請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97033
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 單偉彌 | zh_TW |
dc.contributor.advisor | Vianney Denis | en |
dc.contributor.author | 陳彥妤 | zh_TW |
dc.contributor.author | Yan-Yu Chen | en |
dc.date.accessioned | 2025-02-25T16:34:26Z | - |
dc.date.available | 2025-02-26 | - |
dc.date.copyright | 2025-02-25 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-17 | - |
dc.identifier.citation | 1. Adams, L. A., Karenyi, N., Parker, D., & Sink, K. (2023). Patterns and potential drivers of mesophotic communities of the warm-temperate Amathole shelf of South Africa. Estuarine, Coastal and Shelf Science, 295, 108562.
2. Aji, L. P., Maas, D. L., Capriati, A., Ahmad, A., de Leeuw, C., & Becking, L. E. (2024). Shifts in dominance of benthic communities along a gradient of water temperature and turbidity in tropical coastal ecosystems. PeerJ, 12, e17132. 3. Barrilli, G. H. C., do Vale, J. G., Chahad-Ehlers, S., Verani, J. R., & Branco, J. O. (2024). Spatial patterns of beta diversity in marine benthic assemblages from coastal areas of southern Brazil and their implications for conservation. Estuarine, Coastal and Shelf Science, 297, 108603. 4. Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global ecology and biogeography, 19(1), 134-143. 5. Baselga, A., Orme, D., Villeger, S., De Bortoli, J., Leprieur, F., Logez, M., ... & Crujeiras, R. (2023). betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package version 1.6, https://CRAN.R-project.org/package=betapart. 6. Bednarz, V. N., Naumann, M. S., Niggl, W., & Wild, C. (2012). Inorganic nutrient availability affects organic matter fluxes and metabolic activity in the soft coral genus Xenia. Journal of Experimental Biology, 215(20), 3672-3679. 7. Bégin, C., Schelten, C. K., Nugues, M. M., Hawkins, J., Roberts, C., & Côté, I. M. (2016). Effects of protection and sediment stress on coral reefs in Saint Lucia. PLoS One, 11(2), e0146855. 8. Bevilacqua, S., & Terlizzi, A. (2020). Nestedness and turnover unveil inverse spatial patterns of compositional and functional β‐diversity at varying depth in marine benthos. Diversity and Distributions, 26(6), 743-757. 9. Bloomberg, J., & Holstein, D. M. (2021). Mesophotic coral refuges following multiple disturbances. Coral Reefs, 40(3), 821-834. 10. Bongaerts, P., Cooke, I. R., Ying, H., Wels, D., den Haan, S., Hernandez-Agreda, A., ... & Hoegh-Guldberg, O. (2021). Morphological stasis masks ecologically divergent coral species on tropical reefs. Current Biology, 31(11), 2286-2298. 11. Bongaerts, P., Ridgway, T., Sampayo, E. M., & Hoegh-Guldberg, O. (2010). Assessing the ‘deep reef refugia’hypothesis: focus on Caribbean reefs. Coral reefs, 29, 309-327. 12. Bongaerts, P., & Smith, T. B. (2019). Beyond the “Deep Reef Refuge” hypothesis: a conceptual framework to characterize persistence at depth. Mesophotic coral ecosystems, 881-895. 13. Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of statistical software, 80, 1-28. 14. Carpenter, G. E., Chequer, A. D., Weber, S., Mass, T., & Goodbody‐Gringley, G. (2022). Light and photoacclimatization drive distinct differences between shallow and mesophotic coral communities. Ecosphere, 13(8), e4200. 15. Chen, Q., Beijbom, O., Chan, S., Bouwmeester, J., & Kriegman, D. (2021). A new deep learning engine for coralnet. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 3693-3702). 16. Chen, W. J., Huang, C. F., Wei, C. L., Denis, V., Ko, C. Y. (2024) Investigation on marine ecosystem around Taiwan and ecosystem service evaluation in 2023-2024. (in Chinese) (112-P-40). 17. Chow, G. S., Chan, Y. S., Jain, S. S., & Huang, D. (2019). Light limitation selects for depth generalists in urbanised reef coral communities. Marine Environmental Research, 147, 101-112. 18. Copertino, M. S., Cheshire, A., & Kildea, T. (2009). PHOTOPHYSIOLOGY OF A TURF ALGAL COMMUNITY: INTEGRATED RESPONSES TO AMBIENT LIGHT AND STANDING BIOMASS 1. Journal of Phycology, 45(2), 324-336. 19. Cortés, J., & Reyes-Bonilla, H. (2017). Human influences on Eastern Tropical Pacific coral communities and coral reefs. Coral reefs of the Eastern Tropical Pacific: persistence and loss in a dynamic environment, 549-563. 20. Dai, C. F. (2007). Distribution and species diversity of reef corals in Taiwan (III). Fisheries Agent, Council of Agriculture, Taipei, Taiwan, 49. 21. Dai, C. F., & Cheng, Y. R. (2020). Corals of Taiwan Vol.1: Scleractinia Fauna. Owl Publishing House. 22. Dai, C. F., & Horng, S. (2009). tai wan shan hu tu jian [台灣珊瑚圖鑑; Corals of Taiwan]. Owl Publishing House. 23. Dai, C. F., Stewart, L. L., Cooper, R. A., & Sprunk, H. J. (1992). Distribution of substrates and macrobenthos at depths between 35 and 120 m in southern Taiwan. Acta Oceanographica Taiwanica 28 (1992): 1-18. 24. Davies, T. W., Coleman, M., Griffith, K. M., & Jenkins, S. R. (2015). Night-time lighting alters the composition of marine epifaunal communities. Biology letters, 11(4), 20150080. 25. De Goeij, J. M., Van Oevelen, D., Vermeij, M. J., Osinga, R., Middelburg, J. J., De Goeij, A. F., & Admiraal, W. (2013). Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science, 342(6154), 108-110. 26. De Palmas, S., Denis, V., Soto, D., Lin, Y. V., Ho, M. J., & Chen, C. A. (2021a). Scleractinian diversity in the upper mesophotic zone of Ludao (Taiwan): a museum collection with new records from Taiwanese waters. Marine Biodiversity, 51(5), 80. 27. De Palmas, S., Soto, D., Ho, M. J., Denis, V., & Chen, C. A. (2021b). Strong horizontal and vertical connectivity in the coral Pocillopora verrucosa from Ludao, Taiwan, a small oceanic island. Plos one, 16(10), e0258181. 28. De'ath, G., & Fabricius, K. E. (2008). Water quality of the Great Barrier Reef: distributions, effects on reef biota and trigger values for the protection of ecosystem health. Great Barrier Reef Marine Park Authority. 29. Denis, V., Soto, D., De Palmas, S., Lin, Y. T., Benayahu, Y., Huang, Y., ... & Chen, C. A. (2019). Mesophotic coral ecosystems. Coral Reefs of the World; Loya, Y., Puglise, K., Bridge, T., Eds, 249-264. 30. DeVantier, L. M., De’Ath, G., Turak, E., Done, T. J., & Fabricius, K. E. (2006). Species richness and community structure of reef-building corals on the nearshore Great Barrier Reef. Coral reefs, 25, 329-340. 31. Devlin, M. J., Barry, J., Mills, D. K., Gowen, R. J., Foden, J., Sivyer, D., & Tett, P. (2008). Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters. Estuarine, Coastal and Shelf Science, 79(3), 429-439. 32. Diaz, C., Foster, N. L., Attrill, M. J., Bolton, A., Ganderton, P., Howell, K. L., ... & Hosegood, P. (2023a). Mesophotic coral bleaching associated with changes in thermocline depth. Nature Communications, 14(1), 6528. 33. Diaz, C., Howell, K. L., Robinson, E., Hosegood, P., Bolton, A., Ganderton, P., ... & Foster, N. L. (2023b). Light and temperature drive the distribution of mesophotic benthic communities in the Central Indian Ocean. Diversity and Distributions, 29(12), 1578-1593. 34. Dikou, A., & Van Woesik, R. (2006). Survival under chronic stress from sediment load: spatial patterns of hard coral communities in the southern islands of Singapore. Marine pollution bulletin, 52(11), 1340-1354. 35. Ding, Z., Liang, J., Yang, L., Wei, C., Hu, H., & Si, X. (2024). Deterministic processes drive turnover-dominated beta diversity of breeding birds along the central Himalayan elevation gradient. Avian Research, 15, 100170. 36. Fabricius, K. E., & Klumpp, D. W. (1995). Widespread mixotrophy in reef-inhabiting soft corals: the influence of depth, and colony expansion and contraction on photosynthesis. Marine Ecology Progress Series, 125, 195-204. 37. Farrant, P. A., Borowitzka, M. A., Hinde, R., & King, R. J. (1987). Nutrition of the temperate Australian soft coral Capnella gaboensis: II. The role of zooxanthellae and feeding. Marine Biology, 95, 575-581. 38. Fricke, A., Teichberg, M., Nugues, M. M., Beilfuss, S., & Bischof, K. (2014). Effects of depth and ultraviolet radiation on coral reef turf algae. Journal of experimental marine biology and ecology, 461, 73-84. 39. Goh, N. K., Loo, M. G., & Chou, L. M. (1997). An analysis of gorgonian (Anthozoa; Octocorallia) zonation on Singapore reefs with respect to depth. Environmental monitoring and assessment, 44, 81-89. 40. Goh, N. K., Ng, P. K., & Chou, L. M. (1999). Notes on the shallow water gorgonian-associated fauna on coral reefs in Singapore. Bulletin of Marine Science, 65(1), 259-282. 41. Goh, B. P. L., Tan, G. E., & Tan, L. T. (2009). Diversity, distribution and biological activity of soft corals (Octocorallia, Alcyonacea) in Singapore. Journal of Coastal Development, 12(2), 89-98. 42. Hernández-Mendoza, L. C., Escalera-Vázquez, L. H., Vega-Cendejas, M. E., Núñez-Lara, E., Chiappa-Carrara, X., & Arceo-Carranza, D. (2024). Functional and taxonomic β diversity in fish assemblages is structured by turnover in a tropical coastal lagoon. Environmental Biology of Fishes, 1-16. 43. Hervé, M. (2023). RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R package version 0.9-83-7, https://CRAN.R-project.org/package=RVAideMemoire. 44. Hinderstein, L. M., Marr, J. C., Martinez, F. A., Dowgiallo, M. J., Puglise, K. A., Pyle, R. L., ... & Appeldoorn, R. (2010). Theme section on “Mesophotic coral ecosystems: characterization, ecology, and management”. Coral reefs, 29, 247-251. 45. Holstein, D. M., Paris, C. B., Vaz, A. C., & Smith, T. B. (2016). Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs, 35, 23-37. 46. Hsu, J. Y., Chang, M. H., Jan, S., & Yang, Y. J. (2024). Synergistic impact of diurnal warm layers and inertial wave mixing on sea surface temperature warming and upper ocean stratification. Journal of Geophysical Research: Oceans, 129(11), e2023JC020623. 47. Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B., ... & Scheffer, M. (2017). Coral reefs in the Anthropocene. Nature, 546(7656), 82-90. 48. Kahng, S. E., Akkaynak, D., Shlesinger, T., Hochberg, E. J., Wiedenmann, J., Tamir, R., & Tchernov, D. (2019). Light, temperature, photosynthesis, heterotrophy, and the lower depth limits of mesophotic coral ecosystems. Mesophotic coral ecosystems, 801-828. 49. Kahng, S. E., Copus, J. M., & Wagner, D. (2014). Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Current opinion in environmental sustainability, 7, 72-81. 50. Kahng, S. E., Garcia-Sais, J. R., Spalding, H. L., Brokovich, E., Wagner, D., Weil, E., ... & Toonen, R. J. (2010). Community ecology of mesophotic coral reef ecosystems. Coral Reefs, 29, 255-275. 51. Kang, E. J., Kim, Y. R., Lee, H. W., Kim, H., Kim, Y. S., & Kim, J. H. (2024). Effect of light intensity on photophysiology and growth dynamics of crustose coralline algae (CCA): implications for the loss of canopy-forming algae. Hydrobiologia, 1-12. 52. Kirk, J. T. O. (1985). Effects of suspensoids (turbidity) on penetration of solar radiation in aquatic ecosystems. Hydrobiologia, 125, 195-208. 53. Kirk, J. T. (1994). Light and photosynthesis in aquatic ecosystems. Cambridge university press. 54. Kirk, J. T. O. (2011). Light and photosynthesis in aquatic ecosystems. Cambridge university press. 55. Kleypas, J. A., McManus, J. W., & Meñez, L. A. (1999). Environmental limits to coral reef development: where do we draw the line?. American zoologist, 39(1), 146-159. 56. Laverick, J. H., Andradi-Brown, D. A., & Rogers, A. D. (2017). Using light-dependent scleractinia to define the upper boundary of mesophotic coral ecosystems on the reefs of Utila, Honduras. PLoS One, 12(8), e0183075. 57. Laverick, J. H., Tamir, R., Eyal, G., & Loya, Y. (2020). A generalized light‐driven model of community transitions along coral reef depth gradients. Global Ecology and Biogeography, 29(9), 1554-1564. 58. Lesser, M. P., Macartney, K. J., & Slattery, M. (2023). Production of phytodetritus by a coral reef sponge increases from shallow to mesophotic depths. Limnology and Oceanography, 68(6), 1247-1255. 59. Lesser, M. P., & Slattery, M. (2013). Ecology of Caribbean sponges: are top-down or bottom-up processes more important?. PLoS One, 8(11), e79799. 60. Lesser, M. P., Slattery, M., Laverick, J. H., Macartney, K. J., & Bridge, T. C. (2019). Global community breaks at 60 m on mesophotic coral reefs. Global Ecology and Biogeography, 28(10), 1403-1416. 61. Lesser, M. P., Slattery, M., & Leichter, J. J. (2009). Ecology of mesophotic coral reefs. Journal of experimental marine biology and ecology, 375(1-2), 1-8. 62. Leukart, P. (1994). Field and laboratory studies on depth dependence, seasonality and light requirement of growth in three species of crustose coralline algae (Corallinales, Rhodophyta). Phycologia, 33(4), 281-290. 63. Liddell, W. D., & Ohlhorst, S. L. (1988). Hard substrata community patterns, 1-120 M, North Jamaica. Palaios, 413-423. 64. Lin, Y. V., Chen, Y. L., De Palmas, S., Carballo-Bolaños, R., Guerbet, A., Ribas-Deulofeu, L., ... & Denis, V. (2024a). Rapid shift in benthic assemblages following coral bleaching at an upper mesophotic habitat in Taiwan. Marine Biodiversity, 54(3), 53. 65. Lin, Y. V., Château, P. A., Nozawa, Y., Wei, C. L., Wunderlich, R. F., & Denis, V. (2024b). Drivers of coastal benthic communities in a complex environmental setting. Marine Pollution Bulletin, 203, 116462. 66. Lin, Y. V., & Denis, V. (2019). Acknowledging differences: number, characteristics, and distribution of marine benthic communities along Taiwan coast. Ecosphere, 10(7), e02803. 67. Lin, C. H., Takahashi, S., Mulla, A. J., & Nozawa, Y. (2021). Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa. Proceedings of the National Academy of Sciences, 118(34), e2101985118. 68. Lindfield, S. J., Harvey, E. S., Halford, A. R., & McIlwain, J. L. (2016). Mesophotic depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs, 35, 125-137. 69. López-Londoño, T., Enríquez, S., & Iglesias-Prieto, R. (2024). Effects of surface geometry on light exposure, photoacclimation and photosynthetic energy acquisition in zooxanthellate corals. Plos one, 19(1), e0295283. 70. López-Londoño, T., Gómez-Campo, K., Hernández-Pech, X., Enríquez, S., & Iglesias-Prieto, R. (2022). Photosynthetic usable energy explains vertical patterns of biodiversity in zooxanthellate corals. Scientific reports, 12(1), 20821. 71. Macartney, K. J., Clayshulte Abraham, A., Slattery, M., & Lesser, M. P. (2021). Growth and feeding in the sponge Agelas tubulata from shallow to mesophotic depths on Grand Cayman Island. Ecosphere, 12(9), e03764. 72. Maldonado, M. (2016). Sponge waste that fuels marine oligotrophic food webs: a re‐assessment of its origin and nature. Marine Ecology, 37(3), 477-491. 73. Martinez Arbizu, P. (2020). pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4, 1. 74. McDevitt-Irwin, J. M., Kappel, C., Harborne, A. R., Mumby, P. J., Brumbaugh, D. R., & Micheli, F. (2021). Coupled beta diversity patterns among coral reef benthic taxa. Oecologia, 195, 225-234. 75. McFadden, C. S., Sánchez, J. A., & France, S. C. (2010). Molecular phylogenetic insights into the evolution of Octocorallia: a review. Integrative and Comparative Biology, 50(3), 389-410. 76. Moazzeni, H., Mahmoodi, M., Jafari, M., Schneeweiss, G. M., & Noroozi, J. (2023). Underestimated diversity in high elevations of a global biodiversity hotspot: two new endemic species of Aethionema (Brassicaceae) from the alpine zone of Iran. Frontiers in Plant Science, 14, 1182073. 77. Morgan, K. M., Moynihan, M. A., Sanwlani, N., & Switzer, A. D. (2020). Light limitation and depth-variable sedimentation drives vertical reef compression on turbid coral reefs. Frontiers in Marine Science, 7, 571256. 78. Morgulis, M., Martinez, S., Almuly, R., Einbinder, S., Zaslansky, P., & Mass, T. (2022). Black corals (Antipatharia) of the northern Red Sea: ancient predators of the mesophotic reef. Marine Ecology Progress Series, 688, 33-47. 79. Muir, P. R., Wallace, C. C., Pichon, M., & Bongaerts, P. (2018). High species richness and lineage diversity of reef corals in the mesophotic zone. Proceedings of the Royal Society B, 285(1893), 20181987. 80. Munday, P. L., Leis, J. M., Lough, J. M., Paris, C. B., Kingsford, M. J., Berumen, M. L., & Lambrechts, J. (2009). Climate change and coral reef connectivity. Coral reefs, 28, 379-395. 81. Noroozi, J., Minaei, M., Khalvati, S., Kaveh, A., Nafisi, H., Nazari, B., ... & Schneeweiss, G. M. (2023). Hotspots of (sub) alpine plants in the Irano‐Anatolian global biodiversity hotspot are insufficiently protected. Diversity and Distributions, 29(2), 244-253. 82. Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., ... & Wagner, H. (2022). vegan: Community ecology package (2.6-4). URL https://CRAN.R-project.org/package=vegan. 83. Payri, C. E., Maritorena, S., Bizeau, C., & Rodière, M. (2001). Photoacclimation in the tropical coralline alga Hydrolithon onkodes (Rhodophyta, Corallinaceae) from a French Polynesian reef. Journal of Phycology, 37(2), 223-234. 84. Pérez-Rosales, G., Hernández-Agreda, A., Bongaerts, P., Rouzé, H., Pichon, M., Carlot, J., ... & Under The Pole Consortium. (2022a). Mesophotic depths hide high coral cover communities in French Polynesia. Science of the Total Environment, 844, 157049. 85. Pérez-Rosales, G., Pichon, M., Rouzé, H., Villéger, S., Torda, G., Bongaerts, P., ... & Siu, G. (2022b). Mesophotic coral ecosystems of French Polynesia are hotspots of alpha and beta generic diversity for scleractinian assemblages. Diversity and Distributions, 28(7), 1391-1403. 86. Pérez-Rosales, G., Rouzé, H., Pichon, M., Bongaerts, P., Bregere, N., Carlot, J., ... & Under The Pole Consortium. (2024). Differential strategies developed by two light-dependent scleractinian corals to extend their vertical range to mesophotic depths. Coral Reefs, 1-17. 87. Pérez-Rosales, G., Rouzé, H., Torda, G., Bongaerts, P., Pichon, M., Under The Pole Consortium, ... & Hédouin, L. (2021). Mesophotic coral communities escape thermal coral bleaching in French Polynesia. Royal Society Open Science, 8(11), 210139. 88. Pichon, M. (2019). French polynesia. Mesophotic Coral Ecosystems, 425-443. 89. Pinheiro, H. T., Eyal, G., Shepherd, B., & Rocha, L. A. (2019). Ecological insights from environmental disturbances in mesophotic coral ecosystems. Ecosphere, 10(4), e02666. 90. Puglise, K. A., Hinderstein, L. M., Marr, J. C., Dowgiallo, M. J., & Martinez, F. A. (2009). Mesophotic coral ecosystem research strategy International Workshop to Prioritize Research and Management Needs for Mesophotic Coral Ecosystems, Jupiter, Florida, 12-15 July, 2009. 91. Pyle, R. L., & Copus, J. M. (2019). Mesophotic coral ecosystems: introduction and overview. Mesophotic coral ecosystems, 3-27. 92. R Core Team (2023) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 93. Reimer, J. D., Foord, C., & Irei, Y. (2012). Species diversity of shallow water zoanthids (Cnidaria: Anthozoa: Hexacorallia) in Florida. Journal of Marine Sciences, 2012(1), 856079. 94. Ribes, M., Coma, R., & Gili, J. M. (1998). Heterotrophic feeding by gorgonian corals with symbiotic zooxanthella. Limnology and Oceanography, 43(6), 1170-1179. 95. Roberts, D. W. (2023). labdsv: Ordination and Multivariate Analysis for Ecology. 2016. R package version 2.1-0, https://CRAN.R-project.org/package=labdsv. 96. Roberts, T. E., Keith, S. A., Rahbek, C., Bridge, T. C., Caley, M. J., & Baird, A. H. (2019). Testing biodiversity theory using species richness of reef-building corals across a depth gradient. Biology letters, 15(10), 20190493. 97. Rocha, L. A., Pinheiro, H. T., Shepherd, B., Papastamatiou, Y. P., Luiz, O. J., Pyle, R. L., & Bongaerts, P. (2018). Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science, 361(6399), 281-284. 98. Rocha, R. J., Silva, A. M., Fernandes, M. H. V., Cruz, I. C., Rosa, R., & Calado, R. (2014). Contrasting light spectra constrain the macro and microstructures of scleractinian corals. PLoS One, 9(8), e105863. 99. Rodríguez-Prieto, C. (2016). Light and temperature requirements for survival, growth and reproduction of the crustose coralline Lithophyllum stictaeforme from the Mediterranean Sea. Botanica Marina, 59(2-3), 95-104. 100. Rossi, S., Schubert, N., Brown, D., Gonzalez-Posada, A., & Soares, M. O. (2020). Trophic ecology of Caribbean octocorals: autotrophic and heterotrophic seasonal trends. Coral Reefs, 39, 433-449. 101. Sánchez, J. A., Dueñas, L. F., Rowley, S. J., Gonzalez-Zapata, F. L., Vergara, D. C., Montaño-Salazar, S. M., ... & Pérez, C. D. (2019). Gorgonian corals. Mesophotic coral ecosystems, 729-747. 102. Sherman, C., Schmidt, W., Appeldoorn, R., Hutchinson, Y., Ruiz, H., Nemeth, M., ... & Xu, H. (2016). Sediment dynamics and their potential influence on insular-slope mesophotic coral ecosystems. Continental Shelf Research, 129, 1-9. 103. Slattery, M., Lesser, M. P., Brazeau, D., Stokes, M. D., & Leichter, J. J. (2011). Connectivity and stability of mesophotic coral reefs. Journal of Experimental Marine Biology and Ecology, 408(1-2), 32-41. 104. Slattery, M., Lesser, M. P., Rocha, L. A., Spalding, H. L., & Smith, T. B. (2024). Function and stability of mesophotic coral reefs. Trends in Ecology & Evolution. 105. Smith, T. B., Gyory, J., Brandt, M. E., Miller, W. J., Jossart, J., & Nemeth, R. S. (2016). Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Global change biology, 22(8), 2756-2765. 106. Soto, D., De Palmas, S., Ho, M. J., Denis, V., & Allen Chen, C. (2021). A molecular census of early‐life stage scleractinian corals in shallow and mesophotic zones. Ecology and Evolution, 11(21), 14573-14584. 107. Stefanoudis, P. V., Fassbender, N., Samimi-Namin, K., Adam, P. A., Ebrahim, A., Harlay, J., ... & Woodall, L. C. (2023). Trait-based approaches reveal that deep reef ecosystems in the Western Indian Ocean are functionally distinct. Science of the Total Environment, 872, 162111. 108. Stefanoudis, P. V., Rivers, M., Smith, S. R., Schneider, C. W., Wagner, D., Ford, H., ... & Woodall, L. C. (2019). Low connectivity between shallow, mesophotic and rariphotic zone benthos. Royal Society Open Science, 6(9), 190958. 109. Sturaro, N., Hsieh, Y. E., Chen, Q., Wang, P. L., & Denis, V. (2021). Trophic plasticity of mixotrophic corals under contrasting environments. Functional Ecology, 35(12), 2841-2855. 110. Syu, M. R., Lee, P. H., Leou, T. M., & Shen, Y. (2016). Solar Irradiance and Pan Evaporation Estimation from Meteorological Satellite Data. Terrestrial, Atmospheric & Oceanic Sciences, 27(2). 111. Tamir, R., Eyal, G., Kramer, N., Laverick, J. H., & Loya, Y. (2019). Light environment drives the shallow‐to‐mesophotic coral community transition. Ecosphere, 10(9), e02839. 112. Trussell, G. C., Lesser, M. P., Patterson, M. R., & Genovese, S. J. (2006). Depth-specific differences in growth of the reef sponge Callyspongia vaginalis: role of bottom-up effects. Marine Ecology Progress Series, 323, 149-158. 113. Villas-Boas, A. B., Tâmega, F. T. S., Figueiredo, M. A. O., & Coutinho, R. (2023). Photosynthetic responses of crustose coralline algae recruit from an upwelling area to light intensity, temperature and current flow rate in a mesocosm. Marine Environmental Research, 190, 106118. 114. Wickham, H. (2016). Data analysis (pp. 189-201). Springer International Publishing. 115. Williams, G. J., Smith, J. E., Conklin, E. J., Gove, J. M., Sala, E., & Sandin, S. A. (2013). Benthic communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns. PeerJ, 1, e81. 116. Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J., & Graham, N. A. (2019). Coral reef ecosystem services in the Anthropocene. Functional Ecology, 33(6), 1023-1034. 117. Yentsch, C. S., Yentsch, C. M., Cullen, J. J., Lapointe, B., Phinney, D. A., & Yentsch, S. W. (2002). Sunlight and water transparency: cornerstones in coral research. Journal of Experimental Marine Biology and Ecology, 268(2), 171-183. 118. Yu, J. C., Chou, T. Y., Yu, H. C., Chen, P., Vanhellemont, Q., & Fettweis, M. (2016). Surface suspended particulate matter concentration in the Taiwan Strait during summer and winter monsoons. Ocean Dynamics, 66, 1517-1527. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97033 | - |
dc.description.abstract | 深度及隨深度變化的光強度(light intensity)與光質(light quality)影響底棲生物分布與組成甚鉅,但目前珊瑚礁研究僅著重於淺水域的調查,忽視珊瑚生態系的垂直變異。本研究探討了台灣底棲生物群集(benthic community)與珊瑚群聚(coral assemblage)橫跨緯度與深度的轉變(transition)。實驗區域選定北台灣、綠島以及小琉球,各區域中分別設立三個樣點,並在每個樣點的三個深度(5公尺、15公尺及30公尺深)設置三至五條20公尺長的穿越線,每條穿越線各拍攝21張照片,同時於拍攝期間測量光合作用有效輻射(photosynthetically active radiation; PAR)。最終手動標記來自117條穿越線,共2,457張底棲生物影像,以紀錄生物組成。結果顯示,在較高的PAR條件下,石珊瑚及毛狀藻類生長良好,而在低PAR、深度大的環境中,軟珊瑚、黑珊瑚、柳珊瑚以及殼狀珊瑚藻的覆蓋率增加。底棲生物群集與珊瑚群聚的β多樣性(β-diversity)主要由物種替換(turnover)所驅動,且在光衰減(light attenuation)較快的副熱帶區域尤其明顯。此高物種替換驅使了底棲生物群集從淺水域至中光層的轉變,也使副熱帶地區的動植物群間斷(faunal/floral break)發生在更淺的深度。本研究顯示,相較於深度,光的可用性更適合定義中光層區域的邊界。此外,不同區域的中光層珊瑚擁有獨特的群聚組成,因此儘管中光深度的珊瑚覆蓋率較低,這些群集在生態上仍然與淺水域群集扮演著一樣重要的角色。本研究強調,台灣深層珊瑚生態系的多樣性及生態功能未受到足夠重視,管理者應重新考慮當前珊瑚礁保育所囊括的深度範圍,並將深層珊瑚生態系納入保育規劃中。 | zh_TW |
dc.description.abstract | Depth influences the composition of the benthic community, as light intensity and quality affect the distribution of benthic organisms. However, changes are often overlooked in coral reef research which focuses primarily on shallow-water reefs. This study investigated transitions in benthic communities across depths (5 m, 15 m, and 30 m) in each of the three sites within three regions of Taiwan (North Taiwan, Green Island, and Xiaoliuqiu). At each location (sites × depths), three to five 20-meter-long transects were established, and 21 photographs were taken along each transect, with photosynthetically active radiation (PAR) measured during the benthic survey. A total of 2,457 benthic images from 117 benthic transects were manually annotated to document organism composition. Stony corals and turf algae thrive under higher PAR, while the cover of soft corals, black corals and gorgonian corals, and crustose coralline algae increase at greater depths where light is limited. β-diversity among benthic communities and coral assemblages is primarily driven by turnover and is especially pronounced in subtropical areas where light attenuation is higher. This high turnover drives shallow-to-mesophotic transitions and results in faunal/floral break occurring at shallower depths in subtropical region compared to tropical ones. Our results support that light availability, rather than depth alone, defines the boundary of the mesophotic zone. Additionally, mesophotic coral assemblages are highly site-specific and often host unique assemblages. Despite lower coral cover at mesophotic depths, these communities may hold ecological value comparable to their shallow-water counterpart. This study underscores the need for managers to think "deeper" about the current extent of coral reefs. The diversity and ecological functions of deeper reef ecosystems in Taiwan remain underappreciated and merit greater attention to ensure their protection in future conservation strategies. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:34:26Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-25T16:34:26Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 IV ABSTRACT V CONTENTS VII FIGURES IX INTRODUCTION 1 #1. GENERAL INTRODUCTION OF CORAL REEF ECOSYSTEM 1 #2. LIGHT: HOW DOES IT CHANGE & HOW IMPORTANT IT IS 1 #3. PAR AND DISTRIBUTION OF ORGANISM (HOW IT AFFECTS? COVER & RICHNESS) 2 #4. CONNECTIVITY & UNIQUENESS & FAUNAL BREAK & DRRH 3 #5. MESOPHOTIC CORAL RESEARCH IN TAIWAN 4 #6. AIM & OBJECTIVES 5 MATERIALS AND METHODS 6 STUDY SITES 6 BENTHIC SURVEYS AND LIGHT DATA COLLECTION 7 BENTHOS IDENTIFICATION 8 DATA ANALYSIS 10 * Data pre-processing 10 * Statistical analysis 11 * Software/packages 12 RESULTS 13 LIGHT ATTENUATION 13 CHANGES IN BENTHIC COVER WITH LIGHT 14 REGIONAL AND DEPTH VARIATION IN Α-DIVERSITY 15 SIMILARITY OF THE BENTHIC COMMUNITIES AND CORAL ASSEMBLAGES ACROSS REGIONS AND DEPTHS 17 * Description of benthic community (Fig. 5) 17 * nMDS / PERMANOVA / Betadisper / Indicator species for benthic community 19 * Description of coral assemblage (Fig. 7) 21 * nMDS / PERMANOVA / Betadisper / Indicator species for coral assemblage 22 Β-DIVERSITY PATTERNS: TURNOVER AND NESTEDNESS 23 DISCUSSION 26 ## SUMMARIZE MAIN RESULT 26 #1. COMPREHENSIVE OVERVIEW OF BENTHIC ORGANISM (LIGHT + BAYESIAN) 26 ▻ Summarize Bayesian model findings (different trophic dependency) 26 ▻ Defining mesophotic coral ecosystem depth limits (importance of light: regional variation in attenuation and surface PAR level) 27 #2. INTERESTING DIFFERENCES IN REGIONAL COMPOSITION (COMPOSITION + TRANSITION) 28 ▻ Structure of benthic community and coral assemblage is impacted by light 28 ▻ Turbidity with light, Temperature, Substrate type, and other factors 30 ▻ Human activity impacts 32 #3. BETA DIVERSITY: UNIQUE OF TAIWAN (NT –30 M) & DRIVEN BY TURNOVER / DEFINE FAUNAL & FLORAL BREAK / TAXONOMY VS. FUNCTION 33 ▻ Different from global finding: unique Taiwan + driven by turnover 33 ▻ Threshold to define faunal/floral break 34 ▻ Questioning about the meaning of faunal/floral break: taxonomy vs. function 34 ## CONCLUSION 35 ▻ Importance 35 ▻ Limitations 35 ▻ Perspectives 35 REFERENCES 37 SUPPLEMENTARY INFORMATION (APPENDIX) 51 # APPENDIX S1 52 * T1: Benthic Organism in 3 Levels 52 # APPENDIX S2 60 * T1: Row PAR Value & Light Attenuation in Each Region and Depth 60 * F1-6: Bayesian Model Summary Information 61 # APPENDIX S3 64 * T1: Benthic Composition Percent at Major Category Level 64 * T2: Indicator Species List of Benthic Community 67 * T3: Full Coral OTUs Percent List of Coral Assemblage 69 * T4: Indicator Species List of Coral Assemblage 78 | - |
dc.language.iso | en | - |
dc.title | 探討淺水域至中光層珊瑚礁過渡帶之底棲組成的區域變異 | zh_TW |
dc.title | Regional Variability in Benthic Composition at the Shallow-Mesophotic Reef Transition | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊松穎;魏志潾;張以杰 | zh_TW |
dc.contributor.oralexamcommittee | Sung-Yin Yang;Chih-Lin Wei;Yi-Jay Chang | en |
dc.subject.keyword | 珊瑚群聚,中光層珊瑚生態系,多樣性模式,β多樣性,光衰減, | zh_TW |
dc.subject.keyword | Coral Assemblage,Mesophotic Coral Ecosystems,Diversity Pattern,β-diversity,Light Attenuation, | en |
dc.relation.page | 78 | - |
dc.identifier.doi | 10.6342/NTU202500730 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-02-18 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
dc.date.embargo-lift | 2030-02-17 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 4.36 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。