functional biocatalytic applications. Biotechnol. Biotechnol. Equip. 29:54-63. doi:10.1080/13102818.2014.986360
Lee, T. Y., Y. S. Lee, C. P. Wu, K. W. Chan, and K. L. Chen. 2024. Bacillus amyloliquefaciens CU33 fermented feather-soybean meal product improves the crude protein digestibility, diarrhea status, and growth performance of goat kids. Animals. 14:2809. doi:10.3390/ani14192809
Lee, T. Y., Y. S. Lee, R. H. Yeh, K. H. Chen, and K. L. Chen. 2022. Bacillus amyloliquefaciens CU33 fermented feather meal-soybean meal product improves the intestinal morphology to promote the growth performance of broilers. Poult. Sci. 101:102027. doi:10.1016/j.psj.2022.102027
Lee, Y. S., K. L. Ku, P. Y. Chen, and K. L. Chen. 2023. The fermented product of high-yield surfactin strain Bacillus subtilis LYS1 improves the growth performance and intestinal villi morphology in broilers. Poult. Sci. 102:102839. doi:10.1016/j.psj.2023.102839
Lin, S., H. E. Huff, and F. Hsieh. 2000. Texture and chemical characteristics of soy protein meat analog extruded at high moisture. J. Food Sci. 65:264-269.
Liu, S., L. Zhao, M. Li, Y. Zhu, D. Liang, Y. Ma, L. Sun, G. Zhao, and Q. Tu. 2024. Probiotic Bacillus as fermentation agents: Status, potential insights, and future perspectives. Food Chem. :X. 22:101465. doi:10.1016/j.fochx.2024.101465
Liya, S. M., M. Umesh, A. Nag, A. Chinnathambi, S. A. Alharbi, G. K. Jhanani, S. Shanmugam, and K. Brindhadevi. 2023. Optimized production of keratinolytic proteases from Bacillus tropicus LS27 and its application as a sustainable alternative for dehairing, destaining and metal recovery. Environ. Res. 221:115283. doi:10.1016/j.envres.2023.115283
Lo, S. H., C. Y. Chen, and H. T. Wang. 2022. Three-step in vitro digestion model for evaluating and predicting fecal odor emission from growing pigs with different dietary protein intakes. Anim. Biosci. 35:1592-1605. doi:10.5713/ab.21.0498.
Lopes, R. J., J. D. Johnson, M. B. Toomey, M. S. Ferreira, P. M. Araujo, J. Melo-Ferreira, L. Andersson, G. E. Hill, J. C. Corbo, and M. Carneiro. 2016. Genetic basis for red coloration in birds. Curr. Biol. 26:1427-1434. doi:10.1016/j.cub.2016.03.076
Lotfy, W. A. 2008. Production of a thermostable uricase by a novel Bacillus thermocatenulatus strain. Bioresour. Technol. 99:699-702. doi:10.1016/j.biortech.2007.01.048
Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275. doi:10.1016/S0021-9258(19)52451-6
Ma, B., Q. Sun, J. Yang, J. Wizi, X. Hou, and Y. Yang. 2017. Degradation and regeneration of feather keratin in NMMO solution. Environ. Sci. Pollut. Res. 24:17711-17718. doi:10.1007/s11356-017-9410-x
Mabrouk, M. E. M. 2008. Feather degradation by a new keratinolytic Streptomyces sp. MS-2. World J. Microbiol. Biotechnol. 24:2331-2338. doi:10.1007/s11274-008-9748-9
Mabrouk, S. S., A. M. Hashem, N. M. A. El-Shayeb, A. M. S. Ismail, and A. F. Abdel-Fattah. 1999. Optimization of alkaline protease productivity by Bacillus licheniformis ATCC 21415. Bioresour. Technol. 69:155-159. doi:10.1016/S0960-8524(98)00165-5
Machado, G. S., A. P. F. Correa, P. Pires, L. Marconatto, A. Brandelli, A. M. Kessler, and L. Trevizan. 2021. Determination of the nutritional value of diet containing Bacillus subtilis hydrolyzed feather meal in adult dogs. Animals. 11:3553. doi:10.3390/ani11123553
Malathi, V., and G. Devegowda. 2001. In vitro evaluation of nonstarch polysaccharide digestibility of feed ingredients by enzymes. Poult. Sci. 80:302-305. doi:10.1093/ps/80.3.302
Malav, O. P., S. Talukder, P. Gokulakrishnan, and S. Chand. 2015. Meat analog: A review. Crit. Rev. Food Sci. Nutr. 55:1241-1245. doi:10.1080/10408398.2012.689381
Malleshi, N. G., N. A. Hadimani, R. Chinnaswamy, and C. F. Klopfenstein. 1996. Physical and nutritional qualities of extruded weaning foods containing sorghum, pearl millet, or finger millet blended with mung beans and nonfat dried milk. Plant Foods Hum. Nutr. 49:181-189. doi:10.1007/bf01093214
Manan, M. A., and C. Webb. 2020. Newly designed multi-stacked circular tray solid-state bioreactor: Analysis of a distributed parameter gas balance during solid-state fermentation with influence of variable initial moisture content arrangements. Bioresour. Bioprocess. 7.:16. doi:10.1186/s40643-020-00307-9
Manczinger, L., M. Rozs, C. Vágvölgyi, and F. Kevei. 2003. Isolation and characterization of a new keratinolytic Bacillus licheniformis strain. World J. Microbiol. Biotechnol. 19:35-39. doi:10.1023/A:1022576826372
Maynard, C. J., A. R. Jackson, J. P. Caldas-Cueva, A. Mauromoustakos, M. T. Kidd, S. J. Rochell, and C. M. Owens. 2023. Meat quality attributes of male and female broilers from 4 commercial strains processed for 2 market programs. Poult. Sci. 102:102570. doi:10.1016/j.psj.2023.102570
Mazotto, A. M., S. Couri, M. C. T. Damaso, and A. B. Vermelho. 2013. Degradation of feather waste by keratinases: Comparison of submerged and solid-state fermentation. Int. Biodeter. Biodegr. 85:189-195. doi:10.1016/j.ibiod.2013.07.003
Mazotto, A. M., S. M. L. Cedrola, E. P. de Souza, S. Couri, and A. B. Vermelho. 2022. Enhanced keratinase production by Bacillus subtilis amr using experimental optimization tools to obtain feather protein lysate for industrial applications. 3 Biotech. 12:90. doi:10.1007/s13205-022-03153-y
McGauran, T., M. Harris, N. Dunne, B. M. Smyth, and E. Cunningham. 2021. Development and optimisation of extruded bio-based polymers from poultry feathers. Eur. Polym. J. 158:110678. doi:10.1016/j.eurpolymj.2021.110678
Moharam, M. E., M. A. El-Bendary, M. M. Abo Elsoud, F. E. Beih, S. M. Hassnin, A. Salama, E. A. Omara, and N. N. Elgamal. 2023. Modeling and in-vivo evaluation of fibrinolytic enzyme produced by Bacillus subtilis Egy under solid state fermentation. Heliyon. 9:e16254. doi:10.1016/j.heliyon.2023.e16254
Moore, S., and W. H. Stein. 1954. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 211:907-913. doi:10.1016/s0021-9258(18)71178-2
Moritz, J. S., A. S. Parsons, N. P. Buchanan, W. B. Calvalcanti, K. R. Cramer, and R. S. Beyer. 2005. Effect of gelatinizing dietary starch through feed processing on zero- to three-week broiler performance and metabolism. J. Appl. Poult. Res. 14:47-54. doi:10.1093/japr/14.1.47
Moritz, J. S., and J. D. Latshaw. 2001. Indicators of nutritional value of hydrolyzed feather meal. Poult. Sci. 80:79-86. doi:10.1093/ps/80.1.79
Naber, E. C., and S. P. Touchburn. 1969. Effect of hydration, gelatinization and ball milling of starch on growth and energy utilization by the chick. Poult. Sci. 48:1583-1589. doi:10.3382/ps.0481583
Najafpour, G. D., and C. P. Shan. 2003. Enzymatic hydrolysis of molasses. Bioresour. Technol. 86:91-94. doi:10.1016/s0960-8524(02)00103-7
Nalle, C. L., G. Ravindran, and V. Ravindran. 2011. Extrusion of peas (Pisum sativum L.): Effects on the apparent metabolisable energy and ileal nutrient digestibility of broilers. Am. J. Anim. Vet. Sci. 6:25-30. doi:10.3844/ajavsp.2011.25.30
Ningthoujam, D. S., L. J. Devi, P. J. Devi, P. Kshetri, K. Tamreihao, S. Mukherjee, S. Devi, and N. Betterson. 2016. Optimization of keratinase production by Amycolatopsis sp. strain mbrl 40 from a limestone habitat. J. Bioprocess. Biotech. 6:5. doi:10.4172/2155-9821.1000282
NRC. 1994. Nutrient Requirements of Poultry. Page The National Academies Press, Washington, DC.
Odetallah, N. H., J. J. Wang, J. D. Garlich, and J. C. H. Shih. 2005. Versazyme supplementation of broiler diets improves market growth performance. Poult. Sci. 84:858-864. doi:10.1093/ps/84.6.858
Osunbami, O. T., and O. Adeola. 2022. Energy value of hydrolyzed feather meal and flash-dried poultry protein for broiler chickens and pigs. J. Anim. Sci. 100:1-8. doi:10.1093/jas/skac073
Ouakarrouch, M., K. El Azhary, N. Laaroussi, M. Garoum, and F. Kifani-Sahban. 2020. Thermal performances and environmental analysis of a new composite building material based on gypsum plaster and chicken feathers waste. Therm. Sci. Eng. Prog. 19:100642. doi:10.1016/j.tsep.2020.100642
Papadopoulos, M. C. 1985. Amino acid content and protein solubility of feather meal as affected by different processing conditions. Neth. J. Agric. Sci. 33:317-319. doi:10.18174/njas.v33i3.16849
Papadopoulos, M. C., A. R. Elboushy, A. E. Roodbeen, and E. H. Ketelaars. 1986. Effects of processing time and moisture-content on amino-acid-composition and nitrogen characteristics of feather meal. Anim. Feed Sci. Technol. 14:279-290. doi:10.1016/0377-8401(86)90100-8
Papadopoulos, M. C., A. R. El‐Boushy, and A. E. Roodbeen. 1985. The effect of varying autoclaving conditions and added sodium hydroxide on amino acid content and nitrogen characteristics of feather meal. J. Sci. Food Agric. 36:1219-1226. doi:10.1002/jsfa.2740361204
Parsons, C. M. 1996. Digestible amino acids for poultry and swine. Anim. Feed Sci. Technol. 59:147-153. doi:10.1016/0377-8401(95)00895-0
Peng, S., H. Li, S. Zhang, R. Zhang, X. Cheng, and K. Li. 2023. Isolation of a novel feather-degrading Ectobacillus sp. JY-23 strain and characterization of a new keratinase in the M4 metalloprotease family. Microbiol. Res. 274:127439. doi:10.1016/j.micres.2023.127439
Péronnet, F., A. Meynier, V. Sauvinet, S. Normand, E. Bourdon, D. Mignault, D. H. St-Pierre, M. Laville, R. Rabasa-Lhoret, and S. Vinoy. 2015. Plasma glucose kinetics and response of insulin and GIP following a cereal breakfast in female subjects: effect of starch digestibility. Eur. J. Clin. Nutr. 69:740-745. doi:10.1038/ejcn.2015.50
Prajapati, S., S. Koirala, and A. K. Anal. 2021. Bioutilization of chicken feather waste by newly isolated keratinolytic bacteria and conversion into protein hydrolysates with improved functionalities. Appl. Biochem. Biotechnol. 193:2497-2515. doi:10.1007/s12010-021-03554-4
Rahman, M. A. U., A. Rehman, X. Chuanqi, Z. X. Long, C. Binghai, J. Linbao, and S. Huawei. 2015. Extrusion of feed/feed ingredients and its effect on digestibility and performance of poultry: A review. Int. J. Curr. Microbiol. App. Sci. 4:48-61.
Reddy, M. R., K. S. Reddy, Y. T. Chouhan, H. Bee, and G. Reddy. 2017. Effective feather degradation and keratinase production by Bacillus pumilus GRK for its application as bio-detergent additive. Bioresour. Technol. 243:254-263. doi:10.1016/j.biortech.2017.06.067
Rocky-Salimi, K., M. Hashemi, M. Safari, and M. Mousivand. 2017. Valorisation of untreated cane molasses for enhanced phytase production by Bacillus subtilis K46b and its potential role in dephytinisation. J. Sci. Food Agric. 97:222-229. doi:10.1002/jsfa.7716
Safari, H., A. Mohit, and M. Mohiti-Asli. 2024. Feather meal processing methods impact the production parameters, blood biochemical indices, gut function, and hepatic enzyme activity in broilers. J. Anim. Sci. 102:skae068. doi:10.1093/jas/skae068
Sanjukta, S., S. Padhi, P. Sarkar, S. P. Singh, D. Sahoo, and A. K. Rai. 2021. Production, characterization and molecular docking of antioxidant peptides from peptidome of kinema fermented with proteolytic Bacillus spp. Food Res. Int. 141:110161. doi:10.1016/j.foodres.2021.110161
Scanes, C. G. 2014. Sturkie's avian physiology. 6 ed. Page 456. Elsevier, USA.
Schmid, E. M., A. Farahnaky, B. Adhikari, and P. J. Torley. 2022. High moisture extrusion cooking of meat analogs: A review of mechanisms of protein texturization. Compr. Rev. Food Sci. Food Saf. 21:4573-4609. doi:10.1111/1541-4337.13030
Schor, R., and S. Krimm. 1961. Studies on the structure of feather keratin: II. A beta-helix model for the structure of feather keratin. Biophys. J. 1:489-515. doi:10.1016/s0006-3495(61)86904-x
Schwede, S., E. Thorin, J. Lindmark, P. Klintenberg, A. Jaaskelainen, A. Suhonen, R. Laatikainen, and E. Hakalehto. 2017. Using slaughterhouse waste in a biochemical-based biorefinery-results from pilot scale tests. Environ. Technol. 38:1275-1284. doi:10.1080/09593330.2016.1225128
Seiquer, I., J. Díaz-Alguacil, C. Delgado-Andrade, M. López-Frías, A. Muñoz Hoyos, G. Galdó, and M. P. Navarro. 2006. Diets rich in Maillard reaction products affect protein digestibility in adolescent males aged 11-14. Am. J. Clin. Nutr. 83:1082-1088. doi:10.1093/ajcn/83.5.1082
Sharma, R., and S. Devi. 2018. Versatility and commercial status of microbial keratinases: A review. Rev. Environ. Sci. Bio/Technol. 17:19-45. doi:10.1007/s11157-017-9454-x
Simpson, R. J., M. R. Neuberger, and T. Y. Liu. 1976. Complete amino acid analysis of proteins from a single hydrolysate. J. Biol. Chem. 251:1936-1940. doi:10.1016/s0021-9258(17)33637-2
Singh, B., and T. Satyanarayana. 2006. A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost‐effective cane molasses medium. J. Appl. Microbiol. 101:344-352. doi:10.1111/j.1365-2672.2006.02921.x
Singh, S., S. Gamlath, and L. Wakeling. 2007. Nutritional aspects of food extrusion: a review. Int. J. Food Sci. Technol. 42:916-929. doi:10.1111/j.1365-2621.2006.01309.x
Sloan, D. R., T. E. Bowen, and P. W. Waldroup. 1971. Expansion-extrusion processing of corn, milo and raw soybeans before and after incorporation in broiler diets. Poult. Sci. 50:257-261. doi:10.3382/ps.0500257
Son, J., W. D. Lee, C. H. Kim, H. Kim, E. C. Hong, and H. J. Kim. 2024. Effect of dietary crude protein reduction levels on performance, nutrient digestibility, nitrogen utilization, blood parameters, meat quality, and welfare index of broilers in welfare-friendly environments. Animals. 14:3131. doi:10.3390/ani14213131
Song, M., Y. Wang, Y. Liu, C. Ren, L. Yan, J. Xie, J. Lai, G. Zhou, Y. Li, and F. Zhao. 2023. The age-related metabolizable energy of cereal grains, oilseed meals, corn gluten meals, and feather meals for broilers. J. Anim. Sci. 101:1-10. doi:10.1093/jas/skad051
Sumantha, A., C. Larroche, and A. Pandey. 2006. Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol. Biotechnol. 44:211-220.
