Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97020
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江宏仁zh_TW
dc.contributor.advisorHong-Ren Jiangen
dc.contributor.author鍾庭光zh_TW
dc.contributor.authorTing-Kuang Chungen
dc.date.accessioned2025-02-25T16:30:55Z-
dc.date.available2025-02-26-
dc.date.copyright2025-02-25-
dc.date.issued2025-
dc.date.submitted2025-02-17-
dc.identifier.citation1. Gubbi, J., et al., Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 2013. 29(7): p. 1645-1660.
2. Kabir, G. and B.H. Hameed, Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renewable and Sustainable Energy Reviews, 2017. 70: p. 945-967.
3. Li, T., et al., From Dual-Mode Triboelectric Nanogenerator to Smart Tactile Sensor: A Multiplexing Design. ACS Nano, 2017. 11(4): p. 3950-3956.
4. Bai, P., et al., Membrane-Based Self-Powered Triboelectric Sensors for Pressure Change Detection and Its Uses in Security Surveillance and Healthcare Monitoring. Advanced Functional Materials, 2014. 24(37): p. 5807-5813.
5. Zhu, G., et al., Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy, 2015. 14: p. 126-138.
6. Fan, Y.J., et al., Stretchable Porous Carbon Nanotube-Elastomer Hybrid Nanocomposite for Harvesting Mechanical Energy. Advanced Materials, 2017. 29(2).
7. Shi, L., et al., Carbon electrodes enable flat surface PDMS and PA6 triboelectric nanogenerators to achieve significantly enhanced triboelectric performance. Nano Energy, 2019. 55: p. 548-557.
8. Zhao, P., et al., Replacing the metal electrodes in triboelectric nanogenerators: High-performance laser-induced graphene electrodes. Nano Energy, 2020. 75: p. 104958.
9. Ding, P., et al., Realizing the potential of polyethylene oxide as new positive tribo-material: Over 40 W/m2 high power flat surface triboelectric nanogenerators. Nano Energy, 2018. 46: p. 63-72.
10. Yu, B., et al., A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density. Nano Energy, 2018. 48: p. 464-470.
11. Wang, Z.L., From contact electrification to triboelectric nanogenerators. Reports on Progress in Physics, 2021. 84(9): p. 096502.
12. Garcia, C., et al., Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis. Nano Energy, 2018. 50: p. 401-409.
13. Achouri, I.E., et al., New Vibrating-Table-Type Tribo-Electrostatic Separator for Selective Sorting of Granular Plastic Wastes. IEEE Transactions on Industry Applications, 2024. 60(2): p. 3537-3542.
14. Grzybowski, B.A., M. Fialkowski, and J.A. Wiles, Kinetics of Contact Electrification between Metals and Polymers. The Journal of Physical Chemistry B, 2005. 109(43): p. 20511-20515.
15. McCarty, L.S. and G.M. Whitesides, Electrostatic Charging Due to Separation of Ions at Interfaces: Contact Electrification of Ionic Electrets. Angewandte Chemie International Edition, 2008. 47(12): p. 2188-2207.
16. Wang, Z.L. and A.C. Wang, On the origin of contact-electrification. Materials Today, 2019. 30: p. 34-51.
17. Shaw, P.E. and E.H. Barton, Experiments on tribo-electricity. I.—The tribo-electric series. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1997. 94(656): p. 16-33.
18. Zou, H., et al., Quantifying the triboelectric series. Nature Communications, 2019. 10(1): p. 1427.
19. Kim, W.-G., et al., Triboelectric Nanogenerator: Structure, Mechanism, and Applications. ACS Nano, 2021. 15(1): p. 258-287.
20. Wang, Z.L., et al., Triboelectric Nanogenerator: Vertical Contact-Separation Mode, in Triboelectric Nanogenerators, Z.L. Wang, et al., Editors. 2016, Springer International Publishing: Cham. p. 23-47.
21. Wang, S., et al., Sliding-Triboelectric Nanogenerators Based on In-Plane Charge-Separation Mechanism. Nano Letters, 2013. 13(5): p. 2226-2233.
22. Wang, S., et al., Freestanding Triboelectric-Layer-Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non-contact Modes. Advanced Materials, 2014. 26(18): p. 2818-2824.
23. Niu, S. and Z.L. Wang, Theoretical systems of triboelectric nanogenerators. Nano Energy, 2015. 14: p. 161-192.
24. Saurenbach, F., et al., Force Microscopy of Ion-Containing Polymer Surfaces: Morphology and Charge Structure. Langmuir, 1992. 8(4): p. 1199-1203.
25. Wei, D., et al., Controllable Chemical Vapor Deposition Growth of Few Layer Graphene for Electronic Devices. Accounts of Chemical Research, 2013. 46(1): p. 106-115.
26. Wu, S., et al., Graphene-Based Electrochemical Sensors. Small, 2013. 9(8): p. 1160-1172.
27. Kim, J., et al., Durable and Water-Floatable Ionic Polymer Actuator with Hydrophobic and Asymmetrically Laser-Scribed Reduced Graphene Oxide Paper Electrodes. ACS Nano, 2014. 8(3): p. 2986-2997.
28. Soldano, C., A. Mahmood, and E. Dujardin, Production, properties and potential of graphene. Carbon, 2010. 48(8): p. 2127-2150.
29. Ye, R., D.K. James, and J.M. Tour, Laser-Induced Graphene. Accounts of Chemical Research, 2018. 51(7): p. 1609-1620.
30. Rahimi, R., et al., Highly Stretchable and Sensitive Unidirectional Strain Sensor via Laser Carbonization. ACS Applied Materials & Interfaces, 2015. 7(8): p. 4463-4470.
31. Parmeggiani, M., et al., PDMS/Polyimide Composite as an Elastomeric Substrate for Multifunctional Laser-Induced Graphene Electrodes. ACS Applied Materials & Interfaces, 2019. 11(36): p. 33221-33230.
32. Zaccagnini, P., et al., Laser-Induced Graphenization of PDMS as Flexible Electrode for Microsupercapacitors. Advanced Materials Interfaces, 2021. 8(23): p. 2101046.
33. Stanford, M.G., et al., Laser-Induced Graphene Triboelectric Nanogenerators. ACS Nano, 2019. 13(6): p. 7166-7174.
34. Gajasinghe, R.W.R.L., et al., Experimental study of PDMS bonding to various substrates for monolithic microfluidic applications. Journal of Micromechanics and Microengineering, 2014. 24(7): p. 075010.
35. Hwang, H., et al., Metal-free, flexible triboelectric generator based on MWCNT mesh film and PDMS layers. Applied Surface Science, 2018. 442: p. 693-699.
36. Wang, Z.L., On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 2017. 20(2): p. 74-82.
37. Albina, A., et al., Impact of the surface roughness on the electrical capacitance. Microelectronics Journal, 2006. 37(8): p. 752-758.
38. Ford, W.E., et al., Organic Dipole Layers for Ultralow Work Function Electrodes. ACS Nano, 2014. 8(9): p. 9173-9180.
39. Pace, G., et al., Electrode selection rules for enhancing the performance of triboelectric nanogenerators and the role of few-layers graphene. Nano Energy, 2020. 76: p. 104989.
40. Lamberti, A., et al., New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties. Nanotechnology, 2017. 28(17): p. 174002.
41. Kim, D.W., et al., Adding a stretchable deep-trap interlayer for high-performance stretchable triboelectric nanogenerators. Nano Energy, 2018. 50: p. 192-200.
42. Bai, Z., et al., An Eco-friendly Porous Nanocomposite Fabric-Based Triboelectric Nanogenerator for Efficient Energy Harvesting and Motion Sensing. ACS Applied Materials & Interfaces, 2020. 12(38): p. 42880-42890.
43. Shin, J., et al., Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis. Nature Materials, 2021. 20(1): p. 100-107.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97020-
dc.description.abstract摩擦奈米發電機可收集環境中的微小能量,將機械能轉換為電能,來源包括海浪、人體運動、風力等,適用於多種環境,具再生能源優勢。目前提升TENG電性輸出的研究多集中於摩擦材料的選擇、改性、極化注入及表面結構改善,較少探討電極的影響。2020年,Zhao等人提出在摩擦材料上直接生成石墨烯電極,避免因功函數差異產生初始電荷影響輸出,但其使用的紙基材與聚醯亞胺難以進一步改性。相比之下,PDMS作為電負性材料,不僅可透過雷射誘導生成石墨烯提升電性輸出,還具化學穩定性及可設計性,適合結合表面改性與結構設計。
本論文利用藍光445nm雷射對PDMS進行雷射誘導生成石墨烯作為電極,因PDMS對可見光的吸收率較差,透過添加石墨粉末提高可見光吸收率使其降低對焦系統的要求讓在雷射誘導過程有更好的轉換,除此之外我們添加金屬網提供石墨烯更好的導電網絡與機械性質。我們透過量測開路電壓和在負載下的電壓,觀察石墨烯/金屬網複合電極對摩擦奈米發電機電性輸出影響,石墨烯電極與介電層功函數接近減少介面產生初始電荷轉移,使表面電荷交換效率提升,本研究透過添加高介電常數奈米顆粒形成複合材料介電層,提高介電層有效電容值使摩擦奈米發電機提升電壓輸出,除此之外也透過添加碳源TEG(三乙二醇)讓生成的石墨烯更加穩定且電阻越小,隨然透過添加TEG使電極電導率更好,但我們也觀察到TEG在摩擦表面對電性輸出的負面影響,我們透過旋塗一層很薄的PDMS在介電層表面,避免TEG在表面影響表面電荷密度,有效改善TEG對於電性輸出的影響,我們有效同時利用雷射誘導石墨烯電極的優勢在PDMS上並證明對摩擦材料改性的可行性。我們量測此摩擦奈米發電機的機械性質與電氣性質,不同介電層厚薄度、不同負載電性輸出的影響。最後測量有無添加金屬網對於電性輸出的影響,金屬網提升了石墨烯電極的耐用性以及機械性質,避免介電層在雷射燒蝕的過程中因為熱導致彎曲變形。
zh_TW
dc.description.abstractWith the rise of the Internet of Things (IoT), IoT devices require a continuous and stable energy supply. Most IoT devices rely on traditional chemical batteries, but these batteries have limited lifespans and require frequent replacement. As a result, self-powered sensors have become a research trend. Triboelectric nanogenerators (TENGs) can harvest small amounts of energy from the environment and convert mechanical energy into electrical energy. The mechanical energy can come from sources such as ocean waves, human motion, wind, and vibrations, making TENGs less constrained by environmental conditions. Therefore, TENGs offer significant advantages in the field of renewable energy.
Most current studies on improving the electrical output of TENGs focus on selecting triboelectric materials, modifying triboelectric materials, injecting polarization charges, or optimizing surface structures. However, relatively few studies have explored the impact of electrodes on the electrical output of TENGs. In 2020, Zhao et al. proposed a method to directly generate graphene electrodes on triboelectric materials. These carbon-based electrodes avoid the initial charge caused by the work function difference between triboelectric materials and traditional metal electrodes, which could otherwise affect electrical output. However, their selected triboelectric materials—paper-based substrates and polyimide—are relatively difficult to modify or structurally optimize to enhance electrical output.
PDMS is an excellent electronegative triboelectric material that can also generate graphene through laser induction. PDMS is chemically stable, easy to process, and allows for both the enhanced electrical output provided by graphene electrodes and further modifications or surface structural designs to improve performance. In this study, a 445 nm blue laser was used to induce graphene formation on PDMS, and a metal mesh was added to provide a better conductive network and improved mechanical properties. Additionally, high-dielectric-constant nanoparticles were incorporated to enhance electrical output. Moreover, triethylene glycol (TEG) was introduced as a carbon source to improve the stability and reduce the resistance of the generated graphene. However, we observed a negative impact of TEG on the triboelectric surface's electrical output. To address this issue, a thin PDMS layer was spin-coated to prevent TEG from migrating to the surface, effectively mitigating its adverse effects.
Finally, we measured the mechanical and electrical properties of the fabricated TENG, investigating the effects of different dielectric layer thicknesses, varying load conditions, the presence of a metal mesh, and other factors on its electrical output.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:30:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-25T16:30:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目次 v
圖次 viii
表次 xii
第一章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.3 研究動機 6
1.4 內容簡介 6
第二章 文獻回顧與理論基礎 7
2.1 摩擦起電基本原理 7
2.2 摩擦起電之基礎理論 11
2.2.1 操作模式及工作機制 11
2.2.2 垂直接觸分離單電極模式TENG 14
2.3 雷射誘導生成石墨烯(Laser-induced Graphene,LIG) 16
2.3.1 石墨烯簡介 16
2.3.2 雷射誘導石墨烯於Polydimethylsiloxane(PDMS) 17
2.3.3 石墨烯電極 19
第三章 實驗方法與量測系統 21
3.1 摩擦材料與實驗設備 21
3.1.1 聚二甲基矽氧烷(Polydimethylsiloxane,PDMS) 21
3.1.2 石墨粉末 21
3.1.3 三乙二醇(Triethylene glycol,TEG) 22
3.1.4 鋯鈦酸鉛(Lead Zirconate Titanate,PZT) 22
3.1.5 445nm藍光雷射切割機 23
3.1.6 數位萬用電表 23
3.1.7 高阻計/微電流表 24
3.1.8 電感電容電阻測試儀 24
3.2 TENG製備 25
3.2.1 介電層之製備 25
3.2.2 雷射誘導石墨烯/金屬網電極製備 28
3.3 實驗平台架設與量測方法 29
3.3.1 TENG輸出訊號之量測 30
3.3.1 實驗平台架設 30
第四章 摩擦奈米發電機輸出特性之研究 32
4.1 雷射誘導石墨烯於矽膠複合基材表面 32
4.1.1 藍光445nm雷射的功率對石墨烯的電性影響 32
4.1.2 藉由添加碳源提升石墨烯穩定性 37
4.2 雷射誘導石墨烯修飾金屬網電極對電性輸出影響 38
4.2.1 LIG修飾金屬網電極TENG電性輸出 40
4.2.2 LIG修飾金屬網電極TENG特性探討 44
4.2.3 金屬網目數對於LIG電極電性輸出影響 47
4.3 摩擦材料改性以提高摩擦電輸出 49
4.3.1 添加碳源TEG於C/PDMS對電性輸出影響 49
4.3.2 添加高介電常數材料於PDMS以提高摩擦電壓 51
4.4 金屬網/石墨烯複合電極TENG機械與電氣特性 53
4.4.1 介電層厚薄對於電性的影響 53
4.4.2 不同負載下對於功率的影響 54
4.4.3 添加細石墨粉對於雷射誘導石墨烯耐久性之影響 57
4.4.4 有無金屬網對於石墨烯電極的影響 58
4.4.5 金屬網/石墨烯電極TENG耐久性 59
第五章 總結 61
參考文獻 62
-
dc.language.isozh_TW-
dc.subject碳性電極zh_TW
dc.subject三乙二醇zh_TW
dc.subject雷射誘導石墨烯zh_TW
dc.subject石墨烯電極zh_TW
dc.subject摩擦奈米發電機zh_TW
dc.subjectTriethylene glycolen
dc.subjectTriboelectric nanogeneratoren
dc.subjectGraphene electrodeen
dc.subjectLaser-induced grapheneen
dc.subjectCarbon-based electrodeen
dc.title雷射誘導石墨烯修飾金屬網/PDMS柔性電極在摩擦奈米發電機上之研究zh_TW
dc.titleStudy of Laser-Induced Graphene modified metal mesh/PDMS Flexible Electrode for Triboelectric nanogeneratoren
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李尉彰;陳建彰;蔡日強zh_TW
dc.contributor.oralexamcommitteeWei-Chang Li;Jian-Zhang Chen;Jih-Chiang Tsaien
dc.subject.keyword摩擦奈米發電機,石墨烯電極,雷射誘導石墨烯,碳性電極,三乙二醇,zh_TW
dc.subject.keywordTriboelectric nanogenerator,Graphene electrode,Laser-induced graphene,Carbon-based electrode,Triethylene glycol,en
dc.relation.page64-
dc.identifier.doi10.6342/NTU202500729-
dc.rights.note未授權-
dc.date.accepted2025-02-17-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
6.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved