請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97058完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐澔德 | zh_TW |
| dc.contributor.advisor | J Bruce H Shyu | en |
| dc.contributor.author | 胡力夫 | zh_TW |
| dc.contributor.author | Li-Fu Hu | en |
| dc.date.accessioned | 2025-02-26T16:15:35Z | - |
| dc.date.available | 2025-02-27 | - |
| dc.date.copyright | 2025-02-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-09 | - |
| dc.identifier.citation | Angelier, J., Barrier, E., & Chu, H.-T. (1986). Plate collision and paleostress trajectories in a fold-thrust belt: The foothills of Taiwan. Tectonophysics, 125, 161– 178. https://doi.org/10.1016/0040-1951(86)90012-0
Angelier, J., Chu, H.-T., & Lee, J.-C. (1997). Shear concentration in a collision zone: Kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan. Tectonophysics, 274, 117– 143. https://doi.org/10.1016/S0040-1951(96)00301-0 Bonilla, M. G. (1975). A review of recently active faults in Taiwan (Open-File Report Nos.75– 41; p. 43). U.S. Geol. Survey. http://geopubs.wr.usgs.gov/open-file/of75-41/ Bowman, S. (1990). Radiocarbon Dating. British Museum Press. Brandes, C., & Tanner, D. C. (2014). Fault-related folding: A review of kinematic models and their application. Earth-Science Reviews, 138, 352– 370. https://doi.org/10.1016/j.earscirev.2014.06.008 Byrne, T., Chan, Y.-C., Rau, R.-J., Lu, C.-Y., Lee, Y.-H., & Wang, Y.-J. (2011). The arc-continent collision in Taiwan. In D. Brown & P. D. Ryan (Eds.), Frontiers in Earth Sciences (pp. 213– 245). https://doi.org/10.1007/978-3-540-88558-0_8 Chan, C.-H., Ma, K.-F., Shyu, J. B. H., Lee, Y.-T., Wang, Y.-J., Gao, J.-C., Yen, Y.-T., & Rau, R.-J. (2020). Probabilistic seismic hazard assessment for Taiwan: TEM PSHA2020. Earthquake Spectra, 36, 137– 159. https://doi.org/10.1177/8755293020951587 Chemenda, A. I., Yang, R. K., Hsieh, C.-H., & Groholsky, A. L. (1997). Evolutionary model for the Taiwan collision based on physical modelling. Tectonophysics, 274, 253– 274. https://doi.org/10.1016/S0040-1951(97)00025-5 Chen, Y.-G., & Liu, T.-K. (1996). Sea level changes in the last several thousand years, Penghu Islands, Taiwan Strait. Quaternary Research, 45, 254– 262. https://doi.org/10.1006/qres.1996.0026 Chen, Y.-G., & Liu, T.-K. (2000). Holocene uplift and subsidence along an active tectonic margin southwestern Taiwan. Quaternary Science Reviews, 19, 923–930. https://doi.org/10.1016/S0277-3791(99)00076-1 Cheng, W. S. (2023). Applying multi-fault rupture scenario to Taiwan Earthquake Model [Master’s Thesis, National Taiwan University]. https://doi.org/10.6342/NTU202302553 Ching, K.-E., Gourley, J. R., Lee, Y.-H., Hsu, S.-C., Chen, K.-H., & Chen, C.-L. (2016). Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations. Tectonophysics, 692, 241– 251. https://doi.org/10.1016/j.tecto.2015.07.020 Coffey, G. L., Savage, H. M., Polissar, P. J., Cox, S. E., Hemming, S. R., Winckler, G., & Bradbury, K. K. (2022). History of earthquakes along the creeping section of the San Andreas fault, California, USA. Geology, 50, 516– 521. https://doi.org/10.1130/G49451.1 Deffontaines, B., Lacombe, O., Angelier, J., Chu, H. T., Mouthereau, F., Lee, C. T., Deramond, J., Lee, J. F., Yu, M. S., & Liew, P. M. (1997). Quaternary transfer faulting in the Taiwan Footfills: Evidence from a multisource apporach. Tectonophysics, 274, 61– 82. Doo, W.-B., Hsu, S.-K., Lo, C.-L., Chen, S.-C., Tsai, C.-H., Lin, J.-Y., Huang, Y.-P., Huang, Y.-S., Chiu, S.-D., & Ma, Y.-F. (2015). Gravity anomalies of the active mud diapirs off southwest Taiwan. Geophysical Journal International, 203, 2089– 2098. https://doi.org/10.1093/gji/ggv430 Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125, 1– 16. https://doi.org/10.1016/0040-1951(86)90004-1 Howard, A. D. (1962). The Chungchou photogeologic anomaly. Petroleum Geology of Taiwan, 1, 121– 125. Hsieh, S. H. (1972). Subsurface geology and gravity anomalies of the Tainan and Chungchou structures of the coastal plain of southwestern Taiwan. Petroleum Geology of Taiwan, 10, 323– 338. Hsu, T. L., & Chang, H. G. (1979). Quaternary faulting in Taiwan. Memoir of the Geological Society of China, 3, 155– 165. Huang, C.-Y., Wu, W.-Y., Chang, C.-P., Tsao, S., Yuan, P. B., Lin, C.-W., & Kuan-Yuan, X. (1997). Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics, 281, 31– 51. https://doi.org/10.1016/S0040-1951(97)00157-1 Huang, M.-H., Hu, J.-C., Hsieh, C.-S., Ching, K.-E., Rau, R.-J., Pathier, E., Fruneau, B., & Deffontaines, B. (2006). A growing structure near the deformation front in SW Taiwan as deduced from SAR interferometry and geodetic observation. Geophysical Research Letters, 33, L12305. https://doi.org/10.1029/2005GL025613 Huang, M.-H., Dreger, D., Bürgmann, R., Yoo, S.-H., & Hashimoto, M. (2013). Joint inversion of seismic and geodetic data for the source of the 2010 March 4, Mw 6.3 Jia-Shian, SW Taiwan, earthquake. Geophysical Journal International, 193, 1608–1626. https://doi.org/10.1093/gji/ggt058 Huang, M.-H., Tung, H., Fielding, E. J., Huang, H.-H., Liang, C., Huang, C., & Hu, J.-C. (2016). Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong earthquake in Taiwan. Geophysical Research Letters, 43, 7459– 7467. https://doi.org/10.1002/2016GL069351 Huang, S.-T., Yang, K.-M., Hung, J.-H., Wu, J.-C., Ting, H.-H., Mei, W.-W., Hsu, S.-H., & Lee, M. (2004). Deformation front development at the northeast margin of the Tainan basin, Tainan-Kaohsiung area, Taiwan. Marine Geophysical Research, 25, 139– 156. https://doi.org/10.1007/s11001-005-0739-z Lacombe, O., Angelier, J., Chen, H.-W., Deffontaines, B., Chu, H.-T., & Rocher, M. (1997). Syndepositional tectonics and extension-compression relationships at the front of the Taiwan collision belt: A case study in the pleistocene reefal limestones near Kaohsiung, SW Taiwan. Tectonophysics, 274, 83– 96. https://doi.org/10.1016/S0040-1951(96)00299-5 Lacombe, O., Mouthereau, F., Deffontaines, B., Angelier, J., Chu, H. T., & Lee, C. T. (1999). Geometry and Quaternary kinematics of fold-and-thrust units of southwestern Taiwan. Tectonics, 18, 1198–1223. https://doi.org/10.1029/1999TC900036 Lal, D., & Peters, B. (1967). Cosmic ray produced radioactivity on the Earth. In Kosmische Strahlung II/ Cosmic Rays II (pp. 551– 612). Le Béon, M., Huang, M.-H., Suppe, J., Huang, S.-T., Pathier, E., Huang, W.-J., Chen, C.-L., Fruneau, B., Baize, S., Ching, K.-E., & Hu, J.-C. (2017). Shallow geological structures triggered during the Mw 6.4 Meinong earthquake, southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 28, 663– 681. https://doi.org/10.3319/TAO.2017.03.20.02 Le Béon, M., Marc, O., Suppe, J., Huang, M.-H., Huang, S.-T., & Chen, W.-S. (2019). Structure and deformation history of the rapidly growing Tainan anticline at the deformation front of the Taiwan mountain belt. Tectonics, 38, 3311– 3334. https://doi.org/10.1029/2019TC005510 Lee, Y.-Y. (2023). Holocene marine radiocarbon reservoir age variation on the Penghu Islands [Master’s Thesis, National Taiwan University]. https://doi.org/10.6342/NTU202303407 Liu, C.-S., Huang, I. L., & Teng, L. S. (1997). Structural features off southwestern Taiwan. Marine Geology, 137, 305– 319. https://doi.org/10.1016/S0025-3227(96)00093-X Malavieille, J., Lallemand, S. E., Dominguez, S., Deschamps, A., Lu, C.-Y., Liu, C.-S., Schnürle, P., Angelier, J., Collot, J.-Y., Deffontaines, B., Fournier, M., Hsu, S.-K., Le Formal, J.-P., Liu, S.-Y., Sibuet, J.-C., Thareau, N., & Wang, F. (2002). Arc-Continent collision in Taiwan: New marine observations and tectonic evolution. Geological Society of America Special Papers, 358, 189– 213. https://doi.org/10.1130/0-8137-2358-2.187 Malavieille, J., & Trullenque, G. (2009). Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: Insights from analogue modeling. Tectonophysics, 466, 377– 394. https://doi.org/10.1016/j.tecto.2007.11.016 Malavieille, J., Dominguez, S., Lu, C.-Y., Chen, C.-T., & Konstantinovskaya, E. (2021). Deformation partitioning in mountain belts: Insights from analogue modelling experiments and the Taiwan collisional orogen. Geological Magazine, 158, 84– 103.https://doi.org/10.1017/S0016756819000645 Meng, C.-Y. (1967). The structural developement of the southern half of western Taiwan. Proceedings of the Geological Society of China, 10, 77– 82. Mouthereau, F., Lacombe, O., Deffontaines, B., Angelier, J., & Brusset, S. (2001). Deformation history of the southwestern Taiwan foreland thrust belt: Insights from tectono-sedimentary analyses and balanced cross-sections. Tectonophysics, 333, 293– 322. https://doi.org/10.1016/S0040-1951(00)00280-8 Pan, Y. S. (1968). Interpretation and seismic coordination of the bouguer gravity anomalies obtaind in southwestern Taiwan. Petroleum Geology of Taiwan, 6, 197–208. Sato, K., Meng, C. Y., Suyama, J., Kurihara, S., Kamata, S., Obayashi, H., Inoue, E., & Hsiao, P. T. (1970). Reports on the seismic refraction survey on land in the western part of Taiwan, Republic of China. Petroleum Geology of Taiwan, 7, 281– 293. Shyu, J. B. H., Sieh, K., & Chen, Y.-G. (2005a). Tandem suturing and disarticulation of the Taiwan orogen revealed by its neotectonic elements. Earth and Planetary Science Letters, 233, 167– 177. https://doi.org/10.1016/j.epsl.2005.01.018 Shyu, J. B. H., Sieh, K., Chen, Y.-G., & Liu, C.-S. (2005b). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research, 110, B08402. https://doi.org/10.1029/2004JB003251 Shyu, J. B. H., Chung, L.-H., Chen, Y.-G., Lee, J.-C., & Sieh, K. (2007). Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications. Journal of Asian Earth Sciences, 31, 317–331. https://doi.org/10.1016/j.jseaes.2006.07.018 Shyu, J. B. H., Chuang, Y.-R., Chen, Y.-L., Lee, Y.-R., & Cheng, C.-T. (2016). A new on-land seismogenic structure source database from the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27, 311– 323. https://doi.org/10.3319/TAO.2015.11.27.02(TEM) Shyu, J. B. H., Yin, Y.-H., Chen, C.-H., Chuang, Y.-R., & Liu, S.-C. (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 31, 469– 478. https://doi.org/10.3319/TAO.2020.06.08.01 Sibuet, J.-C., & Hsu, S.-K. (1997). Geodynamics of the Taiwan arc-arc collision. Tectonophysics, 274, 221– 251. https://doi.org/10.1016/S0040-1951(96)00305-8 Stuiver, M., & Polach, H. A. (1977). Discussion reporting of 14C data. Radiocarbon, 19, 355– 363. https://doi.org/10.1017/S0033822200003672 Stuiver, M., & Braziunas, T. F. (1993). Modeling atmospheric 14C influences and 14C ages of Marine samples to 10,000 BC. Radiocarbon, 35, 137– 189. https://doi.org/10.1017/s0033822200013874 Sun, S. C. (1964). Photogelogic study of the Tainan-Kaohsiung coastal plain area, Taiwan. Petroleum Geology of Taiwan, 3, 39– 51. Suppe, J. (1976). Decollement folding in southwestern Taiwan. Petroleum Geology of Taiwan, 13, 25– 35. Suppe, J., & Namson, J. (1979). Fault-Bend origin of frontal folds of the western Taiwan fold-and-thrust belt. Petroleum Geology of Taiwan, 16, 1– 18. Suppe, J. (1980). Imbricated structure of Western Foothills Belt, southcentral Taiwan. Petroleum Geology of Taiwan, 17, 1– 16. Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China, 4, 67– 89. Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Memoir of the Geological Society of China, 6, 21– 33. Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183, 57– 76. https://doi.org/10.1016/0040-1951(90)90188-E Tocher, D. (1960). Creep on the San Andreas Fault—Creep rate and related measurement at Vineyard, California. Bulletin of the Seismological Society of America, 50, 396–404. Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974– 1002. Wu, J., McClay, K., & de Vera, J. (2020). Growth of triangle zone fold-thrusts within the NW Borneo deep-water fold belt, offshore Sabah, southern South China Sea. Geosphere, 16, 329– 356. https://doi.org/10.1130/GES02106.1 Wu, Y.-M., Shyu, J. B. H., Chang, C.-H., Zhao, L., Nakamura, M., & Hsu, S.-K. (2009). Improved seismic tomography offshore northeastern Taiwan: Implications for subduction and collision processes between Taiwan and the southernmost Ryukyu. Geophysical Journal International, 178, 1041– 1054. https://doi.org/10.1111/j.1365-246X.2009.04180.x Wu, Y.-Y., Hu, J.-C., Lin, G.-P., Chang, C.-P., Tung, H., & Lu, C.-H. (2013). Transient active deformation in Tainan tableland using persistent scatterers SAR interferometry. Bulletin de La Societe Geologique de France, 184, 441– 450. https://doi.org/10.2113/gssgfbull.184.4-5.441 Yen, Y.-T., & Ma, K.-F. (2011). Source-scaling relationship for M 4.6– 8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan. Bulletin of the Seismological Society of America, 101, 464– 481. https://doi.org/10.1785/0120100046 Yi, D.-C., Chuang, R. Y., Chung, L.-H., Lin, C.-W., & Rau, R.-J. (2023). Surface deformation induced by the 2016 Meinong earthquake and its implications to active folds. Terrestrial, Atmospheric and Oceanic Sciences, 34, 21. https://doi.org/10.1007/s44195-023-00053-3 Yu, S.-B., Chen, H.-Y., & Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41– 59. https://doi.org/10.1016/S0040-1951(96)00297-1 中央氣象署(2023)。潮汐觀測資料年報(共 792 頁)。 中央氣象署地震測報中心(無日期 a)。20 世紀前(1604– 1900)的地震記載。截取於 2024.04.19. https://scweb.cwa.gov.tw/zh-tw/page/disaster/4 中央氣象署地震測報中心(無日期 b)。1900 年後災害性地震列表。擷取於 2024.04.19. https://scweb.cwa.gov.tw/zh-tw/page/disaster/5 中國石油股份有限公司臺灣油礦探勘總處(1989)。臺灣西部地質圖臺南圖幅。 中國石油股份有限公司臺灣油礦探勘處地質組(1971)。臺灣西部地質圖南幅。 石再添、張瑞津、楊貴三(1982)。活斷層研究的概觀。中國地理學會會刊 ,10,50– 57。 石瑞銓、王維豪、李元希(2008)。地震地質與地變動潛勢分析:斷層帶地下構造調查研究 (2/4) (經濟部中央地質調查所報告,第 97– 11 號,共 154 頁)。 李坤松、劉國賢(1978)。高雄縣中洲三號井地下地質報告。中油公司內部報告。 李德河、鍾廣吉、古志生(2005)。都會區地下地質與工程環境調查研究(第二期)「新竹苗栗與台南區地下地質與工程環境調查研究」台南都會區(93– 94年度)(中央地質調查所報告,第 94-24 號,共 465 頁)。https://cgslib.moeacgs.gov.tw/bookDetail.do?id=18625&hyftdToken=188817408&nowid=2 吳東錦(1990)。台南台地台南層之碳十四定年研究及其在新構造運動上之意義[碩士論文,國立臺灣大學]。 吳東錦、陳于高、劉聰桂(1992)。臺南臺地臺南層之沈積史與新期構造研究。地質 ,12,167– 184。 吳樂群、陳華玟、顏一勤(2011)。五萬分之一臺灣地質圖說明書圖幅第四十三、四十九、五十五號:朴子、佳里、臺南(共 117 頁)。經濟部中央地質調查所。 何信昌、謝凱旋、高銘健、陳華玟(2005)。五萬分之一臺灣地質圖說明書圖幅第五十號:新化(共 77 頁)。經濟部中央地質調查所。 沈淑敏、張瑞津、楊貴三、林雪美、林宗儀(2006)。地震地質調查及活動斷層資料庫建置計畫:活動構造地形判釋及資料建置 (2/2) (經濟部中央地質調查所報告,第 95-13 號,共 174 頁)。https://twgeoref.gsmma.gov.tw/GipOpenWeb/wSite/ct?xItem=113714&ctNode=217&mp=6 周飛宏(2007)。從全新世沉積層序探討台南地區褶皺-逆衝斷層帶的構造特性 [碩士論文,國立臺灣大學]。 林啟文(2013)。五萬分之一臺灣地質圖說明書圖幅第五十六號:旗山(共 93頁)。經濟部中央地質調查所。 林啟文、劉彥求、周稟珊、林燕慧(2021)。臺灣活動斷層調查的近期發展。經濟部中央地質調查所彙刊 ,34,1– 40。 林啟文、張徽正、盧詩丁、石同生、黃文正(2000)。臺灣活動斷層概論(第二版)五十萬分之一臺灣地區活動斷層分佈圖說明書。經濟部中央地質調查所特刊 ,13,1– 122。 林啟文、盧詩丁、陳文山(2012)。臺灣活動斷層分佈圖 2012 年版說明書。經濟部中央地質調查所特刊 ,26,1– 30。 林啟文、陳文山、劉彥求、陳柏村(2009)。臺灣東部與南部的活動斷層。經濟部中央地質調查所特刊 ,23,1– 178。 林意楨(2013)。測量學 (第二版)。高立圖書。 胡植慶、劉啟清、饒瑞鈞、李元希、鄭錦桐、張午龍、陳卉瑄、景國恩、唐昭榮(2012)。斷層活動性觀測研究第二階段—斷層監測與潛勢分析研究 (4/4) (共366 頁)。經濟部中央地質調查所。 原振維、黃旭燦、周定芳、吳榮章、盧東郎(1987)。臺灣南部高壓層之地質研究。碳採研究彙報 ,10,1– 27。 翁群評(2001)。小崗山斷層及其附近構造 [碩士論文,國立中央大學]。https://hdl.handle.net/11296/e98et6 徐鐵良(1991)。活動斷層。載於徐鐵良(主編),地質與工程 (頁 73– 102)。中國工程師學會。 陳于高(1993)。晚更新世以來南台灣地區海水面變化與新構造運動研究 [博士論文,國立台灣大學]。 陳文山、松多信尚、石瑞銓、楊志成、游能悌、朱耀國、陳志壕、林啟文、劉桓吉、盧詩丁、劉彥求、林燕慧、陳伯村(2010)。台灣西部平原區隱伏在全新世沉積層下的新期構造—以小崗山斷層為例。經濟部中央地質調查所特刊 ,24,75– 91。 陳文山、楊志成、楊小青、吳樂群、林啟文、張徽正、石瑞銓、林偉雄、李元希、石同生、盧詩丁(2004)。從構造地形探討嘉南地區活動構造及構造分區。經濟部中央地質調查所彙刊 ,17,53– 77。 陳文山、游能悌、松多信尚、楊小青(2008a)。地震地質與地變動潛勢分析計畫:斷層長期滑移速率與再現週期研究 (1/4)—期末報告書(經濟部中央地質調查所報告,第 96-10 號,共 98 頁)。 陳文山、游能悌、松多信尚、楊小青(2008b)。地震地質與地變動潛勢分析計畫:斷層長期滑移速率與再現週期研究 (2/4)—期末報告書(經濟部中央地質調查所報告,第 97-9 號,共 83 頁)。 陳松春、景國恩、羅祐宗、陸挽中(2020)。台南背斜及中洲背斜之泥貫入體特徵、活動性及地質安全。經濟部中央地質調查所彙刊 ,33,1– 32。 陳俊諺(2022)。利用合成孔徑干涉雷達與數值模擬分析 2018– 2021 台灣西南部震間變形與構造演化機制 [碩士論文,國立臺灣大學]。https://doi.org/10.6342/NTU202201458 陳冠宇、李宥葭、范秋屏、張毓文、劉勛仁、張志偉(2022)。機率式危害度輸入模型發展:小崗山斷層幾何模型研擬(國家地震工程研究中心報告,報告編號 NCREE-22-021,共 30 頁)。 陳志壕(2009)。高雄北部海岸平原區末次冰期沉積環境分析—探討褶皺-逆衝斷層帶前緣之滑移速率 [碩士論文,國立臺灣大學]。https://doi.org/10.6342/NTU.2009.01846 莊怡蓉、徐澔德(2025)。臺灣地震模型之孕震構造及參數建置過程與方法。中興工程 ,刊印中。 張徽正、林啟文、陳勉銘、盧詩丁(1998)。臺灣活動斷層概論:五十萬分之一臺灣活動斷層分佈圖說明書。經濟部中央地質調查所特刊 ,10,1– 103。 張麗旭、周敏、陳培源(1947)。民國三十五年十二月五日臺南之地震。臺灣省地質調查所彙刊 ,1,11– 18。 黃旭燦(2003)。台灣中南部褶皺逆衝斷層帶地質構造特徵分析 [博士論文,國立中央大學]。 傅昭明(2009)。小崗山斷層之淺層反射震測與鑽井資料研究 [碩士論文,國立中正大學]。 景國恩、胡植慶、陳宏宇、張午龍、鄭凱謙、莊昀叡(2020)。斷層活動性觀測研究第四階段—地表變形觀測資料處理分析與斷層模型反演評估 (4/4) (共 242頁)。 楊貴三(1986)。台灣活斷層的地形學研究—特論活斷層與地形面的關係— [博士論文,私立中國文化大學]。 經濟部中央地質調查所(2012)。臺灣活動斷層分佈圖(2012)。經濟部中央地質調查所。 經濟部中央地質調查所(2021)。臺灣活動斷層分布圖(2021)。經濟部中央地質調查所。 鄭宏祺(2000)。台灣西南部台南至屏東地區地質構造之研究 [碩士論文,國立中央大學]。 劉彥求、林啟文(2019)。臺灣南部車瓜林斷層的構造特性研究。經濟部中央地質調查所特刊 ,34,53– 82。 顏一勤(2020)。109 年度活動斷層補充地質調查案成果報告書(共 84 頁)。經濟部中央地質調查所。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97058 | - |
| dc.description.abstract | 臺灣人口稠密的臺南—高雄地區面臨著潛在的地震風險。在過去臺灣地震模型的孕震構造資料庫中,中洲構造被認為是該區域的主要孕震構造,然而其位置、幾何形態及活動性仍存在爭議。本研究旨在重新評估中洲構造及其周邊可能的活動構造。本研究利用構造地形分析,結合 20 公尺解析度的數值地形模型與 RTK-GNSS 技術進行野外地形調查,以確認活動構造的分布位置。此外,研究中亦利用前人鑽井資料計算長期垂直變位速率,並推算孕震參數,進而評估可能的地震危害。
研究結果顯示,可能與構造相關的撓曲崖主要分布於中洲台地西緣及丘陵地前緣,由七條可能的活動構造所形成。根據撓曲崖的清晰度、連續性及構造長度,本研究將這些活動構造分為三類:(l) 主要的可能孕震構造,包括北中洲構造、南中洲構造及小崗山斷層,具有清晰、連續的撓曲崖形貌及較長的構造長度;(II) 可能活動的次要構造,包括潭頂構造、北關廟構造及赤崁構造,其構造長度較短,撓曲崖形貌較不明顯,且分布不連續,較難單獨破裂引發地震;(III) 存疑的活動構造,例如南關廟構造,其構造活動的地形證據較為不足,可能僅由岩性邊界的差異侵蝕所造成。在這三類中,第 I 類活動構造的可能地震危害最大。 本研究進一步計算第 I 類構造的垂直變位速率:北中洲構造為 4.7 至 5.9 mm/yr,南中洲構造為 4.6 至 13.7 mm/yr,小崗山斷層為 3.7 至 4.3 mm/yr。推算結果顯示,第 I 類構造可能引發的震矩規模為 5.9 至 6.4,而南北中洲構造的聯合破裂可能會導致規模大於 7.0 的地震。此外,第 II 類及第 III 類構造也可能因為地震誘發而產生地表變形,進一步加劇可能的地震風險。 本研究所繪製的北中洲構造與南中洲構造的位置與臺灣地震模型中的中洲構造有明顯差異,建議修正其位置。雖然該區域可能存在斷層潛移或泥貫入體活動,導致推算的再現週期與歷史地震紀錄不符,但辨識出的構造顯示出顯著的地震風險,仍需持續監測並進行深入研究。 | zh_TW |
| dc.description.abstract | The densely populated Tainan-Kaohsiung region in western Taiwan faces potential earthquake risks. In the published seismogenic structure database of the Taiwan Earthquake Model, the Chungchou structure has been identified as the main seismogenic structure in this area. However, its location, geometry, and activity are still under debate. This study aims to reassess the Chungchou structure and other potential active structures in the surrounding region. The study combines tectonic geomorphic analysis with a 20-meter-resolution digital elevation model and detailed field surveys conducted using RTK-GNSS to delineate the distribution of active structures. In addition, long-term vertical separation rates were calculated using previous borehole data, and seismogenic parameters were estimated to assess potential earthquake hazards.
The results suggest that flexural scarps potentially related to structural activity are primarily distributed along the western edge of the Chungchou Tableland and the front of the hilly region. These scarps are formed by seven possible active structures. Based on the clarity and continuity of the flexural scarps and structural length, the active structures are categorized into three types: (I) Primary and likely seismogenic faults, including the North Chungchou structure, South Chungchou structure, and Hsiaokangshan fault, characterized by clear, continuous flexural scarps and relatively long structural lengths; (II) Secondary faults with potential activity, including the Tanding structure, North Guanmiao structure, and Chihkan structure, which have shorter structural lengths, less distinct flexural scarps, and discontinuous distributions, making them less likely to rupture independently and generate earthquakes; (III) Suspected faults, such as the South Guanmiao structure, which lacks sufficient geomorphic evidence of tectonic activity and may instead be an erosional scarp at lithological boundaries. Among these, Type I structures present the greatest earthquake hazard. This study further calculates the vertical separation rates for Type I structures: 4.7–5.9 mm/yr for the North Chungchou structure, 4.6–13.7 mm/yr for the South Chungchou structure, and 3.7–4.3 mm/yr for the Hsiaokangshan fault. The results suggest a moment magnitude of 5.9 to 6.4 for individual Type I structures. A joint rupture of the combined Chungchou structures could potentially generate an earthquake exceeding magnitude 7.0. Additionally, Type II and Type III structures may be triggered during an earthquake, causing surface deformations and further increasing potential earthquake risks. The locations of the North and South Chungchou structures mapped in this study differ significantly from the Chungchou structure in the Taiwan Earthquake Model database, suggesting the need for a revision. While aseismic creeping or mud diapir activity in the region appear to cause discrepancies between the estimated recurrence intervals and historical earthquake records, the identified structures pose substantial earthquake hazard and require continued monitoring and further research. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:15:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-26T16:15:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 iii 摘要 v Abstract vii 目次 ix 圖次 xi 表次 xv 第一章 緒論 1 1.1 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 區域地質概況 . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 前人研究 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 褶皺 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 活動斷層(孕震構造) . . . . . . . . . . . . . . . . . . . 14 1.4 研究目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 第二章 研究方法 29 2.1 使用軟體與圖資 . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 活動構造位置再評估 . . . . . . . . . . . . . . . . . . . . . . 31 2.2.1 構造活動所留下的地形特徵繪製 . . . . . . . . . . . . . 33 2.2.2 野外調查與 RTK-GNSS . . . . . . . . . . . . . . . . . . 34 2.3 可能之活動構造與分類 . . . . . . . . . . . . . . . . . . . . . 36 2.4 第 I 類活動構造之垂直變位速率計算 . . . . . . . . . . . . 37 2.4.1 定年年代校正 . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4.2 推估不同鑽井深度之沉積年代 . . . . . . . . . . . . . . . 39 2.4.3 長期垂直變位速率計算 . . . . . . . . . . . . . . . . . . . . 42 2.5 第 I 類活動構造之幾何設定 . . . . . . . . . . . . . . . . . . . 42 2.6 第 I 類活動構造之孕震參數計算 . . . . . . . . . . . . . . . . 44 第三章 研究區域撓曲崖分布與形貌 47 3.1 中洲台地 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 丘陵地前緣 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 重新檢視臺灣地震模型之孕震構造與地礦中心之活動斷層位置 . . 58 第四章 研究區域可能孕震構造及其特性 61 4.1 可能之活動構造分布 . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 可能之活動構造分類 . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 可能孕震之活動構造長期垂直變位速率 . . . . . . . . . . . . . 67 4.3.1 北中洲構造長期垂直變位速率 . . . . . . . . . . . . . . . . . . 68 4.3.2 南中洲構造長期垂直變位速率 . . . . . . . . . . . . . . . . . . 71 4.3.3 小崗山斷層長期垂直變位速率 . . . . . . . . . . . . . . . . . . 73 4.4 第 I 類活動構造之幾何參數設定 . . . . . . . . . . . . . . . . . . 77 4.5 第 I 類活動構造之參數結果 . . . . . . . . . . . . . . . . . . . . . . 82 第五章 討論 85 5.1 比較前人垂直變位速率 . . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.1 北中洲構造與南中洲構造 . . . . . . . . . . . . . . . . . . . . 85 5.1.2 小崗山斷層 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.2 活動構造之走向滑移分量 . . . . . . . . . . . . . . . . . . . . . . . 87 5.3 泥貫入體或潛移作用的影響 . . . . . . . . . . . . . . . . . . . . . . 88 第六章 結論 91 參考文獻 93 附錄 107 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 中洲構造 | zh_TW |
| dc.subject | 孕震構造 | zh_TW |
| dc.subject | 構造地形 | zh_TW |
| dc.subject | 垂直變位速率 | zh_TW |
| dc.subject | 孕震參數 | zh_TW |
| dc.subject | 地震風險 | zh_TW |
| dc.subject | 臺灣西南部 | zh_TW |
| dc.subject | seismic hazard | en |
| dc.subject | southwestern Taiwan | en |
| dc.subject | Chungchou structure | en |
| dc.subject | seismogenic structure | en |
| dc.subject | tectonic geomorphology | en |
| dc.subject | vertical separation rate | en |
| dc.subject | seismogenic parameters | en |
| dc.title | 臺南—高雄地區西部麓山帶之中洲構造與其鄰近構造再評估 | zh_TW |
| dc.title | Reassessment of the Chungchou structure and related seismogenic structures in its vicinity in the Western Foothills, Tainan-Kaohsiung area, Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王昱;黃文正;鍾令和;郭昱廷 | zh_TW |
| dc.contributor.oralexamcommittee | Yu Wang;Wen-Jeng Owen Huang;Ling-Ho Chung;Yu-Ting Kuo | en |
| dc.subject.keyword | 臺灣西南部,中洲構造,孕震構造,構造地形,垂直變位速率,孕震參數,地震風險, | zh_TW |
| dc.subject.keyword | southwestern Taiwan,Chungchou structure,seismogenic structure,tectonic geomorphology,vertical separation rate,seismogenic parameters,seismic hazard, | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202500429 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-02-10 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| dc.date.embargo-lift | 2025-02-27 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 45.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