Tadtiyanant, C., J. J. Lyons, and J. M. Vandepopuliere. 1993. Extrusion processing used to convert dead poultry, feathers, eggshells, hatchery waste, and mechanically deboned residue into feedstuffs for poultry. Poult. Sci. 72:1515-1527. doi:10.3382/ps.0721515
Takahashi, K., H. Yamamoto, Y. Yokote, and M. Hattori. 2004. Thermal behavior of fowl feather keratin. Biosci. Biotechnol. Biochem. 68:1875-1881. doi:10.1271/bbb.68.1875
Tesfaye, T., B. Sithole, D. Ramjugernath, and V. Chunilall. 2017. Valorisation of chicken feathers: Characterisation of chemical properties. Waste Manage. 68:626-635. doi:10.1016/j.wasman.2017.06.050
Thys, R. C. S., F. S. Lucas, A. Riffel, P. Heeb, and A. Brandelli. 2004. Characterization of a protease of a feather‐degrading Microbacterium species. Lett. Appl. Microbiol. 39:181-186. doi:10.1111/j.1472-765X.2004.01558.x
Tomarelli, R. M., J. Charney, and M. L. Harding. 1949. The use of azoalbumin as a substrate in the colorimetric determination or peptic and tryptic activity. J. Lab. Clin. Med. 34:428-433.
Tovar-Jiménez, X., J. Caro-Corrales, C. A. Gómez-Aldapa, J. Zazueta-Morales, V. Limón-Valenzuela, J. Castro-Rosas, J. Hernández-Ávila, and E. Aguilar-Palazuelos. 2015. Third generation snacks manufactured from orange by-products: physicochemical and nutritional characterization. J. Food Sci. Technol. 52:6607-6614. doi:10.1007/s13197-015-1726-2
Vidmar, B., and M. Vodovnik. 2018. Microbial keratinases: Enzymes with promising biotechnological applications. Food Technol. Biotechnol. 56:312-328. doi:10.17113/ftb.56.03.18.5658
Vijayan, P. P., A. V. A. Bhanu, S. R. Archana, A. Babu, S. Siengchin, and J. Parameswaranpillai. 2021. Development of chicken feather fiber filled epoxy protective coating for metals. Mater. Today: Proc. 41:468-472. doi:10.1016/j.matpr.2020.05.229
Wang, B., W. Yang, J. McKittrick, and M. A. Meyers. 2016. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 76:229-318. doi:10.1016/j.pmatsci.2015.06.001
Wang, H. Y., Y. M. Guo, and J. C. H. Shih. 2008. Effects of dietary supplementation of keratinase on growth performance, nitrogen retention and intestinal morphology of broiler chickens fed diets with soybean and cottonseed meals. Anim. Feed Sci. Technol. 140:376-384. doi:10.1016/j.anifeedsci.2007.04.003
Wang, J. J., and J. C. H. Shih. 1999. Fermentation production of keratinase from Bacillus licheniformis PWD-1 and a recombinant B. subtilis FDB-29. J. Ind. Microbiol. Biotechnol. 22:608-616. doi:10.1038/sj.jim.2900667
Williams, C. M., C. G. Lee, J. D. Garlich, and J. C. H. Shih. 1991. Evaluation of a bacterial feather fermentation product, feather-lysate, as a feed protein. Poult. Sci. 70:85-94. doi:10.3382/ps.0700085
Xu, R. F., W. Wu, and H. Xu. 2007. Investigation of feather follicle development in embryonic geese. Poult. Sci. 86:2000-2007. doi:10.1093/ps/86.9.2000
Yamamura, S., Y. Morita, Q. Hasan, S. R. Rao, Y. Murakami, K. Yokoyama, and E. Tamiya. 2002. Characterization of a new keratin-degrading bacterium isolated from deer fur. J. Biosci. Bioeng. 93:595-600. doi:10.1016/S1389-1723(02)80243-2
Yeh, R. H., C. W. Hsieh, and K. L. Chen. 2023. Two-stage fermented feather meal enhances growth performance and amino acid digestibility in broilers. Fermentation. 9:128. doi:10.3390/fermentation9020128
Yokote, Y., Y. Kubo, R. Takahashi, T. Ikeda, K. Akahane, and M. Tsubio. 2007. Structural details of a fowl feather elucidated by using polarized Raman microspectroscopy. Bull. Chem. Soc. Jpn. 80:1148-1156. doi:10.1246/bcsj.80.1148
Yu, M., Z. Yue, P. Wu, D. Y. Wu, J. A. Mayer, M. Medina, R. B. Widelitz, T. X. Jiang, and C. M. Chuong. 2004. The biology of feather follicles. Int. J. Dev. Biol. 48:181-191. doi:10.1387/ijdb.031776my
Zambrano, Y., I. Contardo, M. C. Moreno, and P. Bouchon. 2022. Effect of extrusion temperature and feed moisture content on the microstructural properties of rice-flour pellets and their impact on the expanded product. Foods. 11:198. doi:10.3390/foods11020198
Zhang, Y., R. Yang, and W. Zhao. 2014. Improving digestibility of feather meal by steam flash explosion. J. Agric. Food Chem. 62:2745-2751. doi:10.1021/jf405498k
Zhao, W., R. Yang, Y. Zhang, and L. Wu. 2012. Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: high density steam flash-explosion. Green Chem. 14:3352-3360. doi:10.1039/C2GC36243K
Zhu, J., F. Lu, D. Liu, X. Zhao, J. Chao, Y. Wang, Y. Luan, and H. Ma. 2024. The process of solid-state fermentation of soybean meal: antimicrobial activity, fermentation heat generation and nitrogen solubility index. J. Sci. Food Agric. 104:3228-3234. doi:10.1002/jsfa.13209
Zi, J., X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu. 2003. Coloration strategies in peacock feathers. Proc. Natl. Acad. Sci. USA. 100:12576-12578. doi:10.1073/pnas.2133313100
Žilić, S. M., I. N. Božović, S. Savić, and S. Šobajić. 2006. Heat processing of soybean kernel and its effect on lysine availability and protein solubility. Cent. Eur. J. Biol. 1:572-583. doi:10.2478/s11535-006-0039-x
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97083-
dc.description.abstract本研究探討家禽屠宰所廢棄羽毛資源化利用之最佳策略,分為三部分進行:
第一部分聚焦於篩選可有效分解羽毛之菌株,並建立其對白肉雞羽毛(white broiler chicken raw feathers, WRF)進行固態發酵之最佳條件,同時評估發酵產物對白肉雞生長性能之影響。結果顯示,篩選出之Bacillus velezensis PN1(PN1)能有效分解羽毛,最適固態發酵條件為水分65%、培養溫度37°C與培養時間48小時。利用其製備之發酵羽毛粉(white fermented feather meal, WFFM)應用於白肉雞肥育期飼糧中,經補足結晶態胺基酸後,建議使用量為5%,可完全取代商用水解羽毛粉(commercial hydrolyzed feather meal, HFM)。
第二部分針對黑羽土雞羽毛(black-feathered native chicken raw feathers, BRF)進一步調整固態發酵條件,探討其發酵效果與應用於白肉雞飼糧中之潛力。結果顯示,BRF並無角質化程度較高之問題,其限制主要來自原料來源更為單一、營養成分較低與成品顏色偏深,後者使得產品難以被判斷是否過度水解。利用PN1固態發酵BRF,生產之發酵羽毛粉(black fermented feather meal, BFFM),其最適發酵條件為水分65%、培養溫度47°C與培養時間72小時。應用於白肉雞肥育期飼糧時,建議使用量為3-5%,並於滿足胺基酸需求之條件下,可完全取代HFM。
為縮短生產時間並克服羽毛原料特性差異對飼料應用效能之影響,本研究在第三部分以擠出加工技術(extrusion processing technology, EPT)處理羽毛,探討其最適加工條件,並透過白肉雞生長試驗驗證其可利用性。研究結果顯示,使用配備加熱板之單軸擠出機進行加工,最適條件為原料水分15.9%、擠出機套筒前後溫度均控制於140-145°C。生產之擠出羽毛粉(extruded feather meal, EFM)建議於白肉雞肥育期飼糧中使用5%,同樣需補足結晶態胺基酸以滿足營養需求,可完全取代HFM。
綜上所述,本研究成功建立兩種不同之羽毛化製方法,為家禽屠宰廢棄羽毛資源化利用提供參考數據。
zh_TW
dc.description.abstractTo investigate optimal strategies for feather resource utilization, this study was conducted in three parts:
The first part focused on screening bacterial strains capable of efficiently degrading feathers and determining optimal conditions for solid-state fermentation (SSF) of white broiler chicken raw feathers (WRF). The impact of the fermentation product on the growth performance of broilers was also evaluated. Results showed that Bacillus velezensis PN1 (PN1) was an effective feather-degrading strain. The optimal SSF conditions for producing white fermented feather meal (WFFM) were 65% moisture, 37°C incubation temperature, and 48 hours fermentation time. When applied to broiler finisher diets with amino acid supplementation, a 5% inclusion level of WFFM could completely replace commercial hydrolyzed feather meal (HFM).
The second part examined the SSF of black-feathered native chicken raw feathers (BRF) using PN1 under adjusted conditions to assess fermentation outcomes and its potential application in broiler diets. The results indicated that BRF did not exhibit higher keratinization levels as traditionally believed, but its limitations stemmed from its relatively homogeneous source, lower nutritional value, and darker coloration, which hindered the assessment of over-hydrolysis in the final product. The optimal SSF conditions for producing black fermented feather meal (BFFM) were 65% moisture, 47°C incubation temperature, and 72 hours fermentation time. In finisher broiler diets, a BFFM inclusion level of 3% or higher, with adequate amino acid supplementation, could completely replace HFM.
In the third part, extrusion processing technology (EPT) was explored to shorten production time and overcome the challenges posed by variations in feather material properties. Results demonstrated that using a single-screw extruder equipped with heating plates, the optimal conditions were 15.9% initial moisture content and a barrel temperature of 140-145°C at both the front side and back ends. The extruded feather meal (EFM) produced under these conditions is recommended at a 5% inclusion level in finisher broiler diets, with crystalline amino acid supplementation, to fully replace HFM.
In conclusion, this study successfully established two distinct feather processing methods, providing valuable reference data for the resource utilization of poultry slaughter waste feathers.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:22:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-26T16:22:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書
謝辭 I
摘要 II
Abstract III
目次 V
圖次 IX
表次 X
縮寫表 XIII
壹、前言 1
貳、文獻探討 2
一、羽毛介紹 2
二、羽毛營養成分 3
三、羽毛角蛋白 4
四、羽毛加工利用 5
1. 物理化學法 5
2. 生物轉化法 8
五、芽孢桿菌 10
六、擠出機於飼料中之應用 11
七、羽毛粉在飼料工業中的應用與挑戰 13
參、材料與方法 15
一、羽毛之來源 15
二、樣品營養分之分析 15
1. 水分與乾物質測定 15
2. 粗蛋白質測定 16
3. 粗脂肪測定 17
4. 灰分測定 17
5. 總能測定 18
三、體外胃蛋白酶消化率分析 18
四、二階段體外消化率分析 19
五、表面消化率及氮矯正可代謝能測定 19
1. 蛋公雞之代謝試驗操作 19
2. 表面消化率之測定 20
3. 氮矯正代謝能測定 21
六、白肉雞之飼養管理 22
七、生產成本評估 23
八、統計分析 23
肆、試驗 24
第一章、發酵羽毛粉之菌株篩選及生物可利用性之評估 24
一、摘要 24
二、前言 25
二、材料與方法 26
1. 菌株接種及增殖培養 26
2. 羽毛分解菌之篩選 26
3. 菌種鑑定 28
4. WFFM固態發酵條件建立 28
5. WFFM表面消化率及氮矯正可代謝能測定 28
6. WFFM白肉雞生長試驗與生產成本評估 29
三、結果 36
1. 羽毛分解菌之篩選 36
2. 固態發酵條件建立 39
3. 表面消化率及氮矯正可代謝能測定 45
4. 白肉雞生長試驗與生產成本評估 50
四、討論 56
第二章、黑羽土雞羽毛之固態發酵及生物可利用性之評估 65
一、摘要 65
二、前言 66
二、材料與方法 67
1. WRF與BRF官能基與化學鍵結分析 67
2. BFFM之固態發酵條件建立 67
3. BFFM接種量與糖蜜對固態發酵之影響 67
4. BFFM表面消化率及氮矯正可代謝能測定 67
5. BFFM白肉雞生長試驗與生產成本評估 68
三、結果 75
1. 官能基與化學鍵結分析 75
2. 固態發酵條件建立 77
3. 表面消化率及氮矯正可代謝能測定 84
4. 白肉雞生長試驗與生產成本評估 89
四、討論 95
第三章、擠出羽毛粉之生產及生物可利用性之評估 104
一、摘要 104
二、前言 105
二、材料與方法 106
1. EFM最適生產條件建立 106
2. 樣品之鏡檢 106
3. EFM官能基與化學鍵結分析 106
4. EFM表面消化率及氮矯正可代謝能測定 106
5. EFM白肉雞生長試驗與生產成本評估 107
三、結果 111
1. 最適生產條件建立 111
2. 官能基與化學鍵結分析 116
3. 表面消化率及氮矯正可代謝能測定 117
4. 白肉雞生長試驗與生產成本評估 122
四、討論 125
伍、綜合討論 130
一、不同來源羽毛之比較 130
二、不同製程之比較 131
1. 製程差異 131
2. 胺基酸組成 132
3. 消化率 132
4. 白肉雞生長試驗 133
陸、結論 135
柒、參考文獻 136
捌、附錄 159
-
dc.language.isozh_TW-
dc.subject生物可利用率zh_TW
dc.subject肉雞zh_TW
dc.subject擠出zh_TW
dc.subject發酵zh_TW
dc.subject羽毛zh_TW
dc.subjectbroileren
dc.subjectfeatheren
dc.subjectfermentationen
dc.subjectextrusionen
dc.subjectbioavailabilityen
dc.title雞隻羽毛轉化成飼料原料之方法與其製品品質之評估zh_TW
dc.titleThe methods for the conversion of chicken feathers into feed ingredients and the assessment of the product qualityen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee鄭光成;陳國隆;王翰聰;李滋泰zh_TW
dc.contributor.oralexamcommitteeKuan-Chen Cheng;Kuo-Lung Chen;Han-Tsung Wang;Tzu-Tai Leeen
dc.subject.keyword羽毛,發酵,擠出,生物可利用率,肉雞,zh_TW
dc.subject.keywordfeather,fermentation,extrusion,bioavailability,broiler,en
dc.relation.page176-
dc.identifier.doi10.6342/NTU202500634-
dc.rights.note未授權-
dc.date.accepted2025-02-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-liftN/A-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
10.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved