Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96997
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳韻如zh_TW
dc.contributor.advisorYun-Ru Chenen
dc.contributor.author張庭瑄zh_TW
dc.contributor.authorTyng-Syuan Changen
dc.date.accessioned2025-02-25T16:24:36Z-
dc.date.available2025-02-26-
dc.date.copyright2025-02-25-
dc.date.issued2025-
dc.date.submitted2025-02-04-
dc.identifier.citation1. Nichols, E., et al., Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 2022. 7(2): p. e105-e125.
2. 2024 AD facts and figures. Alzheimer's & Dementia, 2024. 20(5): p. 3708-3821.
3. Liu, C.C., et al., Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol, 2013. 9(2): p. 106-18.
4. Martins, I.J., et al., Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for AD and cardiovascular disease. Mol Psychiatry, 2006. 11(8): p. 721-36.
5. Trejo-Lopez, J.A., A.T. Yachnis, and S. Prokop, Neuropathology of AD. Neurotherapeutics, 2022. 19(1): p. 173-185.
6. Roda, A.R., et al., Amyloid-beta peptide and tau protein crosstalk in AD. Neural Regen Res, 2022. 17(8): p. 1666-1674.
7. de Paula, V.J.R., et al., Neurobiological pathways to AD: Amyloid-beta, TAU protein or both? Dement Neuropsychol, 2009. 3(3): p. 188-194.
8. Muralidar, S., et al., Role of tau protein in AD: The prime pathological player. International Journal of Biological Macromolecules, 2020. 163: p. 1599-1617.
9. Tampi, R.R., B.P. Forester, and M. Agronin, Aducanumab: evidence from clinical trial data and controversies. Drugs Context, 2021. 10.
10. Söderberg, L., et al., Lecanemab, Aducanumab, and Gantenerumab - Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for AD. Neurotherapeutics, 2023. 20(1): p. 195-206.
11. Cacabelos, R., Donepezil in AD: From conventional trials to pharmacogenetics. Neuropsychiatr Dis Treat, 2007. 3(3): p. 303-33.
12. Birks, J.S., L.Y. Chong, and J. Grimley Evans, Rivastigmine for AD. Cochrane Database Syst Rev, 2015. 9(9): p. Cd001191.
13. Scott, L.J. and K.L. Goa, Galantamine: a review of its use in AD. Drugs, 2000. 60(5): p. 1095-122.
14. Grossberg, G.T., et al., Efficacy and Safety of Brexpiprazole for the Treatment of Agitation in Alzheimer's Dementia: Two 12-Week, Randomized, Double-Blind, Placebo-Controlled Trials. Am J Geriatr Psychiatry, 2020. 28(4): p. 383-400.
15. Matsunaga, S., et al., The efficacy and safety of memantine for the treatment of AD. Expert Opin Drug Saf, 2018. 17(10): p. 1053-1061.
16. Guo, J., et al., Memantine, Donepezil, or Combination Therapy-What is the best therapy for AD? A Network Meta-Analysis. Brain Behav, 2020. 10(11): p. e01831.
17. Haddad, H.W., et al., Aducanumab, a Novel Anti-Amyloid Monoclonal Antibody, for the Treatment of AD: A Comprehensive Review. Health Psychol Res, 2022. 10(1): p. 31925.
18. Qiao, Y., et al., Safety and efficacy of lecanemab for AD: a systematic review and meta-analysis of randomized clinical trials. Front Aging Neurosci, 2023. 15: p. 1169499.
19. Avgerinos, K.I., L. Ferrucci, and D. Kapogiannis, Effects of monoclonal antibodies against amyloid-β on clinical and biomarker outcomes and adverse event risks: A systematic review and meta-analysis of phase III RCTs in AD. Ageing Res Rev, 2021. 68: p. 101339.
20. Chen, G.-f., et al., Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 2017. 38(9): p. 1205-1235.
21. Müller, U.C., T. Deller, and M. Korte, Not just amyloid: physiological functions of the amyloid precursor protein family. Nature Reviews Neuroscience, 2017. 18(5): p. 281-298.
22. Plummer, S., et al., The Neuroprotective Properties of the Amyloid Precursor Protein Following Traumatic Brain Injury. Aging Dis, 2016. 7(2): p. 163-79.
23. Kahle, P.J. and B. De Strooper, Attack on amyloid. EMBO Rep, 2003. 4(8): p. 747-51.
24. Iwatsubo, T., The gamma-secretase complex: machinery for intramembrane proteolysis. Curr Opin Neurobiol, 2004. 14(3): p. 379-83.
25. Olsson, F., et al., Characterization of intermediate steps in amyloid beta (Aβ) production under near-native conditions. J Biol Chem, 2014. 289(3): p. 1540-50.
26. Mawuenyega, K.G., et al., Amyloid-beta isoform metabolism quantitation by stable isotope-labeled kinetics. Anal Biochem, 2013. 440(1): p. 56-62.
27. Sun, X., W.D. Chen, and Y.D. Wang, β-Amyloid: the key peptide in the pathogenesis of AD. Front Pharmacol, 2015. 6: p. 221.
28. Cha, H.J., J. Shen, and J. Kang, Regulation of gene expression by the APP family in the adult cerebral cortex. Scientific Reports, 2022. 12(1): p. 66.
29. Eisenberg, D. and M. Jucker, The amyloid state of proteins in human diseases. Cell, 2012. 148(6): p. 1188-203.
30. Chiti, F. and C.M. Dobson, Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu Rev Biochem, 2017. 86: p. 27-68.
31. Ono, K. and T. Watanabe-Nakayama, Aggregation and structure of amyloid β-protein. Neurochemistry International, 2021. 151: p. 105208.
32. Zhou, Y., et al., Label-Free SERS Strategy for In Situ Monitoring and Real-Time Imaging of Aβ Aggregation Process in Live Neurons and Brain Tissues. Anal Chem, 2020. 92(8): p. 5910-5920.
33. Wang, H., et al., Multivariate effects of pH, salt, and Zn2+ ions on Aβ40 fibrillation. Communications Chemistry, 2022. 5(1): p. 171.
34. Borchelt, D.R., et al., Familial AD–Linked Presenilin 1 Variants Elevate Aβ1–42/1–40 Ratio In Vitro and In Vivo. Neuron, 1996. 17(5): p. 1005-1013.
35. Deleanu, M., et al., Taylor Dispersion Analysis and Atomic Force Microscopy Provide a Quantitative Insight into the Aggregation Kinetics of Aβ (1-40)/Aβ (1-42) Amyloid Peptide Mixtures. ACS Chem Neurosci, 2022. 13(6): p. 786-795.
36. Hayden, E.Y. and D.B. Teplow, Amyloid β-protein oligomers and AD. Alzheimer's Research & Therapy, 2013. 5(6): p. 60.
37. Viola, K.L. and W.L. Klein, Amyloid β oligomers in AD pathogenesis, treatment, and diagnosis. Acta Neuropathol, 2015. 129(2): p. 183-206.
38. Cline, E.N., et al., The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. J Alzheimers Dis, 2018. 64(s1): p. S567-s610.
39. Itoh, S.G., et al., Key Residue for Aggregation of Amyloid-β Peptides. ACS Chemical Neuroscience, 2022. 13(22): p. 3139-3151.
40. Reddy, G., J.E. Straub, and D. Thirumalai, Influence of preformed Asp23-Lys28 salt bridge on the conformational fluctuations of monomers and dimers of Abeta peptides with implications for rates of fibril formation. J Phys Chem B, 2009. 113(4): p. 1162-72.
41. Côté, S., et al., Distinct Dimerization for Various Alloforms of the Amyloid-Beta Protein: Aβ1–40, Aβ1–42, and Aβ1–40(D23N). The Journal of Physical Chemistry B, 2012. 116(13): p. 4043-4055.
42. Šušnjar, U., et al., Cell environment shapes TDP-43 function with implications in neuronal and muscle disease. Communications Biology, 2022. 5(1): p. 314.
43. Ratti, A. and E. Buratti, Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. Journal of Neurochemistry, 2016. 138(S1): p. 95-111.
44. Buratti, E. and F.E. Baralle, Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci, 2008. 13: p. 867-78.
45. Reddi, P.P., Transcription and Splicing Factor TDP-43: Role in Regulation of Gene Expression in Testis. Semin Reprod Med, 2017. 35(2): p. 167-172.
46. Koike, Y., et al., TDP-43 and other hnRNPs regulate cryptic exon inclusion of a key ALS/FTD risk gene, UNC13A. PLoS Biol, 2023. 21(3): p. e3002028.
47. McDonald, K.K., et al., TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Human Molecular Genetics, 2011. 20(7): p. 1400-1410.
48. Sephton, C.F., et al., Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J Biol Chem, 2011. 286(2): p. 1204-15.
49. Versluys, L., et al., Expanding the TDP-43 Proteinopathy Pathway From Neurons to Muscle: Physiological and Pathophysiological Functions. Front Neurosci, 2022. 16: p. 815765.
50. François-Moutal, L., et al., Structural Insights Into TDP-43 and Effects of Post-translational Modifications. Front Mol Neurosci, 2019. 12: p. 301.
51. Jiang, L.L., et al., The N-terminal dimerization is required for TDP-43 splicing activity. Sci Rep, 2017. 7(1): p. 6196.
52. Lukavsky, P.J., et al., Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nat Struct Mol Biol, 2013. 20(12): p. 1443-9.
53. Schmidt, H.B. and R. Rohatgi, In Vivo Formation of Vacuolated Multi-phase Compartments Lacking Membranes. Cell Rep, 2016. 16(5): p. 1228-1236.
54. Conicella, A.E., et al., ALS Mutations Disrupt Phase Separation Mediated by α-Helical Structure in the TDP-43 Low-Complexity C-Terminal Domain. Structure, 2016. 24(9): p. 1537-49.
55. Sreedharan, J., et al., TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis. Science, 2008. 319(5870): p. 1668-1672.
56. Johnson, B.S., et al., TDP-43 Is Intrinsically Aggregation-prone, and Amyotrophic Lateral Sclerosis-linked Mutations Accelerate Aggregation and Increase Toxicity. Journal of Biological Chemistry, 2009. 284(30): p. 20329-20339.
57. Meneses, A., et al., TDP-43 Pathology in AD. Molecular Neurodegeneration, 2021. 16(1): p. 84.
58. James, B.D., et al., TDP-43 stage, mixed pathologies, and clinical Alzheimer's-type dementia. Brain, 2016. 139(11): p. 2983-2993.
59. Herman, A.M., et al., β-amyloid triggers ALS-associated TDP-43 pathology in AD models. Brain Res, 2011. 1386: p. 191-9.
60. Shih, Y.-H., et al., TDP-43 interacts with amyloid-β, inhibits fibrillization, and worsens pathology in a model of AD. Nature Communications, 2020. 11(1): p. 5950.
61. Xiao, Y., et al., Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease. Nature Structural & Molecular Biology, 2015. 22(6): p. 499-505.
62. Jani, V., U. Sonavane, and R. Joshi, Destabilization potential of beta sheet breaker peptides on Abeta fibril structure: an insight from molecular dynamics simulation study. RSC Adv, 2021. 11(38): p. 23557-23573.
63. Maghsoodi, F., T.D. Martin, and E.Y. Chi, Partial Destabilization of Amyloid-β Protofibril by Methionine Photo-Oxidation: A Molecular Dynamic Simulation Study. ACS Omega, 2023. 8(11): p. 10148-10159.
64. Gatch, A.J. and F. Ding, TDP-43 Promotes Amyloid-Beta Toxicity by Delaying Fibril Maturation via Direct Molecular Interaction. ACS Chemical Neuroscience, 2024. 15(15): p. 2936-2953.
65. Flores, B.N., et al., An Intramolecular Salt Bridge Linking TDP43 RNA Binding, Protein Stability, and TDP43-Dependent Neurodegeneration. Cell Rep, 2019. 27(4): p. 1133-1150.e8.
66. Erten-Lyons, D., et al., Factors associated with resistance to dementia despite high Alzheimer disease pathology. Neurology, 2009. 72(4): p. 354-60.
67. Kayed, R. and C.A. Lasagna-Reeves, Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis, 2013. 33 Suppl 1: p. S67-78.
68. He, Y., et al., Soluble oligomers and fibrillar species of amyloid β-peptide differentially affect cognitive functions and hippocampal inflammatory response. Biochem Biophys Res Commun, 2012. 429(3-4): p. 125-30.
69. Williams, S.M., et al., Blood-Based Oligomeric and Other Protein Variant Biomarkers to Facilitate Pre-Symptomatic Diagnosis and Staging of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 2017. 58(1): p. 23-35.
70. Caccamo, A., A. Magrí, and S. Oddo, Age-dependent changes in TDP-43 levels in a mouse model of Alzheimer disease are linked to Aβ oligomers accumulation. Mol Neurodegener, 2010. 5: p. 51.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96997-
dc.description.abstract阿茲海默症(AD)是最常見的失智症類型,其特徵是由乙型類澱粉胜肽(amyloid-β,簡稱 Aβ)組成的澱粉樣斑塊以及由過度磷酸化的 tau 蛋白所形成的神經纖維纏結(neurofibrillary tangles,簡稱 NFT)。臨床研究發現 TDP-43 會在 AD 患者的大腦中累積。先前的研究表明,TAR 去氧核糖核酸結合酶-43 (簡稱 TDP-43)會透過維持 Aβ 處於寡聚體狀態來抑制 Aβ 纖維化的過程。TDP-43 和 Aβ 在 AD 患者海馬迴的同定位顯示它們在 AD 病理中存在可能的相互作用。然而,TDP-43 與 Aβ 之間的具體結合界面尚不清楚,此外,TDP-43 誘導的 Aβ 寡聚體的相對毒性亦尚未確定。在本研究中,我系統性地對模擬複合物模型中 TDP-43 的潛在相互作用位點進行了點突變,並利用生化和生物物理方法驗證了這些點突變對 Aβ 結合的影響。結果顯示,突變某個特定帶電胺基酸殘基後,結合能力顯著下降,表明該胺基酸殘基在與 Aβ 的相互作用中扮演關鍵角色。細胞毒性測定顯示,Aβ 寡聚體在不同的纖維化狀態下是最具毒性的物種。此外,我們還使用了幾種自製針對特定區域的 TDP-43 抗體來阻斷 TDP-43 與 Aβ 之間的相互作用。本研究實驗結果顯示,這一關鍵相互作用可能會加劇細胞毒性的增加,且抗體篩選結果有助於發展針對 TDP-43 在 AD 中所引起的有害影響的治療方向。zh_TW
dc.description.abstractAlzheimer's disease (AD) is the most prevalent cause of dementia, characterized by senile plaques composed of amyloid-β (Aβ) and neurofibrillary tangles (NFT) comprising hyperphosphorylated tau. Notably, TAR DNA-binding protein-43 (TDP-43) accumulation has been observed in the brain of AD patients. Our previous publication revealed the role of TDP-43 in mediating Aβ fibrillization by maintaining Aβ in the oligomeric state. The co-localization of TDP-43 and Aβ in the hippocampus of AD patients indicates their potential interaction in AD pathology. However, the precise binding interface and sites between TDP-43 and Aβ remains unknown. Furthermore, the relative toxicity of TDP-43-induced Aβ oligomers remains unknown. In this study, I systematically mutated the residues identified as potential interaction sites in a simulated complex model of TDP-43 RRM and Aβ. Then, I validated their impact on Aβ binding in TDP-43 variants by biochemical and biophysical methods including ELISA, biolayer interferometry (BLI), and surface plasmon resonance (SPR) assays. Results demonstrated a significant decrease in binding following mutating a specific charged residue, suggesting the crucial role of this residue as an interaction site with Aβ. Cytotoxicity assays revealed Aβ oligomers are the more toxic species across various fibrillization states. Moreover, we employed a few in-house TDP-43 antibodies to block the interaction and also investigate the minimal epitope of the antibodies. These findings reveal that the critical interaction potentially contributes to the increased cytotoxicity. The finding in antibody screening promotes the therapeutic development for the detrimental effect attributed to TDP-43 in AD.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:24:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-25T16:24:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 ................................................................................................................................... i
中文摘要 .......................................................................................................................... ii
ABSTRACT ................................................................................................................... iii
CONTENTS ................................................................................................................... iv
LIST OF FIGURES ...................................................................................................... vii
LIST OF TABLES ......................................................................................................... ix
Chapter 1 Introduction .......................................................................................... 1
1.1 Alzheimer's disease ............................................................................................. 1
1.1.1 Risk Factors for AD ................................................................................... 1
1.1.2 Pathological hallmark of AD ..................................................................... 1
1.1.3 Treatment Strategy for AD ......................................................................... 2
1.2 Amyloid-β (Aβ) .................................................................................................. 2
1.2.1 Aβ production process ............................................................................... 2
1.2.2 Aggregation process of Aβ ........................................................................ 3
1.2.3 Aβ oligomer ............................................................................................... 4
1.2.4 Important residues in Aβ ............................................................................ 4
1.3 TAR DNA-binding protein-43 (TDP-43)............................................................ 5
1.3.1 Functional roles of TDP-43 in physiology ................................................. 5
1.3.2 Structure of TDP-43 ................................................................................... 6
1.3.3 TDP-43’s role in AD .................................................................................. 6
1.4 Leading studies ................................................................................................... 7
1.5 Research aim ....................................................................................................... 7
Chapter 2 Methods ................................................................................................. 9
2.1 Site-directed mutagenesis ................................................................................... 9
2.2 Truncated TDP-43 purification ........................................................................... 9
2.3 Full-length TDP-43 purification ....................................................................... 10
2.4 Aβ40 purification .............................................................................................. 10
2.5 Far-UV circular dichroism (CD) spectroscopy ................................................. 11
2.6 Size exclusion chromatography ........................................................................ 11
2.7 Enzyme-linked immunosorbent assay (ELISA) ............................................... 12
2.7.1 Testing binding effect of TDP-43 and Aβ ................................................ 12
2.7.2 Testing inhibitory effect of TDP-O antibodies toward TDP-43 and Aβ .. 13
2.8 Thioflavin-T (ThT) assay .................................................................................. 13
2.9 Biolayer Interferometry (BLI) assay ................................................................. 14
2.10 Surface Plasmon Resonance (SPR) assay ......................................................... 14
2.10.1 Testing binding affinity between Aβ and TDP-43 ................................ 14
2.10.2 Testing binding affinity between TDP-O antibodies and TDP-43 ........ 14
2.11 MTT assay ......................................................................................................... 15
2.12 CCK-8 assay ..................................................................................................... 15
2.13 Immunogold staining ........................................................................................ 16
2.14 Statistical analysis ............................................................................................. 16
Chapter 3 Results ................................................................................................. 17
3.1 TDP-43 variants purification and characterization ........................................... 17
3.2 Elucidation of the key interacting residues between TDP-43 and Aβ. ............. 18
3.2.1 TDP-43 RRM1+2 variants ....................................................................... 18
3.2.2 TDP-43_1-265 variants ............................................................................ 19
3.2.3 TDP-43_FL variants ................................................................................ 20
3.3 Investigating the impact of the mutants on Aβ fibrillization ............................ 21
3.4 Evaluation of the cytotoxicity of different Aβ aggregation state. ..................... 22
3.5 Development of inhibitory agent toward Aβ and TDP-43 interaction .............. 25
3.5.1 Screening for inhibitory agent ................................................................. 25
3.5.2 Investigation of TDP-O epitope ............................................................... 26
Chapter 4 Discussion ............................................................................................ 28
Figures ........................................................................................................................... 34
Tables ............................................................................................................................. 70
Reference ....................................................................................................................... 81
Appendix ....................................................................................................................... 88
1.1 Materials............................................................................................................ 88
1.1.1 Buffers ...................................................................................................... 88
1.1.2 Primers for site direct mutagenesis .......................................................... 92
1.1.3 Chemical reagents .................................................................................... 92
-
dc.language.isoen-
dc.subject蛋白質錯誤摺疊zh_TW
dc.subject蛋白質交互作用zh_TW
dc.subject乙型類澱粉胜肽zh_TW
dc.subjectTDP-43zh_TW
dc.subject阿茲海默症zh_TW
dc.subjectprotein interactionen
dc.subjectAlzheimer's diseaseen
dc.subjectTDP-43en
dc.subjectamyloid-βen
dc.subjectprotein misfoldingen
dc.title透過TDP-43變異體及抗體闡明阿茲海默症中TDP-43與乙型類澱粉胜肽間的分子相互作用zh_TW
dc.titleElucidating the molecular interaction of TDP-43 and amyloid-β in Alzheimer's disease by TDP-43 variants and antibodiesen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張世宗;杜玲嫻zh_TW
dc.contributor.oralexamcommitteeShih-Chung Chang;Ling-Hsien Tuen
dc.subject.keyword阿茲海默症,TDP-43,乙型類澱粉胜肽,蛋白質錯誤摺疊,蛋白質交互作用,zh_TW
dc.subject.keywordAlzheimer's disease,TDP-43,amyloid-β,protein misfolding,protein interaction,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202500371-
dc.rights.note未授權-
dc.date.accepted2025-02-04-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
dc.date.embargo-liftN/A-
Appears in Collections:生化科技學系

Files in This Item:
File SizeFormat 
ntu-113-1.pdf
  Restricted Access
4.07 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved