Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97064
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李培芬zh_TW
dc.contributor.advisorPei-Fen Leeen
dc.contributor.author李承恩zh_TW
dc.contributor.authorCheng-En Lien
dc.date.accessioned2025-02-26T16:17:12Z-
dc.date.available2025-02-27-
dc.date.copyright2025-02-26-
dc.date.issued2025-
dc.date.submitted2025-02-11-
dc.identifier.citation中央氣象署。Taiwan Central Weather Administration。Retrieved 12 January 2025 from https://www.cwa.gov.tw。
呂光洋、林政彥、莊國碩。1980。臺灣地區野生動物資料庫(一)兩棲類(II)。行政院農業委員會。
呂光洋、陳添喜、高善、孫承矩、朱哲民、蔡添順、何一先、鄭正寬。1996。臺灣野生動物資源調查:兩棲類動物資源調查手冊。行政院農業委員會。
呂光洋、葉冠群、陳世煌、林政彥、陳賜隆。1987。陽明山國家公園兩棲和爬蟲之生態調查。陽明山國家公園管理處。
李永展。2005a。社區永續發展指標:以臺北市士林區名山里為例。研考雙月刊29(5) 79-91。國家發展委員會。
李永展。2005b。臺北市永續發展評量機制之建立。臺北市政府。
李培芬。2015。103-104年臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬。2016。103-104年臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬、呂光洋、李玉琪、謝佳君、潘彥宏、陳宣汶、潘天祺、丁宗蘇。1998。臺灣地區野生動物分布資料庫之建立。行政院農業委員會。
李培芬、李承恩、李文玉。2013。臺北市斑腿樹蛙分布調查和移除監測規劃。臺北市動物保護處。
李培芬、柯佳吟。2018。106年臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬、柯佳吟。2019。107年臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬、柯佳吟。2020。108年臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬、柯佳吟。2021。109年臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬、柯佳吟。2022。110年臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬、柯佳吟。2023。111年臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬、柯佳吟。2024。111年臺北市生物多樣性指標調查計畫(第二次契約變更案號111025-02)。臺北市政府。
李培芬、連裕益。2017。105臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬、謝長富。2006。建置臺北市生物多樣性指標架構及資料庫。臺北市政府。
李培芬、謝長富。2014。102年臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬、謝長富、曹先紹。2008。臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬、謝長富、曹先紹。2009。臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬、謝長富、曹先紹。2011。臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬、謝長富、曹先紹。2012。101年臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬、柯佳吟。2018。106年臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬、謝長富、曹先紹。2009。臺北市生物多樣性指標調查計畫。臺北市政府。
李培芬、謝長富、曹先紹。2010。臺北市生物多樣性指標調查計畫。臺北市政府。
沈妤蓮。2022。金門鳥類多樣性的長期趨勢分析。碩士論文。國立臺灣大學森林環境暨資源學系。
周蓮香、陳淑真、黃祥麟、王續昂、楊莉玲。1995。陽明山國家公園鹿角坑生態保護區動物相調查。陽明山國家公園管理處。
林曜松、莊鈴川、李承恩、陳德治、黃雅倫、余義群、范怡均、李名偉。2004。陽明山國家公園全區水生動物相普查。陽明山國家公園管理處。
邱祈榮、鄧翔耀。2020。臺北地區不同海拔長期氣溫趨勢比較分析。中華林學季刊 53(4) 169-186。
柳中明。2004a。研擬臺北市永續發展策略計畫報告書。臺北市政府。
柳中明。2004b。臺北市永續發展指標與評量方法報告。臺北市政府。
黃書禮。1996。臺北市都市永續發展指標與策略研擬之研究。中興大學都市計畫研究所。
楊育昌。1996。酸鹼度對兩生類蝌蚪和胚胎發育的影響。碩士論文。國立臺灣大學動物學系。
楊懿如。2013。臺灣兩棲類資源調查與教育宣導推廣計畫。行政院農業委員會林務局。
楊懿如、向高世、李承恩。2008。臺灣兩棲動物野外調查手冊。行政院農業委員會林務局。
楊懿如、李承恩、朱有田、陳賜隆、林文浩、林春富。2024。2024臺灣兩棲類皮書名錄。農業部生物多樣性研究中心。
楊懿如、李承恩、李佳翰、林樺廷、鍾偉賢。2023。臺灣蛙類野外族群趨勢監測研究。農業部林業保育署。
楊懿如、李承恩、李佳翰、林樺廷、鍾偉賢。2024。臺灣蛙類野外族群趨勢監測研究。農業部林業保育署。
楊懿如、李承恩、曹軒鳴。2021。臺灣蛙類野外族群趨勢監測研究。
臺北市文獻委員會。1987。臺北市志卷二自然志。臺北市政府。
劉小蘭、賴玫錡。2011。都市化與氣候暖化關係之研究─以臺北都會區為例。臺灣土地研究14(2)39-66。政治大學地政學系、臺北大學不動產與城鄉環境學系。
潘彥宏。(1997)。臺灣無尾目兩生類之空間分布模式。碩士論文。國立臺灣大學動物學系。
衛生福利部疾病管制署。Taiwan Centers for Disease Control。Retrieved 09 December 2023 from https://www.cdc.gov.tw
Alatalo, R. V. 1981. Problems in the Measurement of Evenness in Ecology. Oikos, 37(2), 199-204.
Almond, R. E. A., Grooten, M., Juffe Bignoli, D., & Petersen, T. 2022. Living planet report 2022 - Building a nature-positive society. WWF.
Aronson, M. F. J., La Sorte, F. A., Nilon, C. H., Katti, M., Goddard, M. A., Lepczyk, C. A., Warren, P. S., Williams, N. S. G., Cilliers, S., & Clarkson, B. 2014. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the royal society B: biological sciences, 281(1780), 20133330.
Beisel, J. N., Usseglio-Polatera, P., Bachmann, V., & Moreteau, J. C. 2003. A comparative analysis of evenness index sensitivity. International Review of Hydrobiology, 88(1), 3-15.
Buckland, S. T., & Johnston, A. 2017. Monitoring the biodiversity of regions: Key principles and possible pitfalls. Biological Conservation, 214, 23-34.
Buckland, S. T., Magurran, A. E., Green, R. E., & Fewster, R. M. 2005. Monitoring change in biodiversity through composite indices. Philosophical Transactions of the Royal Society B-Biological Sciences, 360(1454), 243-254.
Buckland, S. T., Studeny, A. C., Magurran, A. E., Illian, J. B., & Newson, S. E. 2011. The geometric mean of relative abundance indices: a biodiversity measure with a difference. Ecosphere, 2(9), 1-15.
Buckland, S. T., Yuan, Y., & Marcon, E. 2017. Measuring temporal trends in biodiversity. Asta-Advances in Statistical Analysis, 101(4), 461-474.
Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45-67.
Chao, A., Henderson, P. A., Chiu, C. H., Moyes, F., Hu, K. H., Dornelas, M., & Magurran, A. E. 2022. Measuring temporal change in alpha diversity: A framework integrating taxonomic, phylogenetic and functional diversity and the iNEXT.3D standardization. Methods in Ecology and Evolution, 13(11), 2663-2663.
Chao, A., & Hu, K.-H. 2023. iNEXT.4steps Online: four-steps biodiversity analysis based on iNEXT. Code and user’s guide available from https://chao.shinyapps.io/iNEXT_4steps.
Chao, A., & Ricotta, C. 2019. Quantifying evenness and linking it to diversity, beta diversity, and similarity. Ecology, 100(12) :e02852.
Chao, A. N., Kubota, Y., Zeleny, D., Chiu, C. H., Li, C. F., Kusumoto, B., Yasuhara, M., Thorn, S., Wei, C. L., Costello, M. J., & Colwell, R. K. 2020. Quantifying sample completeness and comparing diversities among assemblages. Ecological Research, 35(2), 292-314.
Chao, A. N., Thorn, S., Chiu, C. H., Moyes, F., Hu, K. H., Chazdon, R. L., Wu, J. S., Magnago, L. F. S., Dornelas, M., Zeleny, D., Colwell, R. K., & Magurran, A. E. 2023. Rarefaction and extrapolation with beta diversity under a framework of Hill numbers: The iNEXT.beta3D standardization. Ecological Monographs, 93(4).
Chung, K.-F., & Shao, K.-T. 2025. Catalogue of life in Taiwan. Retrieved from taicol.tw on 2025-01-24.
Danley, B., & Widmark, C. 2016. Evaluating conceptual definitions of ecosystem services and their implications. Ecological Economics, 126, 132-138.
Franco, J. L. d. A. 2013. The concept of biodiversity and the history of conservation biology: from wilderness preservation to biodiversity conservation. História (São Paulo), 32, 21-48.
Goodman, D. 2023. Seven years to save nature and people: a proposed set of policies and actions for the SDG Summit. In: IUCN.
Gregory, R. D., & van Strien, A. 2010. Wild bird indicators: using composite population trends of birds as measures of environmental health. Ornithological Science, 9(1), 3-22.
Haase, P., Tonkin, J. D., Stoll, S., Burkhard, B., Frenzel, M., Geijzendorffer, I. R., Häuser, C., Klotz, S., Kühn, I., & McDowell, W. H. 2018. The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Science of the Total Environment, 613, 1376-1384.
Harrison, P. J., Buckland, S. T., Yuan, Y., Elston, D. A., Brewer, M. J., Johnston, A., & Pearce-Higgins, J. W. 2014. Assessing trends in biodiversity over space and time using the example of British breeding birds. Journal of Applied Ecology, 51(6), 1650-1660.
Henly, L., & Wentworth, J. 2021. Effective Biodiversity Indicators. Postnote, 644.
Heyer, W. R. 1994. Measuring and monitoring biological diversity. Standard methods for amphibians. Smithsonian Institution Press.
Hill, M. O. 1973. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology, 54(2), 427-432.
Hocking, D. J., & Babbitt, K. J. 2014. Amphibian contributions to ecosystem services. Herpetological conservation and biology.
Hopkins, W. A. 2007. Amphibians as models for studying environmental change. ILAR journal, 48(3), 270-277.
Jhariya, M. K., Meena, R. S., Banerjee, A., & Meena, S. N. 2021. Natural resources conservation and advances for sustainability. Elsevier.
Keil, P., Storch, D., & Jetz, W. 2015. On the decline of biodiversity due to area loss. Nature Communications, 6(1), 8837.
Krebs, C. J. 1999. Ecological methodology / Charles J. Krebs (2nd ed.). Benjamin/Cummings.
Kvalseth, T. O. 1991. Note on Biological Diversity, Evenness, and Homogeneity Measures. Oikos, 62(1), 123-127.
Langemeyer, J., & Connolly, J. J. T. 2020. Weaving notions of justice into urban ecosystem services research and practice. Environmental science & policy, 109, 1-14.
Lanz, B., Dietz, S., & Swanson, T. 2018. The expansion of modern agriculture and global biodiversity decline: An integrated assessment. Ecological Economics, 144, 260-277.
Laurila-Pant, M., Lehikoinen, A., Uusitalo, L., & Venesjärvi, R. 2015. How to value biodiversity in environmental management? Ecological Indicators, 55, 1-11.
Lee, K. H., Chen, T. H., Shang, G., Clulow, S., Yang, Y. J., & Lin, S. M. 2019. A check list and population trends of invasive amphibians and reptiles in Taiwan. Zookeys(829), 85-130.
Li, G., Fang, C., Li, Y., Wang, Z., Sun, S., He, S., Qi, W., Bao, C., Ma, H., & Fan, Y. 2022. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nature Communications, 13(1), 1628.
Lindenmayer, D. 2018. Why is long-term ecological research and monitoring so hard to do?(And what can be done about it). Australian Zoologist, 39(4), 576-580.
Magurran, A. E. 2021. Measuring biological diversity. Current Biology, 31(19), R1174-U1268.
Magurran, A. E., Baillie, S. R., Buckland, S. T., Dick, J. M., Elston, D. A., Scott, E. M., Smith, R. I., Somerfield, P. J., & Watt, A. D. 2010. Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends in ecology & evolution, 25(10), 574-582.
McDonald, R. I., Marcotullio, P. J., & Güneralp, B. 2013. Urbanization and global trends in biodiversity and ecosystem services. Urbanization, biodiversity and ecosystem services: challenges and opportunities: a global assessment, 31-52.
McDonnell, M. J., & Hahs, A. K. 2015. Adaptation and adaptedness of organisms to urban environments. Annual review of ecology, evolution, and systematics, 46(1), 261-280.
Novacek, M. J. 2008. Engaging the public in biodiversity issues. Proceedings of the National Academy of Sciences, 105(supplement_1), 11571-11578.
O'Brien, T. G., Baillie, J. E. M., Krueger, L., Cuke, M. 2010. The Wildlife Picture Index: monitoring top trophic levels. Animal Conservation, 13(4), 335-343.
Peet, R. 2003. The Measurement of Species Diversity. Annual Review of Ecology and Systematics, 5, 285-307.
Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144.
Pigolotti, S., Flammini, A., & Maritan, A. 2004. Stochastic model for the species abundance problem in an ecological community. Physical Review E, 70(1). 011916.
Raven, P. H., & Wagner, D. L. 2021. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences, 118(2), e2002548117.
Renwick, A. R., Massimino, D., Newson, S. E., Chamberlain, D. E., Pearce-Higgins, J. W., & Johnston, A. 2012. Modelling changes in species' abundance in response to projected climate change. Diversity and Distributions, 18(2), 121-132.
Scholes, R. J., & Biggs, R. 2005. A biodiversity intactness index. Nature, 434(7029), 45-49.
Sergeant, C. J., Moynahan, B. J., & Johnson, W. F. 2012. Practical advice for implementing long-term ecosystem monitoring. Journal of Applied Ecology, 49(5), 969-973.
Shannon, C. E. 1948. A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423.
Simpson, E. H. 1949. Measurement of diversity. Nature, 163, 688.
Singh, J. S. 2002. The biodiversity crisis: A multifaceted review. Current Science, 82(6), 638-647.
Smith, B., & Wilson, J. B. 1996. A Consumer's Guide to Evenness Indices. Oikos, 76(1), 70-82.
Soldaat, L. L., Pannekoek, J., Verweij, R. J. T., van Turnhout, C. A. M., & van Strien, A. J. 2017. A Monte Carlo method to account for sampling error in multi-species indicators. Ecological Indicators, 81, 340-347.
Su, H.-J. 1984. Studies on the climate and vegetation types of the natural forests in Taiwan (I): Analysis of the variations in climatic factors. Quarterly Journal of Chinese Forestry, 17, 57-73.
Su, M., Fath, B. D., & Yang, Z. 2010. Urban ecosystem health assessment: A review. Science of the Total Environment, 408(12), 2425-2434.
Taft, J. B., Hauser, C., & Robertson, K. R. 2006. Estimating floristic integrity in tallgrass prairie. Biological Conservation, 131(1), 42-51.
Tang, L., Ke, X., Chen, Y., Wang, L., Zhou, Q., Zheng, W., & Xiao, B. 2021. Which impacts more seriously on natural habitat loss and degradation? Cropland expansion or urban expansion? Land Degradation & Development, 32(2), 946-964.
Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J. B., Pe’Er, G., Singer, A., Bridle, J. R., Crozier, L. G., De Meester, L., & Godsoe, W. 2016. Improving the forecast for biodiversity under climate change. Science, 353(6304), aad8466.
van Strien, A. J., Soldaat, L. L., & Gregory, R. D. 2012. Desirable mathematical properties of indicators for biodiversity change. Ecological Indicators, 14(1), 202-208.
Waddle, J. H. 2006. Use of amphibians as ecosystem indicator species. University of Florida.
Zar, J. H. 2010. Biostatistical Analysis (5th Edition ed.). Pearson College Div.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97064-
dc.description.abstract都市的開發造成環境地貌快速地改變,棲地流失造成生物群聚的改變,對生物多樣性造成巨大的威脅,對蛙類而言影響更為明顯。蛙類是生態系統中重要的指標物種,牠們對於環境變化非常敏感,時常被當作長期監測的對象。不同蛙類的習性差異大,對環境耐受程度也不同,導致部分種類快速消失,但也有些種類能適應都會環境。為瞭解蛙類在都會環境下的分布及長期趨勢,本研究運用臺北市生物多樣性指標調查資料,分析2009 – 2021年間於35個樣點的蛙類調查資料,計算種豐度、量豐度、辛普森多樣性指數、香儂多樣性指數、均勻度,及相對豐度幾何平均值,探討臺北市蛙類群集的變化。運用iNext.4steps計算種豐度、優勢種與豐富種。研究結果顯示,在臺北市的山區環境有較高的多樣性,都會公園、河濱與農墾地較低;水域環境會是影響公園環境蛙類組成的重要因素。種豐度易受到稀有種的影響略減,量豐度則先上升再下降,多樣性與均勻度指數平緩地上升,整體的趨勢變異不大,顯示優勢物種的數量逐漸減少,使得多樣性指數增加,均勻度趨於均衡。各類群的變化趨勢略有不同,溪流水域型的蛙類的趨勢減少,樹棲型蛙類的趨勢增加,池塘水域型蛙類的年間變異增加。本研究建議運用不同生物多樣性指標,探討不同區域間優勢種與稀少種的變化趨勢;並利用不同型態的指標物種,來反應不同環境的生物多樣性變化趨勢。zh_TW
dc.description.abstractThe rapid development of urban areas has led to significant changes in environmental landscapes, resulting in habitat loss and alterations in biological communities, posing a major threat to biodiversity. The impact is particularly evident for amphibians. Frogs are important indicator species in ecosystems, as they are highly sensitive to environmental changes and are often used for long-term monitoring. Different frog species exhibit varying behaviors and tolerances to environmental conditions, causing some species to disappear rapidly while others adapt to urban environments. To understand the distribution and long-term trends of frogs in urban environments, this study utilizes data from Taipei City's Biodiversity Index Survey, analyzing frog survey records from 35 sampling sites between 2009 and 2021. The study calculates species richness, abundance, Simpson’s diversity index, Shannon diversity index, evenness, and the geometric mean of relative abundance to examine changes in frog assemblages in Taipei City. The iNext.4steps method is used to calculate species richness, dominant species, and abundant species. The results indicate that mountain areas in Taipei exhibit higher biodiversity, while urban parks, riversides, and agricultural lands show lower diversity. Aquatic environments significantly influence the composition of frog communities in park areas. Species richness slightly decreases due to the influence of rare species, while abundance initially increases before declining. Diversity and evenness indices show a gradual upward trend with minimal overall variation, suggesting that the number of dominant species is decreasing, leading to an increase in diversity and a more balanced evenness. Different frog groups exhibit distinct trends: stream-dwelling species show a declining trend, arboreal species display an increasing trend, and pond-dwelling species exhibit greater annual variation. This study suggests using various biodiversity indices to analyze trends in dominant and rare species across different areas. Additionally, employing different types of indicator species can help reflect biodiversity changes in various environmental conditions.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:17:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-26T16:17:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 I
摘要 II
Abstract III
目次 V
圖次 VII
表次 VIII
前言 1
材料與方法 6
一、 研究地區 6
1. 調查區域 6
2. 調查樣區 6
二、 蛙類群集資料 8
1. 蛙類調查資料來源 8
2. 蛙類調查方法 8
3. 蛙類類群 9
三、 生物多樣性指數分析 9
1. 種豐度(Richness) 10
2. 量豐度(Abundance) 10
3. 辛普森多樣性指數(Simpson's diversity index) 10
4. 香儂多樣性指數(Shannon's diversity index) 11
5. 均勻度(Evenness) 11
6. 相對豐度幾何平均值(G-value) 11
四、 物種數估算分析 12
1. 希爾數列(Hill numbers) 12
2. iNEXT.4steps分析 13
結果 15
一、 蛙類組成與分布 15
1. 調查物種與數量 15
2. 季節差異 15
3. 分布差異 16
4. 海拔差異 17
5. 整體調查成果 17
二、 物種數估算 17
1. 各樣區類型種豐度估算 17
2. 各樣區種豐度估算 18
3. 優勢物種與豐富種 18
三、 蛙類趨勢分析 19
1. 所有蛙類年間比較 19
2. 各類群蛙類年間比較 19
3. 各物種蛙類年間比較 21
4. 各樣區類型年間比較 22
討論 24
一、 蛙類物種組成 24
二、 種豐度的估算 26
三、 樣區類型與分布的差異 27
四、 蛙類的趨勢變化 28
五、 多樣性指數趨勢比較 30
結論 33
參考文獻 34
附錄 77
-
dc.language.isozh_TW-
dc.title臺北市蛙類的空間分布與長期趨勢zh_TW
dc.titleSpatial Distribution and Long-term Trends of Frogs in Taipei Cityen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee丁宗蘇;陳賜隆zh_TW
dc.contributor.oralexamcommitteeTzung-Su Ding;Szu-Lung Chenen
dc.subject.keyword兩棲類,長期監測,生態趨勢,物種分佈,zh_TW
dc.subject.keywordAmphibians,Long-term Monitoring,Ecological trends,Species distribution,en
dc.relation.page85-
dc.identifier.doi10.6342/NTU202500590-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-12-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
dc.date.embargo-lift2025-02-27-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf8.26 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved