請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96994完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李勇毅 | zh_TW |
| dc.contributor.advisor | Yung-I Lee | en |
| dc.contributor.author | 王憶慈 | zh_TW |
| dc.contributor.author | Yi-Tse Wang | en |
| dc.date.accessioned | 2025-02-25T16:23:47Z | - |
| dc.date.available | 2025-02-26 | - |
| dc.date.copyright | 2025-02-25 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-13 | - |
| dc.identifier.citation | 徐錦堂 (1993)。中國天麻栽培學。北京醫科大學、中國協和醫科大學聯合出版社。
Agrios, G. N. (2005). Plant pathology. 5th Edn. Elsevier. Amsterdam. Ahl, L. I., Grace, O. M., Pedersen, H. L., Willats, W. G., Jørgensen, B., & Rønsted, N. (2018). Analyses of Aloe polysaccharides using carbohydrate microarray profiling. Journal of AOAC International 101, 1720-1728. Anuja, N., Kothakota, N. J., Bashar, S., & Ampolu, S. Identification of Orchidaceae species by using various methods: A Review. Available at SSRN 4753125. Bae, E. K., An, C., Kang, M. J., Lee, S. A., Lee, S. J., Kim, K. T., & Park, E. J. (2022). Chromosome-level genome assembly of the fully mycoheterotrophic orchid Gastrodia elata. G3: Genes, Genomes, Genetics 12, jkab433. Balestrini, R., & Bonfante, P. (2005). The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall? Plant Biosystems 139, 8-15. Balestrini, R., Fochi, V., Lopa, A., Perotto, S. In: Lee, Y. I., Yeung, E. C. (eds) (2018). The use of laser microdissection to investigate cell-specific gene expression in orchid tissues. Orchid propagation: from laboratories to greenhouses--methods and protocols. Springer. New York. Balestrini, R., Josè-Estanyol, M., Puigdomènech, P., & Bonfante, P. (1997). Hydroxyproline-rich glycoprotein mRNA accumulation in maize root cells colonized by an arbuscular mycorrhizal fungus as revealed by in situ hybridization. Protoplasma 198, 36-42. Berry, A. M., Rasmussen, U., Bateman, K., Huss‐Danell, K., Lindwall, S., & Bergman, B. (2002). Arabinogalactan proteins are expressed at the symbiotic interface in root nodules of Alnus spp. New Phytologist 155, 469-479. Blokhina, O., Valerio, C., Sokołowska, K., Zhao, L., Kärkönen, A., Niittylä, T., & Fagerstedt, K. (2017). Laser capture microdissection protocol for xylem tissues of woody plants. Frontiers in Plant Science 7, 1965. Bonfante, P. (2001). At the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton. The Mycota IX. 45-61. Bonfante-Fasolo, P., Tamagnone, L., Peretto, R., Esquerré-Tugayé, M., Mazau, D., Mosiniak, M., & Vian, B. (1991). Immunocytochemical location of hydroxyproline rich glycoproteins at the interface between a mycorrhizal fungus and its host plants. Protoplasma 165, 127-138. Bonfante-Fasolo, P., Vian, B., Perotto, S., Faccio, A., & Knox, J. P. (1990). Cellulose and pectin localization in roots of mycorrhizal Allium porrum: labelling continuity between host cell wall and interfacial material. Planta 180, 537-547. Bozbuga, R., Lilley, C. J., Knox, J. P., & Urwin, P. E. (2018). Host-specific signatures of the cell wall changes induced by the plant parasitic nematode, Meloidogyne incognita. Scientific Reports 8, 17302. Brewin, N. J. (2004). Plant cell wall remodelling in the Rhizobium–legume symbiosis. Critical Reviews in Plant Sciences 23, 293-316. Brundrett, M. (2004). Diversity and classification of mycorrhizal associations. Biological Reviews 79, 473-495. Brundrett, M. C. (2002). Tansley review no. 134: Coevolution of roots and mycorrhizas of land plants. New Phytologist 154, 275-304. Burgeff, H. (1943). Problematik der Mycorhiza. Naturwissenschaften 31, 558-567. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., & Wittwer, C. T. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55, 611-622. Cagnola, J. I., Dumont de Chassart, G. J., Ibarra, S. E., Chimenti, C., Ricardi, M. M., Delzer, B., Ghiglione, H., Zhu, T., Otegui, M. E., & Estevez, J. M. (2018). Reduced expression of selected FASCICLIN‐LIKE ARABINOGALACTAN PROTEIN genes associates with the abortion of kernels in field crops of Zea mays (maize) and of Arabidopsis seeds. Plant, Cell & Environment 41, 661-674. Cassab, G. I., & Varner, J. E. (1987). Immunocytolocalization of extensin in developing soybean seed coats by immunogold-silver staining and by tissue printing on nitrocellulose paper. The Journal of Cell Biology 105, 2581-2588. Castilleux, R., Plancot, B., Gügi, B., Attard, A., Loutelier-Bourhis, C., Lefranc, B., Nguema-Ona, E., Arkoun, M., Yvin, J.C., & Driouich, A. (2020). Extensin arabinosylation is involved in root response to elicitors and limits oomycete colonization. Annals of Botany 125, 751-763. Castilleux, R., Plancot, B., Ropitaux, M., Carreras, A., Leprince, J., Boulogne, I., Follet-Gueye, M.L., Popper, Z. A., Driouich, A., & Vicré, M. (2018). Cell wall extensins in root–microbe interactions and root secretions. Journal of Experimental Botany 69, 4235-4247. Castilleux, R., Plancot, B., Vicré, M., Nguema-Ona, E., & Driouich, A. (2021). Extensin, an underestimated key component of cell wall defence? Annals of Botany 127, 709-713. Costa, M., Pereira, A. M., Pinto, S. C., Silva, J., Pereira, L. G., & Coimbra, S. (2019). In silico and expression analyses of fasciclin-like arabinogalactan proteins reveal functional conservation during embryo and seed development. Plant Reproduction 32, 353-370. Davies, H. A., Daniels, M. J., & Dow, J. M. (1997). Induction of extracellular matrix glycoproteins in Brassica petioles by wounding and in response to Xanthomonas campestris. Molecular Plant-Microbe Interactions 10, 812-820. Ding, L., & Zhu, J. K. (1997). A role for arabinogalactan-proteins in root epidermal cell expansion. Planta 203, 289-294. Esquerré-Tugayé, M., & Mazau, D. (1974). Effect of a fungal disease on extensin, the plant cell wall glycoprotein. Journal of Experimental Botany 25, 509-513. Ferrari, S., Savatin, D. V., Sicilia, F., Gramegna, G., Cervone, F., & Lorenzo, G. D. (2013). Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Frontiers in Plant Science 4, 49. Gallaud, I. (1905). Etudes sur les mycorrhizes endotrophes. Revue Generate de Botanique 17, 5-48. Gan, Q. X., Peng, M. Y., Wei, H. B., Chen, L. L., Chen, X. Y., Li, Z. H., An, G. Q., & Ma, Y. T. (2024). Gastrodia elata polysaccharide alleviates Parkinson's disease via inhibiting apoptotic and inflammatory signaling pathways and modulating the gut microbiota. Food & Function 15, 2920-2938. Gigli-Bisceglia, N., Engelsdorf, T., & Hamann, T. (2020). Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cellular and Molecular Life Sciences 77, 2049-2077. Harrison, M. J., & van Buuren, M. L. (1995). A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378, 626-629. Held, M. A., Tan, L., Kamyab, A., Hare, M., Shpak, E., & Kieliszewski, M. J. (2004). Di-isodityrosine is the intermolecular cross-link of isodityrosine-rich extensin analogs cross-linked in vitro. Journal of Biological Chemistry 279, 55474-55482. Hepler, P. K., & Winship, L. J. (2010). Calcium at the cell wall‐cytoplast interface. Journal of Integrative Plant Biology 52, 147-160. Herger, A., Dünser, K., Kleine-Vehn, J., & Ringli, C. (2019). Leucine-rich repeat extensin proteins and their role in cell wall sensing. Current Biology 29, R851-R858. Ho, L. H., Lee, Y. I., Hsieh, S. Y., Lin, I. S., Wu, Y. C., Ko, H. Y., Klemens, P. A., Neuhaus, H. E., Chen, Y. M., & Huang, T. P. (2021). GeSUT4 mediates sucrose import at the symbiotic interface for carbon allocation of heterotrophic Gastrodia elata (Orchidaceae). Plant, Cell & Environment 44, 20-33. Hocq, L., Habrylo, O., Sénéchal, F., Voxeur, A., Pau-Roblot, C., Safran, J., Fournet, F., Bassard, S., Battu, V., & Demailly, H. (2024). Mutation of AtPME2, a pH-dependent pectin methylesterase, affects cell wall structure and hypocotyl elongation. Plant and Cell Physiology 65, 301-318. Huang, G. Q., Gong, S. Y., Xu, W. L., Li, W., Li, P., Zhang, C. J., Li, D. D., Zheng, Y., Li, F. G., & Li, X. B. (2013). A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. Plant Physiology 161, 1278-1290. Kim, S. J., Bhandari, D. D., Sokoloski, R., & Brandizzi, F. (2023). Immune activation during Pseudomonas infection causes local cell wall remodeling and alters AGP accumulation. Plant Journal 116, 541-557. Kusano, S. (1911). Gastrodia elata and its symbiotic association with Armillaria mellea. Journal of the College of Agriculture Imperial University of Tokyo 4, 1-65. Laurent, P., Tagu, D., De Carvalho, D., Nehls, U., De Bellis, R., Balestrini, R., Bauw, G., Inz, D., Bonfante, P., & Martin, F. (1999). A novel class of cell wall polypeptides in Pisolithus tinctorius contain a cell-adhesion RGD motif and are up-regulated during the development of Eucalyptus globulus ectomycorrhiza. Molecular Plant-Microbe Interactions 12, 862-871. Leake, J. R. (1994). The biology of myco‐heterotrophic (‘saprophytic’) plants. New Phytologist 127, 171-216. Lee, Y. I., Hsu, S. T., & Yeung, E. C. (2013). Orchid protocorm‐like bodies are somatic embryos. American Journal of Botany 100, 2121-2131. Li, Y. Y., Chen, X. M., Zhang, Y., Cho, Y. H., Wang, A. R., Yeung, E. C., Zeng, X., Guo, S. X., & Lee, Y. I. (2018). Immunolocalization and changes of hydroxyproline-rich glycoproteins during symbiotic germination of Dendrobium officinale. Frontiers in Plant Science 9, 552. Lionetti, V., Fabri, E., De Caroli, M., Hansen, A. R., Willats, W. G., Piro, G., & Bellincampi, D. (2017). Three pectin methylesterase inhibitors protect cell wall integrity for Arabidopsis immunity to Botrytis. Plant Physiology 173, 1844-1863. Lionetti, V., Raiola, A., Camardella, L., Giovane, A., Obel, N., Pauly, M., Favaron, F., Cervone, F., & Bellincampi, D. (2007). Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiology 143, 1871-1880. Liu, J. J., Yang, X. Q., Li, Z. Y., Miao, J. Y., Li, S. B., Zhang, W. P., Lin, Y. C., & Lin, L. B. (2024). The role of symbiotic fungi in the life cycle of Gastrodia elata Blume (Orchidaceae): a comprehensive review. Frontiers in Plant Science 14, 1309038. Ma, Y., Zeng, W., Bacic, A., & Johnson, K. (2018). AGPs through time and space. Annual Plant Reviews Online 1, 767-804. doi: 10.1002/9781119312994.apr0608. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15. 473-497. Narváez-Barragán, D. A., Tovar-Herrera, O. E., Guevara-García, A., Serrano, M., & Martinez-Anaya, C. (2022). Mechanisms of plant cell wall surveillance in response to pathogens, cell wall-derived ligands and the effect of expansins to infection resistance or susceptibility. Frontiers in Plant Science 13, 969343. Nehls, U., Wiese, J., Guttenberger, M., & Hampp, R. (1998). Carbon allocation in ectomycorrhizas: identification and expression analysis of an Amanita muscaria monosaccharide transporter. Molecular Plant-Microbe Interactions 11, 167-176. Peaucelle, A., Wightman, R., & Höfte, H. (2015). The control of growth symmetry breaking in the Arabidopsis hypocotyl. Current Biology 25, 1746-1752. Peretto, R., Bonfante, P., Bettini, V., Favaron, F., & Alghisi, P. (1995). Polygalacturonase activity and location in arbuscular mycorrhizal roots of Allium porrum L. Mycorrhiza 5, 157-163. Peterson, R. L., & Massicotte, H. B. (2004). Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Canadian Journal of Botany 82, 1074-1088. Peterson, R. L., Massicotte, H. B., & Melville, L. H. (2004). Mycorrhizas: anatomy and cell biology. NRC Research press, Otawa. Peterson, R. L., Uetake, Y., & Zelmer, C. (1998). Fungal symbioses with orchid protocorms. Symbiosis 25, 29-55. Pfütze, S., Charria‐Girón, E., Schulzke, E., Toshe, R., Khonsanit, A., Franke, R., Surup, F., Brönstrup, M., & Stadler, M. (2024). Depicting the chemical diversity of bioactive meroterpenoids produced by the largest organism on Earth. Angewandte Chemie International Edition 63, e202318505. Picton, J., & Steer, M. (1983). Evidence for the role of Ca 2+ ions in tip extension in pollen tubes. Protoplasma 115, 11-17. Plancot, B., Santaella, C., Jaber, R., Kiefer-Meyer, M. C., Follet-Gueye, M.-L., Leprince, J., Gattin, I., Souc, C., Driouich, A., & Vicré-Gibouin, M. (2013). Deciphering the responses of root border-like cells of Arabidopsis and flax to pathogen-derived elicitors. Plant Physiology 163, 1584-1597. Rasmussen, H. N. (2002). Recent developments in the study of orchid mycorrhiza. Plant and Soil 244, 149-163. Ridley, B. L., O'Neill, M. A., & Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57, 929-967. Ruiz-Avila, L., Burgess, S. R., Stiefel, V., Ludevid, M. D., & Puigdomenech, P. (1992). Accumulation of cell wall hydroxyproline-rich glycoprotein mRNA is an early event in maize embryo cell differentiation. Proceedings of the National Academy of Sciences 89, 2414-2418. Schultz, C. J., Rumsewicz, M. P., Johnson, K. L., Jones, B. J., Gaspar, Y. M., & Bacic, A. (2002). Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case. Plant Physiology 129, 1448-1463. Shi, H., Kim, Y., Guo, Y., Stevenson, B., & Zhu, J.-K. (2003). The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15, 19-32. Shin, Y., Chane, A., Jung, M., & Lee, Y. (2021). Recent advances in understanding the roles of pectin as an active participant in plant signaling networks. Plants 10, 1712. Showalter, A. M., Keppler, B., Lichtenberg, J., Gu, D., & Welch, L. R. (2010). A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiology 153, 485-513. Sillo, F., Fangel, J. U., Henrissat, B., Faccio, A., Bonfante, P., Martin, F., Willats, W. G., & Balestrini, R. (2016). Understanding plant cell-wall remodelling during the symbiotic interaction between Tuber melanosporum and Corylus avellana using a carbohydrate microarray. Planta 244, 347-359. Smith, S., & Read, D. (1997). Mycorrhizal symbiosis. 3rd Edn. Academic Press. San Diego. Stiefel, V., Ruiz-Avila, L., Raz, R., Pilar Valles, M., Gómez, J., Pagés, M., Martínez-Izquierdo, J. A., Ludevid, M. D., Langdale, J. A., & Nelson, T. (1990). Expression of a maize cell wall hydroxyproline-rich glycoprotein gene in early leaf and root vascular differentiation. Plant Cell 2, 785-793. Su, C., Zhang, G., Rodriguez-Franco, M., Hinnenberg, R., Wietschorke, J., Liang, P., Yang, W., Uhler, L., Li, X., & Ott, T. (2023). Transcellular progression of infection threads in Medicago truncatula roots is associated with locally confined cell wall modifications. Current Biology 33, 533-542. e535. Sujkowska-Rybkowska, M., & Borucki, W. (2014). Accumulation and localization of extensin protein in apoplast of pea root nodule under aluminum stress. Micron 67, 10-19. The International Plant Names Index and World Checklist of Vascular Plants 2024. Published on the Internet at http://www.ipni.org and https://powo.science.kew.org/ Underwood, W. (2012). The plant cell wall: a dynamic barrier against pathogen invasion. Frontiers in Plant Science 3, 85. Valadares, R., Perotto, S., Santos, E., & Lambais, M. R. (2014). Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination. Mycorrhiza 24, 349-360. Van Buuren, M. L., Maldonado-Mendoza, I. E., Trieu, A. T., Blaylock, L. A., & Harrison, M. J. (1999). Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis formed between Medicago truncatula and Glomus versiforme. Molecular Plant-Microbe Interactions 12, 171-181. VandenBosch, K. A., Bradley, D. J., Knox, J. P., Perotto, S., Butcher, G. W., & Brewin, N. J. (1989). Common components of the infection thread matrix and the intercellular space identified by immunocytochemical analysis of pea nodules and uninfected roots. The EMBO Journal 8, 335-341. Verhertbruggen, Y., Marcus, S. E., Haeger, A., Ordaz-Ortiz, J. J., & Knox, J. P. (2009). An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydrate Research 344, 1858-1862. Volpi, C., Janni, M., Lionetti, V., Bellincampi, D., Favaron, F., & D'Ovidio, R. (2011). The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat. Molecular Plant-Microbe Interactions 24, 1012-1019. Wang, H., Wang, Z. Y., Zhang, F. S., Liu, J., & He, X. X. (1997). A Cytological Study on the Nutrient Uptake Mechanism of a Saprophytic Orchid Gastrodia elata. Journal of Integrative Plant Biology 39, 500-504. Wang, W., Wang, Y., Wang, F., Xie, G., Liu, S., Li, Z., Wang, P., Liu, J., & Lin, L. (2024). Gastrodin regulates the TLR4/TRAF6/NF-κB pathway to reduce neuroinflammation and microglial activation in an AD model. Phytomedicine 128, 155518. Wei, G., & Shirsat, A. H. (2006). Extensin over‐expression in Arabidopsis limits pathogen invasiveness. Molecular Plant Pathology 7, 579-592. Willats, W. G., McCartney, L., Mackie, W., & Knox, J. P. (2001). Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology 47, 9-27. Willats, W., Limberg, G., Buchholt, H., Van Alebeek, G., Benen, J., Christensen, T., Visser, J., Voragen, A., Mikkelsen, J., & Knox, J. (2000). Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydrate Research 327, 309-320. Wolf, S., Mouille, G., & Pelloux, J. (2009). Homogalacturonan methyl-esterification and plant development. Molecular Plant 2, 851-860. Wormit, A., & Usadel, B. (2018). The multifaceted role of pectin methylesterase inhibitors (PMEIs). International Journal of Molecular Sciences 19, 2878. Wu, Y., Fan, W., Li, X., Chen, H., Takáč, T., Šamajová, O., Fabrice, M. R., Xie, L., Ma, J., & Šamaj, J. (2017). Expression and distribution of extensins and AGPs in susceptible and resistant banana cultivars in response to wounding and Fusarium oxysporum. Scientific Reports 7, 42400. Xie, D., Ma, L., Šamaj, J., & Xu, C. (2011). Immunohistochemical analysis of cell wall hydroxyproline-rich glycoproteins in the roots of resistant and susceptible wax gourd cultivars in response to Fusarium oxysporum f. sp. Benincasae infection and fusaric acid treatment. Plant Cell Reports 30, 1555-1569. Xu, J. T. (1989). Studies on the life cycle of Gastrodia elata. Acta Academiae Medicinae Sinicae 11, 237-241. Xu, J. T., & Guo, S. X. (1989). Fungus associated with nutrition of seed germination of Gastrodia elata-Mycena osmundicola Lange. Acta Mycologica Sinica 8, 221-226. Yeh, C. H., Liao, F. S., Huang, K. L., Miyajima, I., & Lee, Y. I. (2017). An efficient protocol of protocorm-like bodies regeneration from callus cultures of Gastrodia elata Blume and the further associations with mycorrhizal fungi. Journal of the Faculty of Agriculture, Kyushu University 62, 39-46. Zang, L., Zheng, T., & Su, X. (2015). Advances in research of fasciclin-like arabinogalactan proteins (FLAs) in plants. Plant Omics 8, 190-194. Zhang, Q., Zhang, D. F., Wu, M. L., Guo, J., Sun, C. Z., & Xie, C. X. (2017). Predicting the global areas for potential distribution of Gastrodia elata based on ecological niche models. Chinese Journal of Plant Ecology 41, 770-778. Zhang, X., Ren, Y., & Zhao, J. (2008). Roles of extensins in cotyledon primordium formation and shoot apical meristem activity in Nicotiana tabacum. Journal of Experimental Botany 59, 4045-4058. Zhao, Q., & Dixon, R. A. (2014). Altering the cell wall and its impact on plant disease: from forage to bioenergy. Annual Review of Phytopathology 52, 69-91. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96994 | - |
| dc.description.abstract | 天麻 (Gastrodia elata) 是一種完全真菌異營性的蘭科植物,其塊莖發育完全依賴與一種木材腐朽菌-蜜環菌 (Armillaria spp.) 的共生關係來獲取養分。在共生培養系統中,我們觀察到蜜環菌感染的塊莖基部細胞結構發生了顯著變化,細胞分化為三種不同的類型,包括感染細胞、大細胞和內部皮層細胞。其中,菌絲侵入主要局限於大細胞,而大細胞會明顯膨大,並在細胞壁上出現不均勻的加厚現象。因此,我們致力於探索天麻與蜜環菌共生過程中細胞壁成分的變化,特別關注果膠修飾相關的蛋白質、伸展蛋白 (extensin) 及阿拉伯半乳聚糖蛋白 (AGPs) 。我們使用定量即時聚合酶鏈反應 (quantitative real time polymerase chain reaction, qPCR) 分析與雷射切割 (laser microdissection, LMD) 技術來收集不同的細胞類型,以測定基因相對表達量;使用綜合微陣列聚合物分析 (comprehensive microarray polymer profiling, CoMPP) 來分析細胞壁抗原決定位;並透過免疫膠粒金標誌技術比較塊莖共生前後不同細胞層中的抗原決定位分布。研究結果顯示,果膠甲基酯酶 (pectin methylesterase, PME) 表現於共生後下調,顯示同型半乳糖醛酸聚糖 (homogalacturonan, HG) 為高度甲基酯化的狀態。JIM5和JIM7在大細胞的細胞壁上表現出密集的膠粒金標誌,而 JIM20 在由宿主形成的共生界面上顯示出密集的膠粒金標誌,並且在CoMPP分析中感染後的塊莖有強烈的JIM20訊號。根據基因表達量的變化及細胞壁成分的累積位置,推測細胞壁保護植物避免受蜜環菌病害入侵的同時,也在共生界面處進行與真菌的營養與訊息交流。這種共生關係在天麻和蜜環菌之間形成了一種「亦敵亦友」的狀態,其相關的分子調控機制仍有許多未解之謎值得探索,深入研究感染蜜環菌前後的細胞壁組成變化將有助於更全面地了解它們的共生關係。 | zh_TW |
| dc.description.abstract | Gastrodia elata, a fully myco-heterotrophic orchid, relies entirely on a symbiotic relationship with a wood-decaying fungus, Armillaria for its nutrient supply during tuber development. In the symbiotic culture system, notable changes were observed in the cell differentiation of the basal mycorrhizal tuber. Upon fungal infection, cells differentiate into three distinct types: the infected cell, the large boundary cell, and the inner cortical cell. Fungal invasion is restricted by the large boundary cell. Simultaneously, the large boundary cells enlarge significantly, with some uneven thickening on its wall. Thus, this study explores the cell wall remodeling during symbiosis with Armillaria, focusing on proteins related to pectin modification, extensin, and arabinogalactan proteins (AGPs). We used quantitative real time polymerase chain reaction (qPCR) analysis and laser microdissection (LMD) to dissect and capture different cell layers to determine gene expression levels in specific cell types, comprehensive microarray polymer profiling (CoMPP) to analyze cell wall epitopes, and immunogold localization to detect the distribution of epitopes across different cell layers before and after infection. Our findings reveal that pectin methylesterase (PME) expression was downregulated after symbiosis, indicating that homogalacturonan (HG) was highly methyl esterified. Abundant labeling of JIM5 and JIM7 was observed on the large boundary cell wall, while JIM20 showed abundant labeling on the interfacial matrix and a strong signal in the mycorrhizal tuber in CoMPP analysis. Based on the changes in gene expression levels and the specific accumulation of these cell wall components, it is proposed that the cell wall serves as a barrier to protect against Armillaria invasion while simultaneously regulating nutrient transport and signal exchange with the fungus at the interfacial matrix. The symbiotic relationship between G. elata and Armillaria forms a "frenemy" situation, with the molecular regulatory mechanisms still holding many mysteries to explore. Understanding cell wall remodeling will provide deeper insights into their symbiotic relationship. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:23:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-25T16:23:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xi LIST OF SUPPLEMENTAL TABLES xii Chapter 1 Introduction 1 1.1 The mycorrhiza symbiotic relationship 1 1.2 Gastrodia elata-an achlorophyllous mycoheterotrophic orchid 2 1.3 Medicinal value of G. elata 2 1.4 The symbiotic relationship between G. elata and Armillaria spp. 3 1.5 Armillaria is a wood-decaying fungus 3 1.6 Plant responses to external microbes 4 1.7 The cell differentiation after Armillaria inoculation 5 1.8 Modification of plant cell wall 6 1.8.1 Pectin synthesis and modification 6 1.8.2 Cell wall protein in pathogenic defense 8 1.9 Aims of this study 9 Chapter 2 Material and Methods 10 2.1 The symbiotic culture of Gastrodia elata and Armillaria 10 2.2 Fixation and histochemical study 10 2.3 Ultrastructure study through transmission electron microscopy 11 2.4 The transcriptome data of Gastrodia elata 12 2.5 RNA extraction and analyzing the mRNA expression 12 2.6 Cryostat sectioning 14 2.7 Laser microdissection 15 2.8 One-Step RT-PCR 16 2.9 Alcohol-insoluble residues (AIR) 16 2.10 Comprehensive microarray polymer profiling (CoMPP) 17 2.11 Immunogold labeling 18 2.12 The image processing of immunogold labeling 19 Chapter 3 Result 20 3.1 The histological observation of the mycorrhizal tuber 20 3.2 Gene expression level between mycorrhizal and non-mycorrhizal tubers 21 3.2.1 GePME1 was downregulation after fungal colonization 21 3.2.2 Isolation of different cell layers to compare gene expression level 22 3.3 Cell wall component changes and epitope localization in symbiotic relationships 22 3.3.1 CoMPP analysis showed high detection of extensin in mycorrhizal tubers 22 3.3.2 Immunolocalization of JIM5, JIM7, JIM20, and JIM13 in different cell layers of mycorrhizal and non-mycorrhizal tubers 24 Chapter 4 Discussion 27 4.1 HG exhibits dynamic methyl-esterification in different cell layers of mycorrhizal tubers 27 4.1.1 PME was down-regulated in mycorrhizal tuber 27 4.1.2 HG was both low and highly methyl-esterified in the large boundary cell 28 4.1.3 HG showed minimal signal in CoMPP analysis 30 4.2 JIM20 was highly detected in mycorrhizal tuber 31 4.2.1 JIM20 showed strong labeling on interfacial matrix and infected cell wall 31 4.2.2 Gene expression of EXT2 and LRX4 were higher in symbiotic relationship 33 4.3 Arabinogalactan proteins were slightly detected in mycorrhizal tuber. 34 4.3.1 The gene expression of FLA showed higher in mycorrhizal tuber 34 4.3.2 JIM13 was slightly labeled on different cell layers 35 4.3.3 AGPs showed slightly changes before and after infection in CoMPP analysis 36 Chapter 5 Conclusion 38 Reference 39 Table 48 Figure 52 Supplemental table 86 | - |
| dc.language.iso | en | - |
| dc.subject | 共生 | zh_TW |
| dc.subject | 菌根 | zh_TW |
| dc.subject | 細胞壁重塑 | zh_TW |
| dc.subject | 真菌異營性 | zh_TW |
| dc.subject | 果膠 | zh_TW |
| dc.subject | 細胞壁蛋白 | zh_TW |
| dc.subject | 天麻 | zh_TW |
| dc.subject | cell wall protein | en |
| dc.subject | Gastrodia elata | en |
| dc.subject | symbiosis | en |
| dc.subject | mycorrhiza | en |
| dc.subject | cell wall remodeling | en |
| dc.subject | myco-heterotrophic | en |
| dc.subject | pectin | en |
| dc.title | 探討天麻在與蜜環菌共生關係中的細胞壁變化 | zh_TW |
| dc.title | Investigating the cell wall remodeling of Gastrodia elata symbiotic culture with Armillaria spp. | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭惠國;陳啟予 | zh_TW |
| dc.contributor.oralexamcommittee | Ooi-Kock Teh;Chi-Yu Chen | en |
| dc.subject.keyword | 天麻,共生,菌根,細胞壁重塑,真菌異營性,果膠,細胞壁蛋白, | zh_TW |
| dc.subject.keyword | Gastrodia elata,symbiosis,mycorrhiza,cell wall remodeling,myco-heterotrophic,pectin,cell wall protein, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202500534 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-02-13 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| dc.date.embargo-lift | 2027-03-01 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 此日期後於網路公開 2027-03-01 | 6.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
