請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97045
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇志杰 | zh_TW |
dc.contributor.advisor | Chih-Chieh Su | en |
dc.contributor.author | 李淳靚 | zh_TW |
dc.contributor.author | Chun-Ching Lee | en |
dc.date.accessioned | 2025-02-26T16:12:08Z | - |
dc.date.available | 2025-02-27 | - |
dc.date.copyright | 2025-02-26 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-10 | - |
dc.identifier.citation | 英文部分
Biscaye, P. E. (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76(7), 803–832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2 Boggs, S. (1974). Sand wave fields in the Taiwan Strait. Geology, 2(5), 251–254. https://doi.org/10.1130/0091-7613(1974)2<251:SFITS>2.0.CO;2 Cai, G., Li, S., Zhao, L., Zhong, L., & Chen, H. (2020). Clay minerals, Sr-Nd isotopes and provenance of sediments in the northwestern South China Sea. Journal of Asian Earth Sciences, 202, 104531. https://doi.org/10.1016/j.jseaes.2020.104531 Chen, M.-P., Shieh, Y.-T., & Chyan, J.-M. (1988). Acoustic and physical properties of surface sediments in northern Taiwan Strait. Acta Oceanographica Taiwanica, 21, 92–118. Chang, J.-H., Hsu, H.-H., Su, C.-C., Liu, C.-S., Hung, H.-T., & Chiu, S.-D. (2015). Tectono-sedimentary control on modern sand deposition on the forebulge of the Western Taiwan Foreland Basin. In Marine and Petroleum Geology (Vol. 66, pp. 970–977). Elsevier BV. https://doi.org/10.1016/j.marpetgeo.2015.08.004 Chiu, J.-K. (2008). Near-bottom sedimentation processes in the Taiwan Strait and offshore southwestern Taiwan from echo character studies (Ph.D. Thesis). National Taiwan University, Taipei, Taiwan. Chuang, W.-S. (1986). A note on the driving mechanisms of current in the Taiwan Strait. Journal of Oceanography, 42, 355–361. https://doi.org/10.1007/BF02110407 Huang, S.-W., & Su, Z.-J. (2010). Marine sediments in the surrounding waters of Taiwan. Geological Topics. Huh, C.-A., Lin, H.-L., & Wei, K.-Y. (2010). Sediment characteristics in the southern Okinawa Trough: A key to reconstructing sea-level and monsoon changes in the past 50 ka. Deep Sea Research Part II: Topical Studies in Oceanography, 57(19–20), 1924–1933. https://doi.org/10.1016/j.dsr2.2010.09.006 Huh, C.-A., Chen, W., Hsu, F.-H., Su, C.-C., Chiu, J.-K., Lin, S., Liu, C.-S., & Huang, B.-J. (2011). Modern (<100 years) sedimentation in the Taiwan Strait: Rates and source-to-sink pathways elucidated from radionuclides and particle size distribution. Continental Shelf Research, 31(1), 47–63. https://doi.org/10.1016/j.csr.2010.11.006 Horng, C.-S., & Huh, C.-A. (2011). Magnetic properties as tracers for source-to-sink dispersal of sediments: A case study in the Taiwan Strait. Earth and Planetary Science Letters, 309(1–2), 141–152. https://doi.org/10.1016/j.epsl.2011.06.036 Horng, C.-S., Huh, C.-A., Chen, K. H., Lin, C. H., Shea, K. S., & Hsiung, K. H. (2012). Pyrrhotite as a tracer for denudation of the Taiwan orogen. Geochemistry, Geophysics, Geosystems, 13(8), Q08009. https://doi.org/10.1029/2012GC004260 Jaboyedoff, M., Bussy, F., Kübler, B., & Thelin, P. (2001). Illite “crystallinity” revisited. Clays and Clay Minerals, 49(2), 156–167. https://doi.org/10.1346/CCMN.2001.0490204 Jan, S., Wang, J., Chern, C.-S., & Chao, S.-Y. (2002). Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems, 35(3–4), 249–268. https://doi.org/10.1016/S0924-7963(02)00130-6 Kao, S.-J., Jan, S., Hsu, S.-C., Lee, T.-Y., & Dai, M. (2008). Sediment budget in the Taiwan Strait with high fluvial sediment inputs from mountainous rivers: New observations and synthesis. Terrestrial, Atmospheric & Oceanic Sciences, 19(5), 525–546. https://doi.org/10.3319/TAO.2008.19.5.525(O) Lezzerini, M., Sartori, F., & Tamponi, M. (1995). A revisitation of illite “crystallinity” measurements. European Journal of Mineralogy, 7(4), 819–823. https://doi.org/10.1127/ejm/7/4/0819 Li, X., Wang, J., Yin, K., Chen, Q., Liu, W., Huang, Y., Wang, Y., Wu, Z., & Lin, J. (2024). Characteristics of clay minerals in sediments of Xinghua Bay and Nanri Channel in Fujian Province and their paleoenvironmental significance. Journal of Marine Science and Engineering, 12(8), 1270. https://doi.org/10.3390/jmse12081270 Liu, J. P., Xu, K., Li, A., Milliman, J. D., Velozzi, D. M., Xiao, S., & Yang, Z. (2006). Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology, 85(3–4), 208–224. https://doi.org/10.1016/j.geomorph.2006.03.023 Liu, J., Liu, C., Xu, K., Milliman, J., Chiu, J., Kao, S., & Lin, S. (2008). Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256(1–4), 65–76. https://doi.org/10.1016/j.margeo.2008.10.003 Liu, Z., Colin, C., Huang, W., Le, K. P., Tong, S., Chen, Z., & Trentesaux, A. (2007). Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochemistry, Geophysics, Geosystems, 8(5), Q05005. https://doi.org/10.1029/2006GC001490 Liu, X., Liu, X., & Hu, Y. (2015). Investigation of the thermal behaviour and decomposition kinetics of kaolinite. Clay Minerals, 50(2), 199–209. https://doi.org/10.1180/claymin.2015.050.2.06 Liu, Z., Zhao, Y., Colin, C., Stattegger, K., Wiesner, M. G., Huh, C.-A., Zhang, Y., Li, X., Sompongchaiyakul, P., & You, C.-F. (2016). Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews, 153, 238–273. https://doi.org/10.1016/j.earscirev.2015.10.011 Mange, M. A., & Maurer, H. (2012). Heavy minerals in colour. Springer Science & Business Media. https://doi.org/10.1007/978-94-011-2308-2 Milliman, J. D., & Meade, R. H. (1983). World-wide delivery of river sediment to the oceans. The Journal of Geology, 91(1), 1–21. https://doi.org/10.1086/628741 Milliman, J. D., & Syvitski, J. P. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology, 100(5), 525–544. https://doi.org/10.1086/629606 Nayak, K., Garzanti, E., Lin, A. T.-S., & Castelltort, S. (2022). Taiwan river muds from source to sink: Provenance control, inherited weathering, and offshore dispersal pathways. Sedimentary Geology, 438, 106199. https://doi.org/10.1016/j.sedgeo.2022.106199 Niino, H., & Emery, K. O. (1961). Sediments of shallow portions of the East China Sea and South China Sea. Geological Society of America Bulletin, 72(5), 731–762. https://doi.org/10.1130/0016-7606(1961)72[731:SOSPOT]2.0.CO;2 Shen, X., Jian, X., Li, C., Liu, J. T., Chang, Y.-P., Zhang, S., Mei, H., Fu, H., & Zhang, W. (2021). Submarine topography-related spatial variability of the southern Taiwan Strait sands (East Asia). Marine Geology, 436, 106495. https://doi.org/10.1016/j.margeo.2021.106495 Society, C. P. (1864). Transactions of the Cambridge Philosophical Society (Vol. 10). University Press. Visher, G. S. (1969). Grain size distributions and depositional processes. Journal of Sedimentary Research, 39(3). Wang, Y., Jan, S., & Wang, D. (2003). Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999–2001). Estuarine, Coastal and Shelf Science, 57(1–2), 193–199. https://doi.org/10.1016/S0272-7714(02)00356-0 Xu, A., Hu, P., Chen, Z., Shu, C., Wang, X., & Tian, Y. (2020). A software tool to plot frequency and cumulative frequency curves automatically for grain size analysis of sediments. Earth Science Informatics, 13, 565–571. https://doi.org/10.1007/s12145-020-00466-4 Xu, K., Milliman, J. D., Li, A., Liu, J. P., Kao, S.-J., & Wan, S. (2009). Yangtze-and Taiwan-derived sediments on the inner shelf of East China Sea. Continental Shelf Research, 29(18), 2240–2256. https://doi.org/10.1016/j.csr.2009.08.019 Xu, Y.-H., Chen, J., Wang, A.-J., Li, Y.-H., Wang, W.-G., Zhang, X.-F., & Lai, Z.-K. (2013). Clay minerals in surface sediments of the Taiwan Strait and their provenance. Acta Sedimentologica Sinica, 31(1), 120–129. https://doi.org/10.14027/j.cnki.cjxb.2013.01.008 中文部分 陳培源(1953)台灣西部之重砂礦。臺灣省地質調查所彙刊,4,1–49。 陳培源、劉德慶 & 黃怡禎(2003)臺灣地質系列第14號:臺灣之礦物。經濟部中央地質調查所。 陳心怡、黃奇瑜 & 邵磊(2018)福建閩江和九龍江現代沈積物重礦物特徵及其物源意義。古地理學報,20(4),637–650。https://doi.org/10.3969/j.issn.1002-0425.2018.04.007 陳華胄(1993)臺灣海峽表層沉積物中重礦物特徵及其物質來源。臺灣海峽,12(2),136–144。https://doi.org/10.6723/JTFS.12.2.136 陳琪鈺(2012)臺灣海峽表層沈積物中黏土礦物分佈之研究 [碩士論文]。國立臺灣大學海洋研究所。 戴昌鳳、詹森(主編)(2018)臺灣區域海洋學(二版)。國立臺灣大學。(第五章,124–224頁) 呂學俊(1967a)臺灣之重礦物研究概要(上)。臺灣鑛業(The Taiwan Mining Industry),19(1–2),16–40。 呂學俊(1967b)臺灣之重礦物研究概要(下)。臺灣鑛業(The Taiwan Mining Industry),19(3–4),18–38。 林之詠(2016)臺灣海峽表層沈積物物理及地球化學特性的空間分佈探討 [碩士論文]。國立中山大學。 藍晶瑩 & 王執明(1993)臺灣花岡岩類岩石之不透明礦物及其在岩石成因上之意義。中國地質學會會刊,36(4),19。 向緒洪、高抒、李力、王麗莎、李彥瑞 & 郭家亮(2011)長江入海泥沙傳輸的來源與通道:來自黏土礦物的證據。地球科學進展,26(6),602–614。 https://doi.org/10.3724/SP.J.1140.2011.06027 張郇生(2008)臺灣海峽南部近岸沉積物來源與分布特性研究 [碩士論文]。國立成功大學。https://nckur.lib.ncku.edu.tw/handle/987654321/233889 張嫚珊(2008)臺灣海峽北部表層沉積物中黏土礦物分佈特徵及其來源探討 [碩士論文]。國立臺灣大學。https://www.airitilibrary.com/Article/Detail/U0001-1507200802255400 黃序文(1995)臺灣西部近岸沈積物之重礦物組成:由Q型因子分析法推測近岸沈積物傳輸方向 [碩士論文]。國立臺灣大學。 羅偉、劉佳玫、郭人瑋、王玉瑞 & 李文正(2010)台灣中央山脈能高越嶺路伊萊石結晶度值之初步探討。臺灣鑛業,62(1),1–13。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97045 | - |
dc.description.abstract | 臺灣海峽沈積物物源有著以化學風化輸出的中國大陸及物理風化輸出的臺灣,而臺灣海峽東側沈積物的沈積速率受臺灣河流快速輸送大量沈積物的影響,導致海峽東西兩側沈積物剖面的差異(Huh et al., 2011; Kao et al., 2008)。本研究以臺灣海峽的沈積物為研究對象,系統性探討其物源及傳輸機制,旨在了解此區域的沈積動力特徵及其與地形、水文流場的交互作用。透過對52個表層沈積樣本和13個長岩心樣本進行表層分析。黏土礦物反映了不同源區的母岩,經歷風化侵蝕過程及傳輸機制搬運至海峽沈積,使我們能夠推斷各沈積物的來源區域和貢獻比例。而重礦物因其較高的密度,具有耐磨蝕和穩定的化學特性,能在遠離母源區後仍能展現出母岩特性(Mange & Maurer, 2012)。由於重礦物比重較大的特性,重礦物本身不易受再懸浮作用影響。使用沈積物中的黏土礦物比例和重礦物組成,再結合粒徑分佈特徵,搭配水動力等因素對沈積物分佈與傳輸作出推測。
臺灣海峽的黏土礦物組成以伊萊石和綠泥石為主;高嶺石在濁水溪和淡水河出海口以及臺灣灘有較高的比例;澎湖以北至烏坵凹陷區域的樣本都有膨潤石的出現,而臺灣灘靠近澎湖地區的兩個樣本站位亦有膨潤石出現,由於廣泛遍佈在臺灣海峽西側,推測為來自澎湖玄武岩或烏坵沿線火成岩的風化輸出。重礦物以不透光礦物為主,主要為岩屑、磁鐵礦和少量海綠石。海峽東側站位的不透光重礦物佔比皆過半,西側站位點的不透光礦物佔比不到30%;海綠石主要分佈在臺灣灘站位,深色淺色有站位上的差異。透光重礦物以角閃石為主,而較能區分海峽兩岸的物源差異的綠泥石,其分佈也具有差異。 整體而言,臺灣海峽沈積物分佈與沈積特徵受海流、地形的影響。臺灣海峽北部海流強,尤其觀音凹陷區受潮汐作用影響顯著,沈積物以現代沈積為主;臺灣灘海流較弱,沈積物經歷海平面上升後的反覆輸移。綜合判斷,臺灣海峽的沈積物主要來源為所臺灣輸出,濁水溪的輸砂對雲彰隆起的貢獻尤為顯著。臺灣灘南側有著臺灣端物源輸出的可能性。此外,粒徑數據顯示,季風和潮汐驅動的高能量水動力環境有助於粗顆粒的再懸浮與搬運,而低能量水動力環境則利於沈積顆粒的沈積。 | zh_TW |
dc.description.abstract | The sediments present in the Taiwan Strait are derived from both significant river systems on the Chinese mainland and smaller, steep river networks in Taiwan. The rapid transport of sediments from Taiwanese rivers plays a crucial role in determining deposition rates on the eastern side of the strait, resulting in notable differences in sediment profiles between the eastern and western regions (Huh et al., 2011; Kao et al., 2008). This study seeks to investigate the provenance and transport mechanisms of sediments within the Taiwan Strait by analyzing surface sediment and core samples, with a particular focus on sediment dynamics influenced by the interaction of hydrodynamic forces and seabed topography.
The clay minerals identified, primarily Illite and Chlorite, suggest diverse source regions and the processes of weathering and erosion. Kaolinite is predominantly found near river outlets, while Smectite is concentrated in the north of Penghu and around the perimeter of the Wu-Chiu depressions, likely as a result of volcanic weathering. The distribution of heavy minerals, particularly opaque varieties such as lithic fragments and magnetite, exhibits significant variation between sampling stations in the eastern and western regions. Conversely, transparent heavy minerals, including Amphibole and Chlorite, underscore distinct provenance differences across the strait. Sediment distribution is influenced by hydrodynamic conditions and topographical features, with stronger currents in the northern strait promoting the accumulation of modern deposits, whereas weaker currents in the southern strait facilitate the reworking of sediments. Grain size analysis indicates that hydrodynamic forces driven by monsoons and tides enhance the transport of coarser particles in high-energy zones, while finer particles are more likely to settle in low-energy environments. The primary sources of sediment are attributed to rivers in Taiwan, particularly the Jhuoshuei River, which significantly contributes to deposits in the central strait. Furthermore, sediments located near the southern Taiwan shoal may also be linked to sources from Taiwan. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:12:08Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-26T16:12:08Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 IV Abstract VI 目次 VIII 圖次 X 表次 13 1. 緒論 1 1.1研究區域背景 4 1.1.1海底地形 4 1.1.2臺灣海峽的水文流場 5 1.2前人研究 6 1.2.1粒徑分布 6 1.2.2黏土礦物 8 1.2.3重礦物 9 1.3研究目的 19 2. 研究方法 21 2.1研究樣本 21 2.2分析方式 23 2.2.1黏土礦物 23 2.2.2重礦物 29 2.2.3粒徑分析 36 3. 研究結果 38 3.1黏土礦物 38 3.2重礦物 42 3.3粒徑分析 51 4. 討論 55 5. 結論 62 未來研究建議 63 參考文獻 64 附錄 72 樣本採樣位置 72 黏土礦物 75 實驗數據 75 重礦物 88 實驗數據 88 粒徑分析資料 114 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用黏土礦物及重礦物研究臺灣海峽沈積物之物源及傳輸 | zh_TW |
dc.title | Provenance and Transport of Sediments in the Taiwan Strait Using Clay and Heavy Minerals | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 徐達偉;林殷田;尤柏森;張詠斌 | zh_TW |
dc.contributor.oralexamcommittee | Ta-Wei Hsu;In-Tian Lin;Pai-Sen Yu;Yuan-Pin Chang | en |
dc.subject.keyword | 黏土礦物,重礦物,沈積物傳輸,臺灣海峽,臺灣灘, | zh_TW |
dc.subject.keyword | Clay minerals,Heavy minerals,Sediment transport,Taiwan Strait,Taiwan shoal, | en |
dc.relation.page | 132 | - |
dc.identifier.doi | 10.6342/NTU202500396 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-02-10 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
dc.date.embargo-lift | 2025-02-27 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 15.82 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。