Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97069
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘國隆zh_TW
dc.contributor.advisorKuo-Long Panen
dc.contributor.author曾義豪zh_TW
dc.contributor.authorYi-Hao Tsengen
dc.date.accessioned2025-02-26T16:18:32Z-
dc.date.available2025-02-27-
dc.date.copyright2025-02-26-
dc.date.issued2025-
dc.date.submitted2025-02-08-
dc.identifier.citation[1] H. P. Le, Progress and trends in ink-jet printing technology, J. Imaging Sci. Technol. 42, 49 (1998).
[2] O. A. Basaran, H. Gao, and P. P. Bhat, Nonstandard inkjets, Annu. Rev. Fluid Mech. 45, 85 (2013).
[3] J. R. Castrejón-Pita, K. J. Kubiak, A. A. Castrejón-Pita, M. C. T. Wilson, and I. M. Hutchings, Mixing and internal dynamics of droplets impacting and coalescing on a solid surface, Phys. Rev. E 88, 023023 (2013).
[4] H. Wijshoff, The dynamics of the piezo inkjet printhead operation, Phys. Rep. 491, 77 (2010).
[5] S. D. Hoath, S. Jung, and I. M. Hutchings, A simple criterion for filament break-up in drop-on-demand inkjet printing, Phys. Fluids 25, 021701 (2013).
[6] P. Calvert, Printing cells, Science 318, 208 (2007).
[7] M. Guvendiren, J. Molde, R. Soares, and J. KOhn, Designing biomaterials for 3D printing, ACS Biomater. ci. Eng. 2, 1679 (2016).
[8] R. D. Boehm, P. R. Miller, J. Daniels, S. Stafslien, and R. J. Narayan, Inkjet printing for pharmaceutical applications, Mater. Today 17, 247 (2014).
[9] Derby, B. 2010 Inkjet printing of functional and structural materials: fluid property requirements, eature stability and resolution. Annu. Rev. Mater. Res. 40, 395–414.
[10] Stone, H. A., Stroock, A. D. & Adjari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411.
[11] Oren Breslouer. Rayleigh-Plateau Instability: Falling Jet Analysis and Applications ( 2010 ).
[12] Day, R. F., Hinch, E. J., and Lister, J. R. (1998), Phys. Rev. Lett. 80, 704.
[13] Keller, J. B. & Miksis, M. J. 1983 Surface tension driven flows. SIAM J. Appl. Maths 43, 268–277.
[14] Brenner, M. P., Lister, J. R., Joseph, K., Nagel, S. R. & SHI, X. D. 1997 Breakdown of scaling in droplet fission at high Reynolds number. Phys. Fluids 9, 1573–1590.
[15] Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 1–79.
[16] Schulkers, R. M. S. M. 1994 The evolution and bifurcation of a pendant drop. J. Fluid Mech. 278, 83–100.
[17] Papageorgiou, D. T. 1995b On the breakup of viscous liquid threads. Phys. Fluids 7, 1529–1544.
[18] Eggers, J. 2012 Stability of a viscous pinching thread. Phys. Fluids 24, 072103.
[19] Eggers, J. 1993 Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71, 3458–3460.
[20] Brenner, M. P., Lister, J. R. & Stone, H. A. 1996 Pinching threads, singularities and the number 0.0304: : : . Phys. Fluids 8, 2827–2836.
[21] Notz, P. K., Chen, A. U. & Basaran, O. A. 2001 Satellite drops: unexpected dynamics and change of scaling during pinch-off. Phys. Fluids 13, 549–552.
[22] Chen, A. U., Notz, P. K. & Basaran, O. A. 2002 Computational and experimental analysis of pinch-off and scaling. Phys. Rev. Lett. 88, 174501.
[23] Basaran, O. A. 2002 Small scale free surface flows with breakup: drop formation and emerging applications. AIChE J. 48, 1842–1848.
[24] CASTREJÓN-PITA, J. R., CASTREJÓN-PITA, A. A., THETE, S. S., SAMBATH, K., HUTCHINGS, I. M., HINCH, E. J., LISTER, J. R. & BASARAN, O. A. 2015 Plethora of transitions during breakup of liquid filaments. Proc. Natl Acad. Sci. USA 112, 4582–4587.
[25] Lister JR, Stone HA (1998) Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys Fluids 10:2758–2764.
[26] A. Lagarde, C. Josserand, and S. Protiere, Proc. Natl. Acad.Sci. U.S.A. 115, 12371 (2018).
[27] CHEN, A. U., NOTZ, P. K. & BASARAN, O. A. 2002 Computational and experimental analysis of pinch-off and scaling. Phys. Rev. Lett. 88 (17), 174501.
[28] Hoepffner J, Paré G. 2013. Recoil of a liquid filament: escape from pinch-off through creation of a vortex ring.
[29] Wilkes ED, Phillips SD, Basaran OA (1999) Computational and experimental analysis of dynamics of drop formation. Phys Fluids 11:3577–3598.
[30] Rayleigh L (1879) On the capillary phenomena of jets. Proc R Soc Lond 29:71–97.
[31] Tang, C., Zhao, J., Zhang, P., Law, C. K. and Huang, Z. (2016). Dynamics of internal jets in the merging of two droplets of unequal sizes. J. Fluid Mech., 795, 671-689.
[32] Thoraval, M. J., Takehara, K., EtOh, T. G., Popinet, S., Ray, P., Josserand, C., Zaleski, S. and Thoroddsen, S. T. (2012). von Kármán vortex street within an impacting drop. Phys. Rev Lett., 108(26), 264506.
[33] Deike, L., Popinet, S. and Melville, W. K. (2015). Capillary effects on wave breaking. J. Fluid Mech., 769, 541-569.
[34] Samet, H. (1990). Applications of spatial data structures.
[35] Deike, L., Popinet, S. and Melville, W. K. (2015). Capillary effects on wave breaking. J. Fluid Mech., 769, 541-569.
[36] Anthony, C. R., Wee, H., Garg, V., Thete, S. S., Kamat, P. M., Wagoner, B. W., Wilkes, E. D., Notz, P. k., Chen, A. U., suryo, R., Sambath, K., Panditaratne, J. C., Liao, Y. C., & Basaran, O. A. (2022). Sharp Interface Methods for Simulation and Analysis of Free Surface Flows with Singularities: Breakup and Coalescence. Annual Reviews, 55, 707–747. https://doi.org/10.1146/annurev-fluid-120720-014714
[37] Kuan-Ling Huang, Kuo-Long Pan and Christophe Josserand. Pinching Dynamics and Satellite Droplet Formation in Symmetrical Droplet Collisions. (2019). PHYSICAL REVIEW LETTERS, 123, 234502.
[38] S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput.Phys.228 (2009) 5838–5866.
[39] Yuan Li, James E. Sprittles. Capillary breakup of a liquid bridge: identifying regimes and transitions. J. Fluid Mech. (2016), vol. 797, pp. 29–59.
[40] Wendy W. Zhang and John R. Lister. (1999).Similarity Solutions for Capillary Pinch-Off in Fluids of Differing Viscosity. Physical Review Letters, 83(0031–9007), 1151–1154.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97069-
dc.description.abstract柱斷裂是整個工業和自然界中普遍存在的過程,在工業應用上需要生產大量相同尺寸的液滴,同時也要避免產生較小的衛星液滴或其他殘餘流體,所以微流體技術的應用引起了極大的關注,特別是在控制生成均勻大小的液滴並將其構建成模塊方面。為了改進這些技術,關鍵在於了解液柱斷裂的物理機制,而機制主要分成慣性政權、黏性政權和慣性-黏性政權。由於實驗設備的限制,對於光學尺度下的解析度而言微米等級已經是極限,故無法更好解析更細薄時的情況,因此使用開源的模擬軟體 ( GERRIS ) 來研究液柱收縮之機制是非常具有潛力的,探討不同Oh數下的液柱斷裂現象,並調整外內黏性比例來探討黏滯性差異所造成的影響。結果表明,微黏性流動:只有當外部黏度大於內部黏度時才會影響斷裂過程。一般情況下,斷裂過程不受外部黏性的顯著影響。低黏性流動:當外部黏度達到一定程度(m = 0.4)時,即開始影響液柱自相似收縮。黏性比大於1時,外部黏性影響加劇,導致新的相似性。中黏性流動:外部黏度稍大即影響收縮過程。黏性比等於1時,抑制擾動進入穩定階段。黏性比大於1時,斷裂過程完全由外部黏性控制,出現新的相似性。高黏性流動:外部黏性稍大即影響收縮過程。黏性比等於1時,觀察到趨勢但理論無法證明。黏性比大於1時,外部黏性過強導致液柱無法斷裂,表面演化不同於其他黏性流動。
環境對液柱斷裂所造成的影響,隨著內部黏性提升,影響也越明顯,且影響的液柱半徑尺度也越來越大。由這些研究成果對於連續噴墨的印刷技術、三維3D列印機或藥物打印等相關領域,在工業應用上有莫大的幫助。
zh_TW
dc.description.abstractThe breaking of liquid columns is a common process in both industry and nature. In industrial applications, it is important to produce droplets of the same size while avoiding the creation of smaller satellite droplets or other residual fluids. Therefore, the application of microfluidics has garnered significant attention, especially in the control and construction of uniformly sized droplets. To improve these techniques, it is crucial to understand the physical mechanisms of liquid column breakup, which can be divided into inertial, viscous, and inertia-viscous regimes. Due to limitations in experimental equipment, the resolution at the optical scale has reached the micron level, making it difficult to analyze thinner situations. Thus, using open-source simulation software (GERRIS) to study the mechanism of liquid column contraction has great potential. The study investigates the breakup phenomenon of liquid columns at different Oh numbers and adjusts the internal and external viscosity ratios to explore the impact of viscosity differences. The results indicate:
Micro-viscous flow: Only when the external viscosity is greater than the internal viscosity does it affect the breakup process. Generally, the breakup process is not significantly affected by external viscosity. Low-viscosity flow: When the external viscosity reaches a certain level (m = 0.4), it begins to affect the self-similar contraction of the liquid column. When the viscosity ratio is greater than 1, the influence of external viscosity increases, resulting in new similarities. Medium-viscosity flow: A slight increase in external viscosity affects the contraction process. When the viscosity ratio is equal to 1, it suppresses disturbances and enters a stable phase. When the viscosity ratio is greater than 1, the breakup process is completely controlled by external viscosity, resulting in new similarities. High-viscosity flow: A slight increase in external viscosity affects the contraction process. When the viscosity ratio is equal to 1, a trend is observed, but theory cannot prove it. When the viscosity ratio is greater than 1, the external viscosity is too strong, preventing the liquid column from breaking. The surface evolution is different from other viscosity flows.
The impact of the environment on the breakup of liquid columns becomes more pronounced as the internal viscosity increases, and the affected radius scale of the liquid column also increases. These research findings are highly beneficial for industrial applications in fields such as continuous inkjet printing, 3D printing, and drug printing.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:18:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-26T16:18:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書………………………………………………………………. i
誌謝………………………………………………………………………………. ii
中文摘要…………………………………………………………………………. iii
英文摘要…………………………………………………………………………. iv
目次………………………………………………………………………………. vi
圖次………………………………………………………………………………. ix
表次…………………………………………………………………………….... xiii
第一章 前言……………………………………………………………………... 1
1.1背景介紹………………………………………………………….............. 1
1.2文獻回顧………………………………………………………………….. 2
1.2.1斷裂現象的regime與轉變………………………………………... 2
1.2.1.1慣性regime ( I -regime )…………………………………….. 3
1.2.1.2黏性regime ( V -regime )………………………………….... 4
1.2.1.3慣性-黏性regime ( IV -regime )…………………………….. 5
1.2.1.4分析各個regime…………………………………….………. 6
1.2.2 regime之間的轉換………………………………………………… 6
1.2.2.1慣性regime轉變為慣性-黏性regime ( I → IV-regime )… 6
1.2.2.2黏性regime轉變為慣性-黏性regime ( V → IV-regime )... 7
1.2.2.3 regime轉變之相圖………………………………………….. 7
1.2.3收縮斷裂尺度之比例參數( scaling argument )…………………… 9
1.2.3.1特徵尺度…………………………………………………….. 9
1.2.4外部環境流體對內部流動之影響…………………………………. 10
1.2.4.1理論…………………………………………………………... 10
1.2.4.2實驗…………………………………………………………... 12
1.3研究動機與目的…………………………………………………………... 14
第二章 物理模型和初始問題討論…………………………………………….... 15
2. 1初始波設置………………………………………………………………... 15
第三章 數值方法與設置…………………………………………….................... 18
3.1數值設置…………………………………………………………………... 18
3.1.1統御方程式…………………………………………………………. 18
3.1.2離散化方法…………………………………………………………. 19
3.1.3邊界條件配置與流體性質設置……………………………………. 22
3.2網格…………………………………….………………………………….. 24
3.2.1網格獨立性…………………………………….…………………… 24
3.2.2自適應網格細化……………………………….…………………… 25
3.2.2.1基於梯度變化標準……………………….………………….. 26
3.2.2.2基於距離範圍標準……………………….………………….. 26
3.3模擬驗證……………………………….………………………………….. 27
3.3.1參數評估標準…………………….………………………………… 27
3.3.1.1液柱斷裂標準……………………………………………….... 28
3.3.1.2自由流表面與軸向之夾角…………………………………… 30
3.3.2黏性效應之液柱收縮………………………………………………. 32
3.3.3 外圍環境對內液柱收縮之影響…………………………………… 36
第四章 結果與討論……………………………………………............................ 40
4.1 外部黏性為零 ( m = 0 ) ………………………………............................. 41
4.2外部黏性小於內部黏性 ( m < 1 ) ……………………….......................... 52
4.3外部黏性等於內部黏性 ( m = 1 ) ……………………….......................... 57
4.4外部黏性大於內部黏性 ( m > 1 ) ……………………….......................... 64
4.5黏性細絲之毛細管破裂………………………........................................... 71
第五章 結論……………………………………………………............................ 89
參考文獻………………………………………………............................................ 91
附錄……………………………………………………............................................ 95
附錄一……………………………………………............................................. 95
附錄二……………………………………………........................................... 110
附錄三……………………………………………........................................... 126
-
dc.language.isozh_TW-
dc.title不同歐式數和黏度比下液柱斷裂現象之研究zh_TW
dc.titleThe liquid jet breakup by different Oh numbers and viscosity ratiosen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王安邦;廖英志zh_TW
dc.contributor.oralexamcommitteeAn-Bang Wang;Ying-Chih Liaoen
dc.subject.keyword液柱斷裂,慣性regime,黏性regime,慣性-黏性regime,Ohnesorge數,外內黏性比,zh_TW
dc.subject.keywordLiquid jet breakup,Inertial regime,Viscous regime,Inertial-viscous regime,Ohnesorge number,External-internal viscosity ratio,en
dc.relation.page141-
dc.identifier.doi10.6342/NTU202500498-
dc.rights.note未授權-
dc.date.accepted2025-02-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
12.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved