請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97047
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇志杰 | zh_TW |
dc.contributor.advisor | Chih-Chieh Su | en |
dc.contributor.author | 陳宇璜 | zh_TW |
dc.contributor.author | Yu-Huang Chen | en |
dc.date.accessioned | 2025-02-26T16:12:40Z | - |
dc.date.available | 2025-02-27 | - |
dc.date.copyright | 2025-02-26 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-11 | - |
dc.identifier.citation | Adams, J. (1990). Paleoseismicity of the Cascadia subduction zone: Evidence from turbidites off the Oregon-Washington margin. Tectonics, 9, 569-583. https://doi.org/10.1029/TC009i004p00569
Appleby, P. G., & Oldfield, F. (1978). The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 5(1), 1-8. https://doi.org/10.1016/0341-8162(78)90001-9 Bao, R., Strasser, M., McNichol, A. P., Haghipour, N., McIntyre, C., Wefer, G., & Eglinton, T. I. (2018). Tectonically-triggered sediment and carbon export to the Hadal zone. Nature Communications, 9(1), 121. https://doi.org/10.1038/s41467-017-02504-1 Bjørnø, L., Neighbors, T., & Bradley, D. (2017). Applied underwater acoustics (pp. 346-348). Elsevier. https://doi.org/10.1016/B978-0-12-811240-3.00001-9 Bouma, A. H. (1964). Turbidites. In A. H. Bouma & A. Brouwer (Eds.), Developments in sedimentology (Vol. 3, pp. 247-256). Elsevier. https://doi.org/10.1016/S0070-4571(08)70967-1 Breien, H., De Blasio, F. V., Elverhøi, A., Nystuen, J. P., & Harbitz, C. B. (2010). Transport mechanisms of sand in deep-marine environments-insights based on laboratory experiments. Journal of Sedimentary Research, 80(11), 975-990. https://doi.org/10.2110/jsr.2010.085 Briais, A., Patriat, P., & Tapponnier, P. (1993). Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4), 6299-6328. https://doi.org/10.1029/92JB02280 Bührig, L. H., Colombera, L., Patacci, M., Mountney, N. P., & McCaffrey, W. D. (2022). A global analysis of controls on submarine-canyon geomorphology. Earth-Science Reviews, 233, 104150. https://doi.org/10.1016/j.earscirev.2022.104150 Bühring, C., Sarnthein, M., & Leg 184 Shipboard Scientific Party. (2000). Toba ash layers in the South China Sea: Evidence of contrasting wind directions during eruption ca. 74 ka. Geology, 28(3), 275-278. https://doi.org/10.1130/0091-7613(2000)028<0275:TALITS>2.3.CO;2 Burnett, W. C., Bidorn, B., & Wang, Y. (2023). Can 210Pb be used as a paleo-storm proxy? Quaternary Science Reviews, 315, 108242. https://doi.org/10.1016/j.quascirev.2023.108242 Carter, L., Gavey, R., Talling, P. J., & Liu, J. T. (2014). Insights into submarine geohazards from breaks in subsea telecommunication cables. Oceanography, 27(2), 58-67. https://doi.org/10.5670/oceanog.2014.40 Chen, M., Li, Q., Zheng, F., Tan, X., Xiang, R., & Jian, Z. (2005). Variations of the Last Glacial Warm Pool: Sea surface temperature contrasts between the open western Pacific and South China Sea. Paleoceanography, 20(2), PA2003. https://doi.org/10.1029/2004PA001057 Chen, Y. H., Su, C. C., Yu, P. S., Hsu, T. W., Hsu, S. T., Juan, H. C., ... & Chiu, S. D. (2024). Sedimentary Signatures of Super Typhoon Haiyan: Insight from Core Record in South China Sea. Journal of Marine Science and Engineering, 13(1), 10. Chiang, C. S., & Yu, H. S. (2006). Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge. Geomorphology, 80(3-4), 199-213. https://doi.org/10.1016/j.geomorph.2006.02.008 Croudace, I. W., & Rothwell, R. G. (2015). Micro-XRF Studies of Sediment Cores: Applications of a Non-Destructive Tool for the Environmental Sciences. Springer. Croudace, I. W., Löwemark, L., Tjallingii, R., & Zolitschka, B. (2019). Current perspectives on the capabilities of high resolution XRF core scanners. Quaternary International, 514, 5-15. Curcic, M., Chen, S. S., & Özgökmen, T. M. (2016). Hurricane‐induced ocean waves and stokes drift and their impacts on surface transport and dispersion in the Gulf of Mexico. Geophysical Research Letters, 43(6), 2773-2781. https://doi.org/10.1002/2015GL067619 Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., ... & Lin, J. C. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651. https://doi.org/10.1038/nature02150 Ding, W., & Li, J. (2011). Seismic stratigraphy, tectonic structure and extension factors across the southern continental margin of the South China Sea: Evidence from two regional multi-channel seismic profiles. Chinese Journal of Geophysics, 54(6), 1006-1018. https://doi.org/10.1002/cjg2.1683 Donnelly, J. P., & Woodruff, J. D. (2007). Intense hurricane activity over the past 5,000 years controlled by El Niño and the West African monsoon. Nature, 447(7143), 465-468. Donnelly, J. P., Hawkes, A. D., Lane, P., MacDonald, D., Shuman, B. N., Toomey, M. R., ... & Woodruff, J. D. (2015). Climate forcing of unprecedented intense-hurricane activity in the last 2000 years. Earth's Future, 3, 49-65. Emsley, J. (2011). Nature's building blocks: an AZ guide to the elements. Oxford University Press.Forel, F. A. (1885). Les ravins sous-lacustres des fleuves glaciares. Comptes Rendus de l'Académie des Sciences de Paris, 101, 725-728. Forel, F. A. (1885). Les ravins sous-lacustres des fleuves glaciares. Comptes Rendus de l'Académie des Sciences de Paris, 101, 725-728. Forster, M. A., Armstrong, R., Kohn, B., Lister, G. S., Cottam, M. A., & Suggate, S. (2015). Highly retentive core domains in K-feldspar and their implications for 40Ar/39Ar thermochronology illustrated by determining the cooling curve for the Capoas Granite, Palawan, The Philippines. Australian Journal of Earth Sciences, 62(7), 883-902. https://doi.org/10.1080/08120099.2015.1114524 Fournier, L., Fauquembergue, K., Zaragosi, S., Zorzi, C., Malaizé, B., Bassinot, F., ... & Leparmentier, F. (2017). The Bengal fan: External controls on the Holocene Active Channel turbidite activity. The Holocene, 27(6), 900-913. https://doi.org/10.1177/0959683616675938 Friedman, G. M. (1998). Sedimentology and stratigraphy in the 1950s to mid-1980s: the story of a personal perspective. Episodes Journal of International Geoscience, 21(3), 172-177. Fujiwara, T., Kodaira, S., No, T., Kaiho, Y., Takahashi, N., & Kaneda, Y. (2011). The 2011 Tohoku-Oki earthquake: displacement reaching the trench axis. Science, 334(6060), 1240. https://doi.org/10.1126/science.1211554 Gavey, R., Carter, L., Liu, J. T., Talling, P. J., Hsu, R., Pope, E., & Evans, G. (2017). Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: Observations from subsea cable breaks off southern Taiwan. Marine Geology, 384, 147-158. Girardclos, S., Hilbe, M., Corella, J. P., Loizeau, J.-L., Kremer, K., Delsontro, T., ... & Lemmin, U. (2013). Searching the Rhone delta channel in Lake Geneva since François-Alphonse Forel. Archives des Sciences, 66(1), 103-118. Goldberg, E. D. (1963). Geochronology with lead-210, radioactive dating, IAEA. Vienna, 1, 21-131. Goldfinger, C., Nelson, C. H., & Johnson, J. E. (2003). Deep-water turbidites as Holocene earthquake proxies: The Cascadia subduction zone and northern San Andreas fault systems. Annals of Geophysics, 46(5), 1169-1194. https://doi.org/10.4401/ag-3452 Goldfinger, C., Morey, A. E., Nelson, C. H., Gutiérrez-Pastor, J., Johnson, J. E., Karabanov, E., ... & Party, S. S. (2007). Rupture lengths and temporal history of significant earthquakes on the offshore and north coast segments of the Northern San Andreas Fault based on turbidite stratigraphy. Earth and Planetary Science Letters, 254(1-2), 9-27. https://doi.org/10.1016/j.epsl.2006.11.017 Goldfinger, C., Nelson, C. H., Morey, A. E., Johnson, J. E., Patton, J. R., Karabanov, E. B., ... & Vallier, T. (2012). Turbidite event history–Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone (No. 1661-F). US Geological Survey. Goldfinger, C., Galer, S., Beeson, J., Hamilton, T., Black, B., Romsos, C., ... & Morey, A. (2017). The importance of site selection, sediment supply, and hydrodynamics: A case study of submarine paleoseismology on the northern Cascadia margin, Washington USA. Marine Geology, 384, 4-46. https://doi.org/10.1016/j.margeo.2016.06.008 Gracia, E., Vizcaino, A., Escutia, C., Asioli, A., Rodes, A., Pallas, R., ... & Goldfinger, C. (2010). Holocene earthquake record offshore Portugal (SW Iberia): Testing turbidite paleoseismology in a slow-convergence margin. Quaternary Science Reviews, 29(9-10), 1156-1172. https://doi.org/10.1016/j.quascirev.2010.01.010 Hale, R. P., Nittrouer, C. A., Liu, J. T., Keil, R. G., & Ogston, A. S. (2012). Effects of a major typhoon on sediment accumulation in Fangliao submarine canyon, SW Taiwan. Marine Geology, 326-328, 116-130. https://doi.org/10.1016/j.margeo.2012.07.008 Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20(4), 353-431. https://doi.org/10.1016/S1367-9120(01)00069-4 Hampton, M. A. (1972). The role of subaqueous debris flow in generating turbidity currents. Journal of Sedimentary Research, 42(4), 775-793. https://doi.org/10.1306/74D7262B-2B21-11D7-8648000102C1865D Heezen, B. C., & Ewing, W. M. (1952). Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake. American Journal of Science, 250(12), 849-873. https://doi.org/10.2475/ajs.250.12.849 Howarth, J. D., Orpin, A. R., Kaneko, Y., Strachan, L. J., Nodder, S. D., Mountjoy, J. J., ... & Cağatay, M. N. (2021). Calibrating the marine turbidite palaeoseismometer using the 2016 Kaikōura earthquake. Nature Geoscience, 14(3), 161-167. https://doi.org/10.1038/s41561-021-00692-6 Hsiung, K. H., & Yu, H. S. (2013). Morpho-sedimentary evidence for a canyon-channel-trench interconnection along the Taiwan-Luzon plate margin, South China Sea. Marine Geology, 345, 199-211. https://doi.org/10.1016/j.margeo.2013.06.010 Hsu, S. K., Kuo, J., Lo, C. L., Tsai, C. H., Doo, W. B., Ku, C. Y., & Sibuet, J. C. (2008). Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 767-772. https://doi.org/10.3319/TAO.2008.19.6.767 Huang, W., & Wang, P. (1998). A quantitative approach to deep-water sedimentation in the South China Sea: Changes since the last glaciation. Science in China Series D: Earth Sciences, 41(2), 195-201. https://doi.org/10.1007/BF02878838 Hunter, J. A., Pullan, S. E., Burns, R. A., Gagne, R. M., & Good, R. L. (1989). Applications of a shallow seismic reflection method to groundwater and engineering studies. Ontario Geological Survey Special Volume, 3, 704-715. Huh, C. A., Su, C. C., Wang, C. H., Lee, S. Y., & Lin, I. T. (2004). Sedimentation in the Southern Okinawa Trough—Rates, turbidites and a sediment budget. Marine Geology, 231(1-4), 129-139. https://doi.org/10.1016/j.margeo.2006.05.009 Huh, C. A., Liu, J. T., Lin, H. L., & Xu, J. P. (2009). Tidal and flood signatures of settling particles in the Gaoping submarine canyon (SW Taiwan) revealed from radionuclide and flow measurements. Marine Geology, 267(1-2), 8-17. https://doi.org/10.1016/j.margeo.2009.09.001 Hutchison, C. S., & Vijayan, V. R. (2010). What are the Spratly Islands?. Journal of Asian Earth Sciences, 39(5), 371-385. https://doi.org/10.1016/j.jseaes.2010.04.013 Jian, Z., Wang, P., Chen, M. P., Li, B., Zhao, Q., Bühring, C., ... & Cheng, X. (2000b). Foraminiferal responses to major Pleistocene paleoceanographic changes in the southern South China Sea. Paleoceanography, 15(2), 229-243. https://doi.org/10.1029/1999PA000431 Kioka, A., Schwestermann, T., Moernaut, J., Ikehara, K., Kanamatsu, T., McHugh, C. M., ... & Strasser, M. (2019b). Megathrust earthquake drives drastic organic carbon supply to the hadal trench. Scientific Reports, 9(1), 1553. https://doi.org/10.1038/s41598-019-38834-x Kneller, B., & Buckee, C. (2000). The structure and fluid mechanics of turbidity currents: A review of some recent studies and their geological implications. Sedimentology, 47(S1), 62-94. https://doi.org/10.1046/j.1365-3091.2000.047s1062.x Kylander, M. E., Lind, E. M., Wastegård, S., & Löwemark, L. (2012). Recommendations for using XRF core scanning as a tool in tephrochronology. The Holocene, 22(3), 371-375. https://doi.org/10.1177/0959683611423688 Kuenen, P. H., & Migliorini, C. I. (1950). Turbidity currents as a cause of graded bedding. The Journal of Geology, 58(2), 91-127. https://doi.org/10.1086/625710 Kuenen, P. H. (1957). Sole markings of graded graywacke beds. The Journal of Geology, 65(3), 231-258. https://doi.org/10.1086/626425 Kuenen, P. H. (1966). Experimental turbidite lamination in a circular flume. The Journal of Geology, 74(5, Part 1), 523-545. https://doi.org/10.1086/627187 Lambert, W. J., Aharon, P., & Rodriguez, A. B. (2008). Catastrophic hurricane history revealed by organic geochemical proxies in coastal lake sediments: A case study of Lake Shelby, Alabama (USA). Journal of Paleolimnology, 39, 117-131. Li, C. F., Lin, J., Kulhanek, D. K., Williams, T., Bao, R., Briais, A., ... & Zhao, X. (2015). Expedition 349 summary. In South China Sea Tectonics. International Ocean Discovery Program, 349, 1-43. https://doi.org/10.14379/iodp.proc.349.101.2015 Lin, C. W., Chang, W. S., Liu, S. H., Tsai, T. T., Lee, S. P., Tsang, Y. C., ... & Tseng, C. M. (2011). Landslides triggered by the 7 August 2009 Typhoon Morakot in southern Taiwan. Engineering Geology, 123(1-2), 3-12. Liu, K., & Fearn, M. L. (2000). Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records. Quaternary Research, 54, 238-245. Liu, Z., Tuo, S., Colin, C., Liu, J. T., Huang, C. Y., Selvaraj, K., ... & Chen, Z. (2008). Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology, 255(3-4), 149-155. https://doi.org/10.1016/j.margeo.2008.08.003 Liu, J. T., & Lin, H. L. (2004). Sediment dynamics in a submarine canyon: A case of river-sea interaction. Marine Geology, 207(1-4), 159-172. https://doi.org/10.1016/j.margeo.2004.03.015 Liu, J. T., Kao, S. J., Huh, C. A., & Hung, C. C. (2006). Gravity flows and canyon hydrography off southern Taiwan as influenced by episodic submarine earthquakes. Geophysical Research Letters, 33(24), L24603. https://doi.org/10.1029/2006GL028103 Liu, J. T., Wang, Y. H., Lee, I. H., & Hsu, R. T. (2010). Quantifying tidal signatures of the benthic nepheloid layer in Gaoping Submarine Canyon in Southern Taiwan. Marine Geology, 271(1-2), 119-130. Liu, Z., Zhao, Y., Colin, C., Stattegger, K., Wiesner, M. G., Huh, C. A., ... & Li, Y. (2016). Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews, 153, 238-273. Löwemark, L., Bloemsma, M., Croudace, I., Daly, J. S., Edwards, R. J., Francus, P., ... & Jones, A. F. (2019). Practical guidelines and recent advances in the Itrax XRF core-scanning procedure. Quaternary International, 514, 16-29. Lyle, M. (1983). The brown‐green color transition in marine sediments: A marker of the Fe (III)‐Fe (II) redox boundary. Limnology and Oceanography, 28(5), 1026-1033. https://doi.org/10.4319/lo.1983.28.5.1026 Mas, E., Bricker, J., Kure, S., Adriano, B., Yi, C., Suppasri, A., & Koshimura, S. (2015). Field survey report and satellite image interpretation of the 2013 Super Typhoon Haiyan in the Philippines. Natural Hazards and Earth System Sciences, 15(4), 805-816. McHugh, C. M., Seeber, L., Rasbury, T., Strasser, M., Hayashida, A., Higaki, T., ... & Kioka, A. (2020). Sedimentary signatures of the 2011 Tohoku-oki tsunami and precursor events preserved in a unique depositional environment, the Misawa pocket coast, Japan. Marine Geology, 427, 106273. https://doi.org/10.1016/j.margeo.2020.106273 Miao, Y. F., Warny, S., Liu, C., Clift, P. D., & Gregory, M. (2017). Neogene fungal record from IODP Site U1433, South China Sea: Implications for paleoenvironmental change and the onset of the Mekong River. Marine Geology, 394, 69-81. https://doi.org/10.1016/j.margeo.2017.08.019 Milliman, J. D., & Syvitski, J. P. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of Geology, 100(5), 525-544. https://doi.org/10.1086/629606 Monjardin, C. E. F., Senoro, D. B., Magbanlac, J. J. M., de Jesus, K. L. M., Tabelin, C. B., & Natal, P. M. (2022). Geo-accumulation index of manganese in soils due to flooding in Boac and Mogpog Rivers, Marinduque, Philippines with mining disaster exposure. Applied Sciences, 12(7), 3527. https://doi.org/10.3390/app12073527 Moreno, A., López-Merino, L., Leira, M., Marco-Barba, J., González-Sampériz, P., Valero-Garcés, B. L., López-Sáez, J. A., Santos, L., Mata, P., & Ito, E. (2011). Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula). Journal of Paleolimnology, 46, 327-349. https://doi.org/10.1007/s10933-009-9387-7 Moernaut, J., De Batist, M., Charlet, F., Heirman, K., Chapron, E., Pino, M., ... & Urrutia, R. (2007). Giant earthquakes in South-Central Chile revealed by Holocene mass-wasting events in Lake Puyehue. Sedimentary Geology, 195(3-4), 239-256. Mountjoy, J. J., Howarth, J. D., Orpin, A. R., Barnes, P. M., Bowden, D. A., Rowden, A. A., ... & Patton, J. R. (2018). Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins. Science Advances, 4(3), eaar3748. https://doi.org/10.1126/sciadv.aar3748 Mulder, T., Weber, O., Anschutz, P., Jorissen, F., & Jouanneau, J. M. (2001). A few months-old storm-generated turbidite deposited in the Capbreton Canyon (Bay of Biscay, SW France). Geo-Marine Letters, 21, 149-156. Murakami-Sugihara, N., Shirai, K., Hori, M., Amano, Y., Fukuda, H., Obata, H., Tanaka, K., Mizukawa, K., Sano, Y., & Ogawa, H. (2019). Mussel shell geochemical analyses reflect coastal environmental changes following the 2011 Tohoku tsunami. ACS Earth and Space Chemistry, 3(7), 1346-1352. https://doi.org/10.1021/acsearthspacechem.9b00040 Murray, J., & Renard, A. F. (1891). Report on deep-sea deposits based on the specimens collected during the voyage of HMS Challenger in the years 1872 to 1876. HM Stationery Office. Mutti, E. (1979). Turbidites et cônes sous-marins profonds. In P. Homewood (Ed.), Sédimentation détritique (pp. 353-419). Institut de Géologie, Université de Fribourg. Nayak, K., Lin, A. T. S., Huang, K. F., Liu, Z., Babonneau, N., Ratzov, G., Liu, C.-S., Delisle, M., & Hsu, S. K. (2021). Clay-mineral distribution in recent deep-sea sediments around Taiwan: Implications for sediment dispersal processes. Tectonophysics, 814, 228974. https://doi.org/10.1016/j.tecto.2021.228974 Parsons, J. D., Whipple, K. X., & Simoni, A. (2001a). Experimental study of the grain-flow, fluid-mud transition in debris flows. The Journal of Geology, 109(4), 427-447. https://doi.org/10.1086/320798 Parsons, J. D., Bush, J. W., & Syvitski, J. P. (2001b). Hyperpycnal plume formation from riverine outflows with small sediment concentrations. Sedimentology, 48(2), 465-478. https://doi.org/10.1046/j.1365-3091.2001.00369.x Piper, D. J. (1978). Turbidite muds and silts on deep-sea fans and abyssal plains. In D. J. Stanley & G. Kelling (Eds.), Sedimentation in submarine canyons, fans and trenches (pp. 163-176). Dowden, Hutchinson & Ross. Piper, D. J., & Aksu, A. E. (1987). The source and origin of the 1929 grand banks turbidity current inferred from sediment budgets. Geo-Marine Letters, 7(4), 177-182. https://doi.org/10.1007/BF02242769 Piper, D. J., & Savoye, B. (1993). Processes of late Quaternary turbidity current flow and deposition on the Var deep‐sea fan, north‐west Mediterranean Sea. Sedimentology, 40(3), 557-582. https://doi.org/10.1111/j.1365-3091.1993.tb01350.x Piper, D. J., & Normark, W. R. (2009). Processes that initiate turbidity currents and their influence on turbidites: a marine geology perspective. Journal of Sedimentary Research, 79(6), 347-362. https://doi.org/10.2110/jsr.2009.046 Polonia, A., Vaiani, S. C., & De Lange, G. J. (2016). Did the AD 365 Crete earthquake/tsunami trigger synchronous giant turbidity currents in the Mediterranean Sea?. Geology, 44(3), 191-194. Pouderoux, H., Lamarche, G., & Proust, J. N. (2012). Building an 18,000-year-long paleo-earthquake record from detailed deep-sea turbidite characterisation in Poverty Bay, New Zealand. Natural Hazards and Earth System Sciences, 12(6), 2077-2101. https://doi.org/10.5194/nhess-12-2077-2012 Purkey, S. G., Smethie Jr, W. M., Gebbie, G., Gordon, A. L., Sonnerup, R. E., Warner, M. J., & Bullister, J. L. (2018). A synoptic view of the ventilation and circulation of Antarctic Bottom Water from chlorofluorocarbons and natural tracers. Annual Review of Marine Science, 10, 503-527. https://doi.org/10.1146/annurev-marine-121916-063414 Rapuc, W., Sabatier, P., Arnaud, F., Palumbo, A., Develle, A. L., Reyss, J. L., Augustin, L., Régnier, E., Piccin, A., Chapron, E., Dumoulin, J. P., & von Grafenstein, U. (2019). Holocene-long record of flood frequency in the Southern Alps (Lake Iseo, Italy) under human and climate forcing. Global and Planetary Change, 175, 160-172. https://doi.org/10.1016/j.gloplacha.2019.02.010 Sabatier, P., Wilhelm, B., Ficetola, G. F., Moiroux, F., Poulenard, J., Develle, A. L., Bichet, A., Chen, W., Pignol, C., Reyss, J. L., Gielly, L., Bajard, M., Perrette, Y., Malet, E., Taberlet, P., & Arnaud, F. (2017). 6-kyr record of flood frequency and intensity in the western Mediterranean Alps–Interplay of solar and temperature forcing. Quaternary Science Reviews, 170, 121-135. https://doi.org/10.1016/j.quascirev.2017.06.019 Shanmugam, G. (2000). 50 years of the turbidite paradigm (1950s-1990s): Deep-water processes and facies models–a critical perspective. Marine and Petroleum Geology, 17(2), 285-342. https://doi.org/10.1016/S0264-8172(99)00011-2 Shanmugam, G. (2002). Ten turbidite myths. Earth-Science Reviews, 58(3-4), 311-341. https://doi.org/10.1016/S0012-8252(02)00065-X Shanmugam, G. (2020). Mass transport, gravity flows, and bottom currents: Downslope and alongslope processes and deposits. Elsevier. Shyu, J. P., Chen, M. P., Shieh, Y. T., & Huang, C. K. (2001). A Pleistocene paleoceanographic record from the north slope of the Spratly Islands, southern South China Sea. Marine Micropaleontology, 42(1-2), 61-93. https://doi.org/10.1016/S0377-8398(01)00004-3 Stow, D. A. V., & Piper, D. J. W. (1984). Deep-water fine-grained sediments: facies models. Geological Society, London, Special Publications, 15(1), 611-646. Strasser, M., Henry, P., Kanamatsu, T., Thu, M. K., Moore, G. F., & IODP Expedition 338 Scientists. (2013). Scientific drilling of mass-transport deposits in the Nankai accretionary wedge: First results from IODP Expedition 338. In Submarine mass movements and their consequences (pp. 671-681). Springer, Dordrecht. https://doi.org/10.1007/978-3-319-00972-8_60 Su, C. C., Hsu, S. T., Hsu, H. H., Jing-Yi, L., & Dong, J. J. (2018). Sedimentological characteristics and seafloor failure offshore SW Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 29(1), 6. Sumner, E. J., Siti, M. I., McNeill, L. C., Talling, P. J., Henstock, T. J., Wynn, R. B., ... & Permana, H. (2013). Can turbidites be used to reconstruct a paleoearthquake record for the central Sumatran margin?. Geology, 41(7), 763-766. Soria, J. L. A., Switzer, A. D., Pilarczyk, J. E., Siringan, F. P., Khan, N. S., & Fritz, H. M. (2017). Typhoon Haiyan overwash sediments from Leyte Gulf coastlines show local spatial variations with hybrid storm and tsunami signatures. Sedimentary Geology, 358, 121-138. Takagi, H., & Esteban, M. (2016). Statistics of tropical cyclone landfalls in the Philippines: Unusual characteristics of 2013 Typhoon Haiyan. Natural Hazards, 80, 211-222. https://doi.org/10.1007/s11069-015-1965-6 Tapponnier, P., Peltzer, G. L. D. A. Y., Le Dain, A. Y., Armijo, R., & Cobbold, P. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611-616. https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 Taylor, B., & Hayes, D. E. (1980). The tectonic evolution of the South China Basin. Geophysical Monograph Series, 23, 89-104. https://doi.org/10.1029/GM023p0089 Taylor, B., & Hayes, D. E. (1983). Origin and history of the South China Sea basin. Geophysical Monograph Series, 27, 23-56. https://doi.org/10.1029/GM027p0023 Tombo, S. L., Dennielou, B., Berne, S., Bassetti, M. A., Toucanne, S., Jorry, S. J., Jouet, G., & Fontanier, C. (2015). Sea-level control on turbidite activity in the Rhone canyon and the upper fan during the Last Glacial Maximum and Early deglacial. Sedimentary Geology, 323, 148-166. https://doi.org/10.1016/j.sedgeo.2015.04.009 Van Daele, M., Cnudde, V., Duyck, P., Pino, M., Urrutia, R., and De Batist, M., 2014, Multidirectional, synchronously-triggered seismo-turbidites and debrites revealed by X-ray computed tomography (CT): Sedimentology, v. 61, p. 861–880. Wallace, E. J., Donnelly, J. P., Hengstum, P. J., Wiman, C., Sullivan, R. M., Winkler, T. S., d'Entremont, N. E., Toomey, M., & Albury, N. (2019). Intense hurricane activity over the past 1500 years at South Andros Island, The Bahamas. Paleoceanography and Paleoclimatology, 34, 1761-1783.Wang, C. H., & Chen, M. P. (1990). Upper Pleistocene oxygen and carbon isotopic changes of core SCS-15B at the South China Sea. Journal of Southeast Asian Earth Sciences, 4(3), 243-246. https://doi.org/10.1016/0743-9547(90)90011-9 Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., & Pflaumann, U. (1999a). East Asian monsoon climate during the Late Pleistocene: High-resolution sediment records from the South China Sea. Marine Geology, 156(1-4), 245-284. https://doi.org/10.1016/S0025-3227(98)00182-0 Wang, P., & Li, Q. (2009). The South China Sea: Paleoceanography and sedimentology (Vol. 13). Springer. https://doi.org/10.1007/978-1-4020-9745-4 Wetzel, A., & Unverricht, D. (2013). A muddy megaturbidite in the deep central South China Sea deposited~ 350 yrs BP. Marine geology, 346, 91-100. Wright, L. D., & Nittrouer, C. A. (1995). Dispersal of river sediments in coastal seas: six contrasting cases. Estuaries, 18, 494-508. Wilhelm, B., Vogel, H., Crouzet, C., Etienne, D., & Anselmetti, F. S. (2016). Frequency and intensity of palaeofloods at the interface of Atlantic and Mediterranean climate domains. Climate of the Past, 12(2), 299-316. https://doi.org/10.5194/cp-12-299-2016 Wiesner, M. G., Wetzel, A., Catane, S. G., Listanco, E. L., & Mirabueno, H. T. (2004). Grain size, areal thickness distribution and controls on sedimentation of the 1991 Mount Pinatubo tephra layer in the South China Sea. Bulletin of Volcanology, 66, 226-242. https://doi.org/10.1007/s00445-003-0306-x Van Daele, M., Cnudde, V., Duyck, P., Pino, M., Urria, R., & De Batist, M. (2014). Multidirectional, synchronously-triggered seismo-turbidites and debrites revealed by X-ray computed tomography (CT). Sedimentology, 61(4), 861–880. https://doi.org/10.1111/sed.12070 Yin, S., Li, J., Ding, W., Gao, J., Ding, W., & Wang, Y. (2020). Migration of the lower North Palawan submarine canyon: Characteristics and controls. International Geology Review, 62(7-8), 988-1005. https://doi.org/10.1080/00206814.2019.1642368 Yu, K. F., Zhao, J. X., Collerson, K. D., Shi, Q., Chen, T. G., Wang, P. X., & Liu, T. S. (2004). Storm cycles in the last millennium recorded in Yongshu Reef, southern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1), 89-100. https://doi.org/10.1016/j.palaeo.2004.04.002 Yu, K. F., Zhao, J. X., Shi, Q., & Meng, Q. S. (2009). Reconstruction of storm/tsunami records over the last 4000 years using transported coral blocks and lagoon sediments in the southern South China Sea. Quaternary International, 195(1-2), 128-137. https://doi.org/10.1016/j.quaint.2008.05.004 Zhang, W., Wei, X., Jinhai, Z., Yuliang, Z., & Zhang, Y. (2012). Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves. Continental Shelf Research, 38, 35-46. https://doi.org/10.1016/j.csr.2012.02.017 Zhang, Y., Liu, Z., Zhao, Y., Colin, C., Zhang, X., Wang, M., Zhao, S., & Kneller, B. (2018). Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea. Geology, 46(8), 675-678. https://doi.org/10.1130/G45178.1 Zuhr, A. M., Dolman, A. M., Ho, S. L., Groeneveld, J., Löwemark, L., Grotheer, H., ... & Laepple, T. (2022). Age-Heterogeneity in marine sediments revealed by three-dimensional high-resolution radiocarbon measurements. Frontiers in Earth Science, 10, 871902. 宮守業,(2016)。太平島是島還是礁。科博館館訊,342,5。 林偉雄、林啟文 (1994)。臺灣地質圖幅說明書:潮州。經濟部中央地質調查所,共51頁。 阮行健 (2017)。南沙海域沉積物特性與物源分析之研究。國立臺灣大學海洋研究所碩士論文,共84頁。 蔡志銓,(2017)。中共在南海島礁填海造陸之戰略手段與軍事意涵。陸軍學術雙月刊,53,第63-88頁。 劉昭蜀、范時清、趙煥庭,(2002)。 南海地质,科学出版社。共498頁。 謝以萱 (1981)。南海的海底地形輪廓。南海海洋科學集刊,2,第1-2頁。 網頁部分 經濟部水利署 (2009)。莫拉克颱風暴雨量及洪流量分析報。共40頁。https://reurl.cc/L5xqm7 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97047 | - |
dc.description.abstract | 自然災害(地震、洪水和火山等)對人類社會不論是經濟和人身安全上都造成極大的威脅。但對於災害評估和重建災害歷史而言,現代的觀測紀錄難以涵蓋百年尺度以上大型自然災害。深海沈積物具有沈積環境穩定,並具有記錄大型自然災害的特性,為良好的災害紀錄器。不同災害事件所引發的重力流沈積物十分相似。近年來,多篇研究利用地震會造成大規模崩塌的特性和事件後的即時採樣建立大型地震事件層的特徵,將地震災害歷史延伸到千年以前。相比之下,颱風並不像地震會造成大規模的海底崩塌,難以於深海辨識颱風層位並建立大型颱風事件層的特徵。本研究於2013年海燕颱風侵襲菲律賓的四個月後在南海海盆採集重力岩心,在表層發現近百公分厚具有泥質濁積層層序的颱風層位,因此區缺乏大型峽谷系統的緣故,推測沈積物受到颱風懸浮傳輸至海盆堆積,顯示強烈颱風懸浮傳輸沈積物時,因水力淘選的緣故,在深海會同樣堆積出典型的濁積層層序,此發現拓寬傳統認知中粒級層為透過沈積物重力流沿海床傳輸形成的窠臼,對未來評估深海事件層提供更多討論。並且在颱風層的底部觀察到錳富集的特性,推測源自菲律賓中部富含錳的土壤與洪水引發沈積物孔隙中的錳釋放於水層後,水層中的顆粒與錳離子結合受懸浮傳輸至深海。此錳富集的特性可望為區分洪水和地震事件層的利器,因此本研究利用在高屏海底峽谷下部斜坡中前人已辨識出2009年莫拉克颱風和2006年屏東地震的岩心站位來驗證錳富集層於其他地區的適用程度。結果顯示,莫拉克颱風的層位同樣具有錳富集的特性,但其形成機制有所差異,莫拉克颱風的層位主要為洪水引發沈積物中的錳釋放於水層後,錳離子與水層中的顆粒結合後受異重流傳輸至深海。在颱風較為稀少,沈積物組成以生物源沈積物為主的南沙海域同樣有觀察到錳富集的特性,推測為南沙海域近年來頻繁的人為工程活動擾動表層的沈積物,降低海床的穩定性並導致表層沈積物孔隙水中的錳離子釋放並和颱風所懸浮的顆粒結合,傳輸至深海。根據颱風傳輸沈積物機制的不同,南海海盆適合建立強風型颱風紀錄,而高屏峽谷則適合重建強降雨型颱風歷史。本研究所發現的現代颱風層位特徵,可良好的區分地震和颱風事件層,為重建古颱風歷史的重要依據,為深海古颱風研究開啟新的篇章。 | zh_TW |
dc.description.abstract | Natural disasters (earthquakes, floods, and volcanic eruptions) pose significant threats to human society in terms of economic and personal safety. While modern observational records are insufficient for assessing centennial-scale natural disasters, deep-sea sediments serve as excellent disaster archives due to their stable depositional environment. Although gravity flow deposits triggered by different disaster events are similar, recent studies have utilized post-earthquake immediate sampling and characteristics of large-scale submarine landslides to establish earthquake event layer features, extending earthquake history records to millennia. In contrast, typhoons rarely cause massive submarine landslides, making it challenging to identify typhoon layers and establish their characteristics in deep-sea sediments.
In this study, we collected gravity cores from the South China Sea basin four months after Typhoon Haiyan struck the Philippines in 2013. We found meter-thick typhoon layer with typical mud turbidite sequences in the surface. Due to the absence of major submarine canyon systems in this area, we suggest that sediments were transported to the basin through suspension. This suggests that intense typhoons can produce typical turbidite sequences through hydrodynamic sorting during suspension transport, expanding the traditional understanding that graded beds are formed by sediment gravity flows along the seafloor. On the other hand, we found manganese enrichment at the base of the typhoon layer. We speculate sourced from manganese- rich soils in central Philippines and manganese released from the pore water after the sediment disturbance by flooding, combining with suspended particles before transport to the deep-sea. To validate the applicability of manganese enrichment as a tool for distinguishing flood and earthquake event layers, we examined previously identified cores from the 2009 Typhoon Morakot and 2006 Pingtung earthquake in the lower slope of the Kaoping submarine canyon. Results showed manganese enrichment in the Morakot layer, though a different mechanism involving flood-induced manganese release and gravity flow transport. Similar manganese enrichment was observed in the Nansha area, characterized by slow sedimentation rates and biogenic sediments, potentially due to recent anthropogenic activities disturbing surface sediments and releasing manganese from pore water. Based on these different typhoon sediment transport mechanisms, the South China Sea basin is suitable for reconstructing strong-wind typhoon records, while the Kaoping submarine canyon are better for heavy-rainfall typhoon history reconstruction. These modern typhoon layer characteristics effectively distinguish between earthquake and typhoon event layers, providing crucial evidence for paleotyphoon reconstruction and shed the new light for deep-sea paleotyphoon research. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:12:40Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-26T16:12:40Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 IV Abstract VI 目次 IX 圖次 XII 表次 XV 1. 序論 1 1.1. 水下沈積物流(Underwater sediment flows) 2 1.2. 災害事件記錄指標 7 1.3. 海燕颱風(Typhoon Haiyan) 9 1.4. 莫拉克颱風(Typhoon Morakot) 10 2. 方法 13 2.1. 採樣方法及實驗流程 13 2.2. 非破壞性檢測 16 2.3. 含水量與統體密度 18 2.4. 粒徑分析 20 2.5. 超量210Pb分析 21 2.6. 黏土礦物分析 25 2.7. 顯微X光螢光分析 31 3. 南海海盆沈積物 33 3.1. 南海海盆 33 3.2. 南海海盆岩心分析結果 42 3.2.1. 岩心沈積單元 42 3.2.2. 粒徑分析頻譜 49 3.2.3. 黏土礦物 51 3.2.4. 顯微X光螢光分析 54 3.3. 南海海盆討論 56 3.3.1. 南海颱風事件層 56 3.3.2. 颱風事件的沈積物傳輸機制 60 3.3.3. 錳與颱風層位 63 4. 南海北坡:臺灣西南外海事件沈積物 70 4.1. 高屏海底峽谷與枋寮海底峽谷 70 4.2. 地震和颱風的沈積物 75 4.3. Itrax-XRF、顯微X光螢光分析和黏土礦物結果 78 4.4. Itrax-XRF、顯微X光螢光分析和黏土礦物討論 81 5. 南海南部:南沙群島沈積物 83 5.1. 南沙群島 83 5.2. 南沙群島岩心特性 87 5.3. 南沙群島事件沈積物討論 92 6. 颱風事件層比較 98 6.1. 颱風事件沈積機制差異 98 6.2. 錳層–辨識颱風的指標 99 6.3. 古颱風紀錄的潛力站 100 7. 結論 103 8. Reference 106 9. 附錄 121 | - |
dc.language.iso | zh_TW | - |
dc.title | 南海沈積物中現代極端事件紀錄特徵 | zh_TW |
dc.title | Characteristics of Modern Extreme Event Deposits in the South China Sea | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 王珮玲;尤柏森;黃致展;許鶴瀚;張詠斌;陳麗雯 | zh_TW |
dc.contributor.oralexamcommittee | Pei-Ling Wang;Pai-Sen Yu;Jyh Jaan Steven Huang;Ho-Han Hsu;Yuan-Pin Chang;Liwen Chen | en |
dc.subject.keyword | 颱風,洪水,南海,深海沈積物,水下沈積物流,錳層, | zh_TW |
dc.subject.keyword | Typhoon,Flooding,South China Sea,Deep-sea sediment,Underwater sediment flows,Manganese layer, | en |
dc.relation.page | 140 | - |
dc.identifier.doi | 10.6342/NTU202500596 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-02-11 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
dc.date.embargo-lift | 2025-02-27 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 29.32 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。