請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96998完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江宏仁 | zh_TW |
| dc.contributor.advisor | Hong-Ren Jiang | en |
| dc.contributor.author | 江秉翰 | zh_TW |
| dc.contributor.author | Ping-Han Chiang | en |
| dc.date.accessioned | 2025-02-25T16:24:52Z | - |
| dc.date.available | 2025-02-26 | - |
| dc.date.copyright | 2025-02-25 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-14 | - |
| dc.identifier.citation | 1. Xu, L., W.W. Zhang, and S.R. Nagel, Drop splashing on a dry smooth surface. Physical review letters, 2005. 94(18): p. 184505.
2. Tropea, C. and M. Marengo, The impact of drops on walls and films. Multiphase Science and Technology, 1999. 11(1). 3. Josserand, C. and S.T. Thoroddsen, Drop impact on a solid surface. Annual review of fluid mechanics, 2016. 48(1): p. 365-391. 4. Liang, G. and I. Mudawar, Review of drop impact on heated walls. International Journal of Heat and Mass Transfer, 2017. 106: p. 103-126. 5. Yarin, A.L., Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech., 2006. 38(1): p. 159-192. 6. Quéré, D., Leidenfrost dynamics. Annual Review of Fluid Mechanics, 2013. 45(1): p. 197-215. 7. Yu, X., et al., Water droplet bouncing dynamics. Nano Energy, 2021. 81: p. 105647. 8. Rioboo, R., M. Marengo, and C. Tropea, Time evolution of liquid drop impact onto solid, dry surfaces. Experiments in Fluids, 2002. 33(1): p. 112-124. 9. Fan, Y., et al., Reducing the contact time of bouncing droplets on superhydrophobic surfaces: Foundations, strategies and applications. Chemical Engineering Journal, 2023. 476: p. 146485. 10. Wang, M., et al., Directional droplet bouncing on a moving superhydrophobic surface. iScience, 2023. 26(4): p. 106389. 11. Okumura, K., et al., Water spring: A model for bouncing drops. Europhysics Letters, 2003. 62(2): p. 237. 12. Clanet, C., et al., Maximal deformation of an impacting drop. Journal of Fluid Mechanics, 2004. 517: p. 199-208. 13. Eggers, J., et al., Drop dynamics after impact on a solid wall: theory and simulations. Physics of fluids, 2010. 22(6). 14. Roisman, I.V., Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Physics of Fluids, 2009. 21(5). 15. Bayer, I.S. and C.M. Megaridis, Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics. Journal of Fluid Mechanics, 2006. 558: p. 415-449. 16. Wang, X., et al., Droplet impacting dynamics: Recent progress and future aspects. Advances in Colloid and Interface Science, 2023. 317: p. 102919. 17. Richard, D., C. Clanet, and D. Quéré, Contact time of a bouncing drop. Nature, 2002. 417(6891): p. 811-811. 18. Gauthier, A., et al., Water impacting on superhydrophobic macrotextures. Nature communications, 2015. 6(1): p. 8001. 19. Young, T., III. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London, 1805(95): p. 65-87. 20. Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & engineering chemistry, 1936. 28(8): p. 988-994. 21. Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 1944. 40: p. 546-551. 22. Patil, N.D., R. Bhardwaj, and A. Sharma, Droplet impact dynamics on micropillared hydrophobic surfaces. Experimental Thermal and Fluid Science, 2016. 74: p. 195-206. 23. Kumar, S., et al., Water droplet bouncing on a non-superhydrophobic Si nanospring array. Nanoscale Advances, 2021. 3(3): p. 668-674. 24. Zhang, S., et al., Droplet impact on a rapidly spinning superhydrophobic surface: Shortened contact time and reduced collision force. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024. 681: p. 132741. 25. Zhan, H., et al., Horizontal motion of a superhydrophobic substrate affects the drop bouncing dynamics. Physical Review Letters, 2021. 126(23): p. 234503. 26. Wang, M., et al., Directional droplet bouncing on a moving superhydrophobic surface. Iscience, 2023. 26(4). 27. Wang, W., et al., Non-Axisymmetric Bouncing Dynamics on a Moving Superhydrophobic Surface. Symmetry, 2023. 16(1): p. 29. 28. Almohammadi, H. and A. Amirfazli, Asymmetric Spreading of a Drop upon Impact onto a Surface. Langmuir, 2017. 33(23): p. 5957-5964. 29. Qian, L., et al., Droplet bouncing on moving superhydrophobic groove surfaces. International Journal of Multiphase Flow, 2023. 165: p. 104454. 30. Aboud, D.G. and A.-M. Kietzig, Splashing threshold of oblique droplet impacts on surfaces of various wettability. Langmuir, 2015. 31(36): p. 10100-10111. 31. 王瑞宇, 光控奈米孔洞表面上的液滴運動, in 應用力學所. 2022, 國立台灣大學. p. 63. 32. Lee, J., et al., Effect of thermal treatment on the chemical resistance of polydimethylsiloxane for microfluidic devices. Journal of Micromechanics and Microengineering, 2013. 23(3): p. 035007. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96998 | - |
| dc.description.abstract | 水滴對表面的影響涉及複雜的物理機制。根據具體條件,水滴對表面的影響可能表現為沉積、沸騰、飛濺和彈跳行為。儘管現在對靜止超疏水錶面的影響進行了廣泛的研究,但對液滴對旋轉超疏水錶面的影響行為的理解仍然有限。因此本研究希望透過設計不同超疏水表面,並且以不同狀態與液滴發生碰撞,找出表面與液滴交互作用最小的狀態。
本研究採用聚二甲基矽氧烷 (PDMS) 作為固態基質表面,透過調整雷射掃描參數使 PDMS 表面具有不同起伏的二氧化矽微結構,使其表面性質呈現超疏水,再將液滴以自由落體的形式撞擊表面。當PDMS以不同功率燒蝕時,會有不同起伏結構,也會有不同濕潤性。當液滴撞擊靜態表面時,發現結構大小會影響液滴彈跳形式,進而影響液滴反彈高度恢復係數、接觸時間。接著觀察液滴撞擊旋轉表面中心,我們發現液滴撞擊旋轉表面中心時,液滴和表面接觸時間較液滴撞擊靜態表面減少,液滴在動態表面彈跳恢復係數較高。當液滴撞擊旋轉表面偏心處時,液滴會沿著旋轉切線飛濺出去,隨著表面起伏和遲滯、表面轉速和墜落高度改變,液滴會有不同變形量,導致液滴會有不同的運動型態飛濺出去,進而影響液滴橫向速度和彈跳恢復係數。 本研究透過設計不同微結構的超關注PDMS表面,探討靜止在靜態與旋轉表面上的碰撞行為,發現表面結構、旋轉速度與碰撞位置對碰撞的接觸時間、反彈恢復係數及運動的顯著影響。 | zh_TW |
| dc.description.abstract | Droplet interactions with surfaces involve complex physical mechanisms. Depending on specific conditions, droplet behavior upon impacting a surface can manifest as deposition, boiling, splashing, or bouncing. While extensive research has been conducted on the effects of droplets on stationary superhydrophobic surfaces, understanding of droplet behavior on rotating superhydrophobic surfaces remains limited. Therefore, this study aims to identify the conditions under which the interaction between the surface and the droplet is minimized by designing various superhydrophobic surfaces and investigating their collisions with droplets under different conditions.
In this study, polydimethylsiloxane (PDMS) was used as the solid substrate surface. By adjusting laser scanning parameters, silica microstructures with different roughness were fabricated on the PDMS surface, rendering it superhydrophobic. Droplets were then allowed to collide with the surface in free-fall form. When the PDMS surface was ablated at different power levels, varying roughness structures and wettability were observed. During droplet impact on a static surface, it was found that the size of the surface structures influenced the droplet's bouncing behavior, which in turn affected the droplet rebound height recovery coefficient and contact time.Next, droplet impact at the center of a rotating surface was observed. The results showed that the contact time between the droplet and the surface was shorter compared to that on a static surface, and the rebound height recovery coefficient was higher on the dynamic surface.When droplets impacted the eccentric region of a rotating surface, they splashed outward along the tangential direction of rotation. With changes in surface roughness, hysteresis, rotational speed, and drop height, droplets exhibited varying deformation, leading to different motion patterns during splashing. These variations ultimately affected the droplet's lateral velocity and rebound height recovery coefficient. This study designed superhydrophobic PDMS surfaces with different microstructures to investigate droplet impact behavior on static and rotating surfaces. It was found that surface structure, rotational speed, and impact position significantly influence the contact time, restitution coefficient, and motion. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:24:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-25T16:24:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目次 iv 圖次 vii 表次 x 第1章 緒論 1 1.1 前言 1 1.2 液滴彈跳 2 1.3 液滴撞擊的基本參數 3 1.3.1 相關無量綱數 3 1.3.2 最大擴散因子 4 1.3.3 彈跳高度 4 1.3.4 恢復係數 5 1.3.5 接觸時間 5 1.4 文獻回顧 6 1.4.1 表面濕潤性 6 1.4.2 水滴撞擊表面濕潤性 8 1.4.3 液滴撞擊靜態超疏水表面 9 1.4.4 液滴彈跳恢復係數 10 1.4.5 液滴撞擊旋轉的超疏水表面的中心 12 1.4.6 液滴撞擊旋轉超疏水錶面偏心 13 1.5 研究動機 17 第2章 實驗方法 18 2.1 實驗器材 18 2.1.1 聚二甲基矽氧烷(Polydimethylsiloxane,PDMS) 18 2.1.2 注射器 18 2.1.3 雷射雕刻機 19 2.1.4 795直流馬達 20 2.1.5 CCD攝影機 21 2.2 實驗樣本製作與分析方法 21 2.2.1 PDMS 製成 21 2.2.2 疏水PDMS表面製作 22 2.2.3 影像擷取與分析 22 2.2.4 實驗平台架設 24 2.3 實驗參數 25 第3章 結果 26 3.1 雷射功率對表面性質影響 26 3.1.1 不同雷射功率對表面結構影響 26 3.1.2 PDMS 氧化物結構之表徵量測 28 3.1.3 不同雷射功率對濕潤性影響 30 3.1.4 小結 31 3.2 液滴撞擊靜態表面液滴彈跳 32 3.2.1 表面特徵和韋伯數對液滴彈跳影響 32 3.2.2 小結 42 3.3 液滴撞擊旋轉表面圓心液滴彈跳 43 3.3.1 表面特徵對液滴彈跳影響 43 3.3.2 小結 49 3.4 液滴撞擊旋轉表面偏心液滴彈跳 50 3.4.1 表面轉速對液滴彈跳影響 50 3.4.2 表面特徵對液滴彈跳影響 56 3.4.3 表面結構方向對液滴橫向輸送影響 64 3.4.4 Wenzel表面動態 67 3.4.5 小結 68 第4章 總結 69 參考文獻 70 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 微奈米結構 | zh_TW |
| dc.subject | 動態表面 | zh_TW |
| dc.subject | 表面遲滯 | zh_TW |
| dc.subject | 超疏水表面 | zh_TW |
| dc.subject | 液滴彈跳 | zh_TW |
| dc.subject | dynamic surface | en |
| dc.subject | Droplet bouncing | en |
| dc.subject | superhydrophobic surface | en |
| dc.subject | surface hysteresis | en |
| dc.subject | micro-nano structure | en |
| dc.title | 超疏水動態表面上液滴側向彈跳之研究 | zh_TW |
| dc.title | The Study of Lateral Bouncing of Droplets on Dynamic Superhydrophobic Surfaces | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王安邦;陳志鴻;黃仲仁 | zh_TW |
| dc.contributor.oralexamcommittee | An-Bang Wang;Chih-Hung Chen;Jung-Ren Huang | en |
| dc.subject.keyword | 液滴彈跳,超疏水表面,表面遲滯,微奈米結構,動態表面, | zh_TW |
| dc.subject.keyword | Droplet bouncing,superhydrophobic surface,surface hysteresis,micro-nano structure,dynamic surface, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202500716 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-02-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 4.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
