請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96996完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳奕君 | zh_TW |
| dc.contributor.advisor | I-Chun Cheng | en |
| dc.contributor.author | 沈君翰 | zh_TW |
| dc.contributor.author | Chun-Han Shen | en |
| dc.date.accessioned | 2025-02-25T16:24:20Z | - |
| dc.date.available | 2025-02-26 | - |
| dc.date.copyright | 2025-02-25 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-14 | - |
| dc.identifier.citation | [1] P. K. Weimer, "The TFT a new thin-film transistor," Proceedings of the IRE, vol. 50, no. 6, pp. 1462-1469, 1962. doi: 10.1109/JRPROC.1962.288190.
[2] H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, "Sputtering formation of P-type SnO thin-film transistors on glass toward oxide complimentary circuits,", Applied Physics Letters, vol. 97, no. 7, Aug 16 2010, doi: Artn 07211110.1063/1.3478213. [3] H. A. Al-Jawhari, "A review of recent advances in transparent p-type CuO-based thin film transistors,", Materials Science in Semiconductor Processing, vol. 40, pp. 241-252, Dec 2015, doi: 10.1016/j.mssp.2015.06.063. [4] P. Weimer, "A p-type tellurium thin-film transistor," Proceedings of the IEEE, vol. 52, no. 5, pp. 608-609, 1964. doi: 10.1109/PROC.1964.3003. [5] R. Dutton and R. Muller, "Large grain tellurium thin films," Thin Solid Films, vol. 11, no. 2, pp. 229-236, 1972. doi: https://doi.org/10.1016/0040-6090(72)90048-x. [6] K. Okuyama, H. Yamamoto, and Y. Kumagai, "Effect of Au nucleation centers and deposition rate on crystallinity and electronic properties of evaporated Te films," Journal of Applied Physics, vol. 46, no. 1, pp. 105-111, 1975. [7] K. Okuyama and Y. Watanabe, "Effect of predeposited Ag, Sn, Bi, Al and Se nucleation centers on the grain growth of evaporated Te films," Japanese Journal of Applied Physics, vol. 15, no. 10, p. 1881, 1976. doi10.1143/JJAP.15.1881. [8] A. De Vos and J. Aerts, "The influence of deposition rate on the electrical properties of thin tellurium films," Thin Solid Films, vol. 46, no. 2, pp. 223-228, 1977. doi: https://doi.org/10.1016/0040-6090(77)90066-9. [9] C. Zhao, C. Tan, D.H. Lien , X. Song, M. Amani, M. Hettick, HYY. Nyein, Z. Yuan, L. Li, MC. Scott and A. Javey , "Evaporated tellurium thin films for p-type field-effect transistors and circuits," Nature nanotechnology, vol. 15, no. 1, pp. 53-58, 2020. doi: https://doi.org/10.1038/s41565-019-0585-9. [10] G. Qiu, A. Charnas, C. Niu, Y. X. Wang, W. Z. Wu, and P.D.D. Ye, "The resurrection of tellurium as an elemental two-dimensional semiconductor,", Npj 2d Materials and Applications, vol. 6, no. 1, p. 17, Mar 14 2022, doi: ARTN 1710.1038/s41699-022-00293-w. [11] E. Fortunato, P. Barquinha, and R. Martins, "Oxide semiconductor thin-film transistors: a review of recent advances," Adv Mater, vol. 24, no. 22, pp. 2945-86, Jun 12 2012, doi: 10.1002/adma.201103228. [12] 張祐禎, ""背通道缺陷工程於P型氧化亞錫薄膜電晶體開關特性改善之研究,"碩士論文," 碩士 碩士論文, 國立台灣大學, 2021. [13] Z. Wang, P. K. Nayak, J. A. Caraveo‐Frescas, and H. N. Alshareef, "Recent developments in p‐Type oxide semiconductor materials and devices," Advanced Materials, vol. 28, no. 20, pp. 3831-3892, 2016. doi: https://doi.org/10.1002/adma.201503080. [14] Z. W. Shang, H. H. Hsu, Z. W. Zheng, and C. H. Cheng, "Progress and challenges in p-type oxide-based thin film transistors,", Nanotechnol Rev, vol. 8, no. 1, pp. 422-443, Jan 2019, doi: 10.1515/ntrev-2019-0038. [15] M. Kim, H.-M. Kim, H. Yanagi, K. Fukui, and J.-S. Park, "Electrical conductivity, Seebeck coefficient, and crystal growth of p-type tellurium films through temperature dependent RF sputtering," Nanotechnology, 2023. doi 10.1088/1361-6528/acdd0a [16] Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, and T. Kawabata, "Room temperature gas sensing of p-type TeO2 nanowires," Applied physics letters, vol. 90, no. 17, 2007. doi: https://doi.org/10.1063/1.2732818. [17] G. Zhou, R. Addou, Q. Wang, S. Honari, C.R. Cormier, L. Cheng, R. Yue, C.M. Smyth, A. Laturia, J. Kim, W.G. Vandenberghe, M.J. Kim, R.M. Wallace, and C.L. Hinkle., "High‐mobility helical tellurium field‐effect transistors enabled by transfer‐free, low‐temperature direct growth," Advanced Materials, vol. 30, no. 36, p. 1803109, 2018. doi: https://doi.org/10.1002/adma.201803109. [18] R. Keller, W. Holzapfel, and H. Schulz, "Effect of pressure on the atom positions in Se and Te," Physical Review B, vol. 16, no. 10, p. 4404, 1977. doi: https://doi.org/10.1103/physrevb.16.4404. [19] R. A. Yadav, N. Padma, S. Sen, A. Arvind, and R. Rao, "Low operating voltage bistable memory characteristics of tellurium thin films," in AIP Conference Proceedings, 2019, vol. 2115, no. 1: AIP Publishing. doi: https://doi.org/10.1063/1.5113134. [20] H. Peng, N. Kioussis, and G. J. Snyder, "Elemental tellurium as a chiral p-type thermoelectric material," Physical Review B, vol. 89, no. 19, p. 195206, 2014. doi: https://doi.org/10.1103/physrevb.89.195206. [21] Z. Dong and Y. Ma, "Atomic-level handedness determination of chiral crystals using aberration-corrected scanning transmission electron microscopy," Nature Communications, vol. 11, no. 1, p. 1588, 2020. doi: https://doi.org/10.1038/s41467-020-15388-5. [22] S. Moufok, L. Kadi, B. Amrani, and K. D. Khodja, "Electronic structure and optical properties of TeO2 polymorphs," Results in Physics, vol. 13, p. 102315, 2019. doi: https://doi.org/10.1016/j.rinp.2019.102315. [23] Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, and X. Zhao, "Structural, electronic, and optical properties of α, β, and γ-TeO2," Journal of Applied Physics, vol. 107, no. 9, 2010. doi: https://doi.org/10.1063/1.3406135. [24] A. Svane and E. Antoncik, "Electronic structure of rutile SnO2, GeO2 and TeO2," Journal of Physics and Chemistry of Solids, vol. 48, no. 2, pp. 171-180, 1987. doi: https://doi.org/10.1016/0022-3697(87)90081-3 [25] M. Ceriotti, F. Pietrucci, and M. Bernasconi, "Ab initiostudy of the vibrational properties of crystallineTeO2: Theα,β, andγphases," Physical Review B, vol. 73, no. 10, p. 104304, 2006, doi: 10.1103/PhysRevB.73.104304. [26] T. Siciliano, M. Di Giulio, M. Tepore, E. Filippo, G. Micocci, and A. Tepore, "Effect of thermal annealing time on optical and structural properties of TeO2 thin films," Vacuum, vol. 84, no. 7, pp. 935-939, 2010. doi: https://doi.org/10.1016/j.vacuum.2009.12.017. [27] J. Shi, Z. Sheng, L. Zhu, X. Xu, Y. Gao, D. Tang, and K.H.L. Zhang, "The electronic structure of β-TeO2 as wide bandgap p-type oxide semiconductor," Applied Physics Letters, vol. 122, no. 10, 2023. doi: https://doi.org/10.1063/5.0142734. [28] A. Zavabeti, P. Aukarasereenont, H. Tuohey, N. Syed, A. Jannat, A. Elbourne, K.A. Messalea, B.Y. Zhang, B.J. Murdoch, J.G. Partridge, M. Wurdack, D.L. Creedon, J. Embden, K.K. Zadeh, S.P. Russo, C.F. McConville, and T. Daeneke, "High-mobility p-type semiconducting two-dimensional β-TeO2," Nature Electronics, vol. 4, no. 4, pp. 277-283, 2021. doi: https://doi.org/10.1038/s41928-021-00561-5. [29] N. Dewan, K. Sreenivas, and V. Gupta, "Properties of crystalline γ-TeO2 thin film," Journal of crystal growth, vol. 305, no. 1, pp. 237-241, 2007. https://doi.org/10.1016/j.jcrysgro.2007.03.054. [30] S. Perlman and K. Ludewig, "An adaptive thin-film transistor," IEEE Transactions on Electron Devices, vol. 14, no. 12, pp. 816-821, 1967. doi: 10.1109/T-ED.1967.16115. [31] H. Wilson and W. Gutierrez, "Tellurium TFT's exceed 100-MHz and one-watt capabilities," Proceedings of the IEEE, vol. 55, no. 3, pp. 415-416, 1967, doi: 10.1109/PROC.1967.5506. [32] T. P. Brody, "The birth and early childhood of active matrix—A personal memoir," Journal of the society for information display, vol. 4, no. 3, pp. 113-127, 1996. doi: https://doi.org/10.1889/1.1985000. [33] H. Hirai, H. Sekiguchi, S. Miyata, and S. Kobayashi, "Tellurium thin‐film transistor deposited on polyester film having plasma polymerized films on double‐layered gate insulators," Applied physics letters, vol. 50, no. 13, pp. 818-820, 1987. doi: https://doi.org/10.1063/1.98054 [34] K. Okuyama and H. Kudo, "Improved tellurium films by partially ionized vapor deposition as the semiconductor layer of a TFT and a hydrogen sensor," Japanese Journal of Applied Physics, vol. 28, no. 5R, p. 770, 1989. doi 10.1143/JJAP.28.770 [35] G. Qiu, M. Si, Y. Wang, X. Lyu, W. Wu, and D. Y. Peide, "High-performance few-layer tellurium CMOS devices enabled by atomic layer deposited dielectric doping technique," in 2018 76th Device Research Conference (DRC), 2018: IEEE, pp. 1-2. doi: 10.1109/DRC.2018.8442253. [36] A. Liu, Y.S. Kim, M.G. Kim, Y. Reo, T. Zou, T. Choi, S. Bai, H. Zhu, and Y.Y. Noh, "Selenium alloyed tellurium oxide for amorphous p-channel transistors," Nature, pp. 1-3, 2024, doi: https://doi.org/10.1038/s41586-024-07360-w. [37] Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang, Y. Liu, Y. Du, W.A. Goddard, M.J. Kim, X. Xu, P.D. Ye, and W. Wu, "Field-effect transistors made from solution-grown two-dimensional tellurene," Nature Electronics, vol. 1, no. 4, pp. 228-236, 2018. doi: https://doi.org/10.1038/s41928-018-0058-4. [38] M. Amani, C. Tan, G. Zhang, C. Zhao, J. Bullock, X. Song, H. Kim, V.R. Shrestha, Y. Gao, K.B. Crozier, M. Scott, and A. Javey, "Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors," ACS nano, vol. 12, no. 7, pp. 7253-7263, 2018. doi: https://doi.org/10.1021/acsnano.8b03424. [39] C. Zhao, L. Hurtado, and A. Javey, "Thermal stability for Te-based devices," Applied Physics Letters, vol. 117, no. 19, 2020. doi: https://doi.org/10.1063/5.0018045. [40] C. Zhao, H. Batiz, B. Yasar, H. Kim, W. Ji, M.C. Scott, D.C. Chrzan, A. Javey, "Tellurium Single‐Crystal Arrays by Low‐Temperature Evaporation and Crystallization," Advanced Materials, vol. 33, no. 37, p. 2100860, 2021. doi: https://doi.org/10.1002/adma.202100860. [41] W. Jiang, X. Wang, Y. Chen, S. Wu, B. Wu, X. Yang, T. Lin, H. Shen, X. Meng, X. Wu, J. Chu, and J. Wang., "End-bonded contacts of tellurium transistors," ACS Applied Materials & Interfaces, vol. 13, no. 6, pp. 7766-7772, 2021. doi: https://doi.org/10.1021/acsami.0c21675. [42] H. Xu, T. Kim, H.S. Han, M.J. Kim, J.S. Hur, C.H. Choi, J.H. Chang, and J.K. Jeong, "High-performance broadband phototransistor based on TeO x/IGTO heterojunctions," ACS Applied Materials & Interfaces, vol. 14, no. 2, pp. 3008-3017, 2022. doi: https://doi.org/10.1021/acsami.1c18576. [43] K. R. Lee, "Effect of Working Pressure Conditions during Sputtering on the Electrical Performance in Te Thin-Film Transistors," The Korean Institute of Electrical and Electronic Material Engineers 2022, doi: https://doi.org/10.4313/JKEM.2022.35.2.13. [44] T. Kim, C.H. Choi, P. Byeon, M. Lee, A. Song, K.B. Chung, S. Han, S.Y. Chung, K.S. Park, and J.K. Jeong, "Growth of high-quality semiconducting tellurium films for high-performance p-channel field-effect transistors with wafer-scale uniformity,", Npj 2d Materials and Applications, vol. 6, no. 1, p. 4, Jan 13 2022, doi: ARTN 410.1038/s41699-021-00280-7. [45] T. Kim, C. H. Choi, and J. K. Jeong, "High-performance p-channel tellurium thin-film transistor applications fabricated at a low temperature of 150° C," in Digest of Technical Papers-SID International Symposium, 2022, vol. 53, no. 1: John Wiley and Sons Inc, pp. 225-227. doi: https://doi.org/10.1002/sdtp.15459. [46] T. Kim, C. H. Choi, S. E. Kim; J. K. Kim; J. Jang, and S.C. Choi, "high-performance hexagonal tellurium thin-film transistor using tellurium oxide as a crystallization retarder," IEEE Electron Device Letters, vol. 44, no. 2, pp. 269-272, 2022. doi: 10.1109/LED.2022.3230705. [47] A. Liu, H. Zhu, T. Zou, Y. Reo, G.-S. Ryu, and Y.-Y. Noh, "Evaporated nanometer chalcogenide films for scalable high-performance complementary electronics," Nature Communications, vol. 13, no. 1, p. 6372, 2022. doi: https://doi.org/10.1038/s41467-022-34119-6. [48] M. Naqi, K. H. Choi, Y. Cho, H. Y. Rho, H. Cho, P. Pujar, N. liu, H. S. Kim, J. Y. Choi, and S. Kim, "Flexible Platform Oriented: Unipolar‐Type Hybrid Dual‐Channel Scalable Field‐Effect Phototransistors Array Based on Tellurium Nanowires and Tellurium‐Film with Highly Linear Photoresponsivity," Advanced Electronic Materials, vol. 8, no. 7, p. 2101331, 2022. doi: https://doi.org/10.1002/aelm.202101331. [49] P. Yang, J. Zha, G.Gao, L. Zheng, H. Huang, Y. Xia, S. Xu, T. Xiong, Z. Zhang, Z. Yang, Y. Chen, D. K. Ki, J. J. Liou, W. Liao, and C. Tan, "Growth of tellurium nanobelts on h-BN for p-type transistors with ultrahigh hole mobility," Nano-Micro Letters, vol. 14, no. 1, p. 109, 2022. doi: https://doi.org/10.1007/s40820-022-00852-2. [50] M. Naqi, S. C. Jang, Y. Choa, J. M. Park, J. O. Oh, H. Y. Rho, H. S. Kim, and S. Kim, "Low temperature processed, highly stable CMOS inverter by integrating Zn-ON and tellurium thin-film transistors," Journal of Information Display, pp. 1-6, 2023. doi: https://doi.org/10.1080/15980316.2023.2174195. [51] R. W. Johnson, A. Hultqvist, and S. F. Bent, "A brief review of atomic layer deposition: from fundamentals to applications," Materials today, vol. 17, no. 5, pp. 236-246, 2014, doi: https://doi.org/10.1016/j.mattod.2014.04.026. [52] H. Kang, S. H. Lee, and K. Kim, "Wettability of polytetrafluoroethylene surfaces by plasma etching modifications," Plos One, vol. 18, no. 3, p. e0282352, 2023, doi: https://doi.org/10.1371/journal.pone.0282352. [53] Y. H. Tang, Y. H. Lin, P. L. Chen, M. H. Shiao, and C. N. Hsiao, "Comparison of optimised conditions for inductively coupled plasma‐reactive ion etching of quartz substrates and its optical applications," Micro & Nano Letters, vol. 9, no. 6, pp. 395-398, 2014, doi: https://doi.org/10.1049/mnl.2014.0093. [54] M. Birkholz, "Thin films and multilayers," 2019. doi: https://doi.org/10.1107/97809553602060000969. [55] A. Dazzi and C. B. Prater, "AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging," Chemical Reviews, vol. 117, no. 7, pp. 5146-5173, 2017, doi: https://doi.org/10.1021/acs.chemrev.6b00448. [56] 張佑鴻, "P型碲與氧化碲薄膜電晶體之研究," 碩士論文, 國立臺灣大學, 2023. [57] Y.-J. Han, Y.-J. Choi, I.-T. Cho, S. H. Jin, J.-H. Lee, and H.-I. Kwon, "Improvement of long-term durability and bias stress stability in p-type SnO thin-film transistors using a SU-8 passivation layer," IEEE Electron Device Letters, vol. 35, no. 12, pp. 1260-1262, 2014. doi: 10.1109/LED.2014.2363879. [58] S. H. Kim, I.-H. Baek, D. H. Kim, J. J. Pyeon, T.-M. Chung, S.-H. Baek, J.-S. Kim, J. H. Han, and S. K. Kim, "Fabrication of high-performance p-type thin film transistors using atomic-layer-deposited SnO films," Journal of Materials Chemistry C, vol. 5, no. 12, pp. 3139-3145, 2017. [59] K.-H. Bae, M. G. Shin, S.-H. Hwang, H.-S. Jeong, D.-H. Kim, and H.-I. Kwon, "Electrical performance and stability improvement of p-Channel SnO thin-film transistors using atomic-layer-deposited Al₂O₃ capping Layer," IEEE Access, vol. 8, pp. 222410-222416, 2020. doi: 10.1109/ACCESS.2020.3043780. [60] A. W. Lee, Y. Zhang, C. H. Huang, K. Matsuzaki, and K. Nomura, "Switching mechanism behind the device operation mode in SnO‐TFT," Advanced Electronic Materials, vol. 6, no. 12, p. 2000742, 2020. doi: https://doi.org/10.1002/aelm.202000742. [61] M. Aspiala, D. Sukhomlinov, and P. Taskinen, "Standard Gibbs energy of formation of tellurium dioxide measurement by a solid-oxide electrolyte EMF technique," Thermochimica Acta, vol. 573, pp. 95-100, 2013. doi: https://doi.org/10.1016/j.tca.2013.08.006. [62] G. H. Kim, S.-H. Kang, J. M. Lee, M. Son, J. Lee, H. Lee, I. Chung, J. Kim, Y.-H. Kim, K. Ahn, S. K. Park, and M.-G. Kim., "Room temperature-grown highly oriented p-Type nanocrystalline tellurium thin-Films transistors for large-scale CMOS circuits," Applied Surface Science, p. 157801, 2023. doi: https://doi.org/10.1016/j.apsusc.2023.157801. [63] J. Aarik, A. Aidla, A. A. Kiisler, T. Uustare, and V. Sammelselg, "Influence of substrate temperature on atomic layer growth and properties of HfO2 thin films,", Thin Solid Films, vol. 340, no. 1-2, pp. 110-116, Feb 26 1999, doi: 10.1016/s0040-6090(98)01356-x. [64] S. M. Hsu, J. C. He, Y. S. Li, D. Y. Su, F. Y. Tsai, and I. C. Cheng, "Effect of mechanical strain on electrical performance of flexible P-Type SnO thin-film transistors,", Ieee Transactions on Electron Devices, vol. 66, no. 12, pp. 5183-5186, Dec 2019, doi: 10.1109/Ted.2019.2945189. [65] I.-C. Chiu and I.-C. Cheng, "Gate-bias stress stability of p-type SnO thin-film transistors fabricated by RF-sputtering," IEEE Electron Device Letters, vol. 35, no. 1, pp. 90-92, 2013. doi: 10.1109/LED.2013.2291896. [66] J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, "Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors,", Applied Physics Letters, vol. 93, no. 9, Sep 1 2008, doi: Artn 09350410.1063/1.2977865. [67] S. W. Lee, S. Y. Lee, S. C. Lim, Y.-D Kwon, J.-S. Yoon, K. Uh, and Y. H. Lee., "Positive gate bias stress instability of carbon nanotube thin film transistors,", Applied Physics Letters, vol. 101, no. 5, Jul 30 2012, doi: Artn 05350410.1063/1.4740084. [68] I.-T. Cho, J.-M. Lee, J.-H. Lee, and H.-I. Kwon, "Charge trapping and detrapping characteristics in amorphous InGaZnO TFTs under static and dynamic stresses," Semiconductor Science and Technology, vol. 24, no. 1, p. 015013, 2008. doi:10.1088/0268-1242/24/1/015013. [69] I.-J. Park, C.-Y. Jeong, M. U, S.-H. Song, I.-T. Cho, and J.-H. Lee., "Bias-stress-induced instabilities in P-Type Cu2O thin-film transistors," IEEE Electron Device Letters, vol. 34, no. 5, pp. 647-649, 2013. doi: 10.1109/LED.2013.2253758 [70] T. N. Ng, M. L. Chabinyc, R. A. Street, and A. Salleo, "Bias stress effects in organic thin film transistors," in 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual, 2007: IEEE, pp. 243-247. doi: 10.1109/RELPHY.2007.369899. [71] S. J. Han, S. Kim, J. K. Jeong, and H. J. Kim, "Impact of an interfacial layer on the electrical performance of p‐Channel tin monoxide field‐effect transistors," physica status solidi (RRL)–Rapid Research Letters, vol. 11, no. 10, p. 1700213, 2017. doi: https://doi.org/10.1002/pssr.201700213. [72] S. H. Lim, T. I. Kim, I. J. Park, and H. I. Kwon, "Synthesis of a tellurium semiconductor with an organic-inorganic hybrid passivation layer for high-performance p-Type thin film transistors,", Acs Applied Electronic Materials, vol. 5, no. 9, pp. 4816-4825, Aug 16 2023, doi: 10.1021/acsaelm.3c00620. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96996 | - |
| dc.description.abstract | 碲為元素週期表第16族(VI A族)第五週期之元素,原子序為52,屬於類金屬,其元素或氧化而成的氧化碲,費米能階靠近價代,屬於P型半導體的特性。但是碲作為通道層時,載子傳遞容易受其其內部的結晶情形影響。碲薄膜結晶時,容易因成長晶粒過小以及成核點(nucleation)的不易控制,導致碲薄膜呈現隨機取向的多晶六角晶相結構,因多晶六角晶相而增加的晶界(grain boundary)會導致載子受到陷阱捕捉的情況增加,進而阻礙載子的傳輸,導致其關電流過高,元件電流開關特性不理想,提升其結晶性為研究者努力的目標。
本論文研究碲薄膜電晶體製程為下閘極交錯型結構,將依序探討不同工作壓力下對不同鍍膜時間之厚度,確認最佳厚度參數後,利用提高在濺鍍過程中的氧氣分量使通道層氧化成非晶相的氧化碲薄膜。機制為提升通道層的氧化程度來降低碲在不同成長軸向(c軸)之結晶速度,抑制晶粒的成長。氧化碲薄膜中的Te 5p軌域可以緩解由O 2p軌域帶來的侷限(localized)使關電流降低。後續藉由改變絕緣層來探討絕緣層介面對於碲薄膜電晶體的開關特性影響。藉由沉積氧化鋁鈍化層,使通道層中氧化碲的氧擴散進入鈍化層中,透過降低由氧化過程所產生的介面能來提升碲的結晶性,減緩費米能階被固定的情形,使通道層更容易產生空乏,也從XRD印證這件事。再透過不同絕緣層封裝後之特徵參數比較,找出最佳表現的碲薄膜應為能夠在維持開電流的同時,關電流有明顯下降,且臨界電壓為最小的結果,發現最佳表現的碲薄膜電晶體電性在VDS = -1 V時,氧化鋁鈍化層處理之絕緣層為150度 HfO2、250度 HfO2和150度 Al2O3氧化碲薄膜電晶體,電流開關比分別為〖1.97×10〗^3、 〖7.90×10〗^2和〖1.28×10〗^3,臨界電壓分別為1.02 V、2.79 V和0.06V,場效載子遷移率分別為1.02 cm^2 V^(-1) s^(-1)、0.674 cm^2 V^(-1) s^(-1)和0.867 cm^2 V^(-1) s^(-1),次臨界擺幅分別為3.58 V/dec、4.04 V/dec和3.49 V/dec。結果顯示以氧化鋁作為絕緣層可以最有效使臨界電壓左移,且〖∆V〗_TH最小,最後在長時間偏壓量測中,發現沉積鈍化層之元件受長時間正或負偏壓後載子回復之情形非常快速。 | zh_TW |
| dc.description.abstract | Tellurium (Te) is an element in Group 16 (Group VI A) and the fifth period of the periodic table, with an atomic number of 52. It is classified as a metalloid. Tellurium and its oxidized form, tellurium oxide (TeOx), exhibit p-type semiconductor characteristics due to the Fermi level being close to the valence band. However, when Te is used as a channel layer, carrier transport is easily affected by the internal crystalline conditions. During Te thin film crystallization, issues often arise due to the rapid and uncontrollable nucleation of Te films during deposition, resulting in the formation of small grains with random orientation polycrystalline hexagonal phase structure. The increased grain boundaries resulting from the polycrystalline hexagonal phase cause more carrier trapping, hindering carrier transport and resulting in high off-current and bad current switching characteristics of the device. Enhancing the crystallinity has become a focus for researchers.
The Te thin-film transistors (TFTs) developed in this thesis have a bottom-gate staggered structure. The effects of channel thickness, working pressures, oxygen flow rate and gate dielectric are systematically investigated. The channel layer is oxidized into an amorphous TeOx film by increasing the oxygen content during the sputtering process. The mechanism involves enhancing the oxidation degree of the channel layer to reduce the crystallinity of Te along different growth axes (c-axis), thereby suppressing grain growth. It is because, in the TeOx film, the Te 5p orbital mitigates the localization effect caused by the O 2p orbital, which lowers the off-state current. By depositing an aluminum oxide passivation layer, the diffusion of oxygen from the TeOx channel layer into the passivation layer reduces the interfacial energy generated during the oxidation process. This enhances the crystallinity of tellurium, alleviates Fermi level pinning, and facilitates channel depletion. Comparing the characteristic parameters of devices with different dielectric layers, the best-performing Te TFTs simultaneously maintain high on-state current, exhibit significantly reduced off-state current, and achieve minimal threshold voltage. The best-performing aluminum oxide passivated Te TFTs with insulators of 150°C HfO₂, 250°C HfO₂, and 150°C Al₂O₃ exhibited current on-off current ratios of 1.97×10³, 7.90×10², and 1.28×10³, threshold voltages of 1.02 V, 2.79 V, and 0.06 V, field-effect mobilities of 1.02 cm² V⁻¹ s⁻¹, 0.674 cm² V⁻¹ s⁻¹, and 0.867 cm² V⁻¹ s⁻¹, and subthreshold swings of 3.58 V/dec, 4.04 V/dec, and 3.49 V/dec, respectively. The result reveals that using aluminum oxide as the dielectric layer effectively shifts the threshold voltage to the left, with the smallest ΔVTH. Finally, during long-term bias stress measurements, it is observed that devices with passivation layers exhibit rapid recovery after prolonged positive or negative bias stresses. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:24:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-25T16:24:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II Abstract IV 目次 VI 圖次 IX 表次 XVIII 1 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 論文架構 4 2 第二章 理論與文獻回顧 5 2.1 薄膜電晶體之簡介 5 2.1.1 薄膜電晶體之結構 5 2.1.2 薄膜電晶體之工作原理 7 2.1.3 薄膜電晶體重要之特徵參數 9 2.2 P型碲半導體簡介 14 2.2.1 碲的特性與結構 16 2.2.2 氧化碲的能隙與結構 18 2.3 碲與氧化碲薄膜電晶體之文獻回顧 25 3 第三章 實驗方法與步驟 40 3.1 薄膜之沉積製程 40 3.1.1 射頻磁控濺鍍 40 3.1.2 電子束蒸鍍 42 3.1.3 原子層沉積 43 3.2 微影製程 44 3.3 蝕刻製程 47 3.3.1 濕式蝕刻 47 3.3.2 乾式蝕刻 47 3.4 MIM結構之電容製備流程 50 3.5 氧化碲薄膜電晶體製備流程 52 3.6 測量與分析方法 58 3.6.1 電容-電壓量測方法 58 3.6.2 電晶體電流-電壓量測方法 59 3.6.3 元件長時間偏壓穩定性量測 60 3.6.4 低掠角X光繞射儀 61 3.6.5 原子力顯微鏡 62 4 第四章 結果與討論 64 4.1 MIM結構之電容-電壓特性 64 4.2 濺鍍功率對氧化碲薄膜電晶體的特性影響 66 4.2.1 不同通道厚度之氧化碲薄膜電晶體之電性分析 66 4.2.2 不同通道厚度之氧化碲薄膜電晶體沉積鈍化層之電性分析 78 4.3 氧氣分量對氧化碲薄膜電晶體之特性分析 93 4.3.1 增加氧氣分量之氧化碲薄膜電晶體電性分析 93 4.3.2 增加通氧量之氧化碲薄膜電晶體在鈍化層沉積後之電性分析 98 4.3.3 X光繞射譜 105 4.4 改變絕緣層對氧化碲薄膜電晶體電性分析 108 4.4.1 絕緣層為250℃ HfO2之氧化碲薄膜電晶體之電性分析 108 4.4.2 絕緣層為250℃HfO2氧化碲薄膜電晶體鈍化層沉積後之電性分析 113 4.4.3 絕緣層為150℃ Al2O3之氧化碲薄膜電晶體之電性分析 120 4.4.4 絕緣層150℃Al2O3氧化碲薄膜電晶體鈍化層沉積後之電性分析 125 4.5 氧化碲薄膜電晶體之逆時鐘遲滯現象討論 134 4.5.1 絕緣層150℃ HfO2之氧氧分量氧化碲薄膜電晶體遲滯現象討論 134 4.5.2 絕緣層250℃ HfO2之氧氧分量氧化碲薄膜電晶體遲滯現象討論 139 4.5.3 絕緣層150℃ Al2O3之氧氧分量氧化碲薄膜電晶體遲滯現象討論 144 4.6 氧化碲薄膜電晶體之長時間偏壓穩定性測試 150 5 第五章 結論與未來展望 178 5.1 結論 178 5.2 未來展望 180 A. 附錄 181 A.1濺鍍功率為25 W之氧化碲薄膜電晶體之電性分析 181 A.2本論文之薄膜電晶體轉換特性曲線線性標度 185 參考文獻 196 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 薄膜電晶體 | zh_TW |
| dc.subject | 碲 | zh_TW |
| dc.subject | 氧化碲 | zh_TW |
| dc.subject | 鈍化層 | zh_TW |
| dc.subject | 絕緣層 | zh_TW |
| dc.subject | 氧化鋁 | zh_TW |
| dc.subject | P型氧化物半導體 | zh_TW |
| dc.subject | aluminum oxide | en |
| dc.subject | P-type oxide semiconductor | en |
| dc.subject | thin-film transistors | en |
| dc.subject | tellurium | en |
| dc.subject | tellurium oxide | en |
| dc.subject | passivation | en |
| dc.subject | Insulator | en |
| dc.title | 低溫磁控濺鍍製備之P型碲/氧化碲薄膜電晶體之研究 | zh_TW |
| dc.title | Study on P-type Tellurium/Tellurium Oxide Thin-Film Transistors Processed at Low-Temperature by Magnetron Sputtering | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳建彰;李敏鴻 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Zhang Chen;Min-Hung Lee | en |
| dc.subject.keyword | P型氧化物半導體,薄膜電晶體,碲,氧化碲,鈍化層,絕緣層,氧化鋁, | zh_TW |
| dc.subject.keyword | P-type oxide semiconductor,thin-film transistors,tellurium,tellurium oxide,passivation,Insulator,aluminum oxide, | en |
| dc.relation.page | 203 | - |
| dc.identifier.doi | 10.6342/NTU202500683 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-02-14 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2028-02-13 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 此日期後於網路公開 2028-02-13 | 11.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
