Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96965
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor汪根欉zh_TW
dc.contributor.advisorKen-Tsung Wongen
dc.contributor.author郭沛玟zh_TW
dc.contributor.authorPei-Wen Kuoen
dc.date.accessioned2025-02-25T16:15:53Z-
dc.date.available2025-02-26-
dc.date.copyright2025-02-25-
dc.date.issued2025-
dc.date.submitted2025-02-10-
dc.identifier.citation第一章
1. Weissleder, R.; Pittet, M. J. Nature 2008, 452 (7187), 580-589.
2. Wu, D.; Sedgwick, A. C.; Gunnlaugsson, T.; Akkaya, E. U.; Yoon, J.; James, T. D. Chem. Soc. Rev. 2017, 46 (23), 7105-7123, 10.1039/C7CS00240H.
3. Weissleder, R. Nat. Biotechnol. 2001, 19 (4), 316-317.
4. Han, S.; Roh, D.; Park, J.; Shin, H. Design of Multi-Wavelength Optical Sensor Module for Depth-Dependent Photoplethysmography. In Sensors, 2019; Vol. 19.
5. Li, C.; Chen, G.; Zhang, Y.; Wu, F.; Wang, Q. J. Am. Chem. Soc. 2020, 142 (35), 14789-14804.
6. He, S.; Song, J.; Qu, J.; Cheng, Z. Chem. Soc. Rev. 2018, 47 (12), 4258-4278, 10.1039/C8CS00234G.
7. Liu, C.; Scott, C. N. Dyes Pigm. 2021, 196, 109792.
8. Bai, L.; Sun, P.; Liu, Y.; Zhang, H.; Hu, W.; Zhang, W.; Liu, Z.; Fan, Q.; Li, L.; Huang, W. Chem. Commun. 2019, 55 (73), 10920-10923.
9. Zhou, H.-J.; Ren, T.-B. Chem. Asian J. 2022, 17 (8), e202200147.
10. Su, Y.; Song, H.; Lv, Y. Microchem. J. 2019, 146, 83-97.
11. Yang, M.; Huang, J.; Fan, J.; Du, J.; Pu, K.; Peng, X. Chem. Soc. Rev. 2020, 49 (19), 6800-6815, 10.1039/D0CS00348D.
12. Merényi, G.; Lind, J.; Eriksen, T. E. J. Biolumin. Chemilumin. 1990, 5 (1), 53-56.
13. White, E. H.; Zafiriou, O.; Kagi, H. H.; Hill, J. H. M. J. Am. Chem. Soc. 1964, 86 (5), 940-941.
14. Yuan, H.; Chong, H.; Wang, B.; Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S. J. Am. Chem. Soc. 2012, 134 (32), 13184-13187.
15. Chen, F.; Xia, X.; Ye, D.; Li, T.; Huang, X.; Cai, C.; Zhu, C.; Lin, C.; Deng, T.; Liu, F. Anal. Chem. 2023, 95 (13), 5773-5779.
16. Goto, T.; Takagi, T. Bull. Chem. Soc. Jpn. 1980, 53 (3), 833-834.
17. Sekiya, M.; Umezawa, K.; Sato, A.; Citterio, D.; Suzuki, K. Chem. Commun. 2009, (21), 3047-3049, 10.1039/B903751A.
18. Niu, J.; Fan, J.; Wang, X.; Xiao, Y.; Xie, X.; Jiao, X.; Sun, C.; Tang, B. Anal. Chem. 2017, 89 (13), 7210-7215.
19. Schaap, A. P.; Gagnon, S. D. J. Am. Chem. Soc. 1982, 104 (12), 3504-3506.
20. Gnaim, S.; Green, O.; Shabat, D. Chem. Commun. 2018, 54 (17), 2073-2085, 10.1039/C8CC00428E.
21. Eilon-Shaffer, T.; Roth-Konforti, M.; Eldar-Boock, A.; Satchi-Fainaro, R.; Shabat, D. Org. Biomol. Chem. 2018, 16 (10), 1708-1712, 10.1039/C8OB00087E.
22. Hananya, N.; Eldar Boock, A.; Bauer, C. R.; Satchi-Fainaro, R.; Shabat, D. J. Am. Chem. Soc. 2016, 138 (40), 13438-13446.
23. Huang, J.; Zhang, C.; Wang, X.; Wei, X.; Pu, K. Angewandte Chemie International Edition 2023, 62 (24), e202303982.
24. Chandross, E. A. Tetrahedron Lett. 1963, 4 (12), 761-765.
25. Delafresnaye, L.; Bloesser, F. R.; Kockler, K. B.; Schmitt, C. W.; Irshadeen, I. M.; Barner-Kowollik, C. Chem. Eur. J. 2020, 26 (1), 114-127.
26. Maruyama, T.; Narita, S.; Motoyoshiya, J. J. Photochem. Photobiol. A: Chem. 2013, 252, 222-231.
27. Augusto, F. A.; de Souza, G. A.; de Souza Júnior, S. P.; Khalid, M.; Baader, W. J. Photochem. Photobiol. 2013, 89 (6), 1299-1317.
28. Yang, Y.; Wang, S.; Lu, L.; Zhang, Q.; Yu, P.; Fan, Y.; Zhang, F. Angew. Chem. Int. Ed. Engl. 2020, 59 (42), 18380-18385.
29. Rauhut, M. M.; Bollyky, L. J.; Roberts, B. G.; Loy, M.; Whitman, R. H.; Iannotta, A. V.; Semsel, A. M.; Clarke, R. A. J. Am. Chem. Soc. 1967, 89 (25), 6515-6522.
30. Mao, D.; Wu, W.; Ji, S.; Chen, C.; Hu, F.; Kong, D.; Ding, D.; Liu, B. Chem 2017, 3 (6), 991-1007.
31. Chochos, C. L.; Choulis, S. A. Prog. Polym. Sci. 2011, 36 (10), 1326-1414.
32. Padilha, L. A.; Webster, S.; Hu, H.; Przhonska, O. V.; Hagan, D. J.; Van Stryland, E. W.; Bondar, M. V.; Davydenko, I. G.; Slominsky, Y. L.; Kachkovski, A. D. Chem. Phys. 2008, 352 (1), 97-105.
33. Fitzner, R.; Reinold, E.; Mishra, A.; Mena-Osteritz, E.; Ziehlke, H.; Körner, C.; Leo, K.; Riede, M.; Weil, M.; Tsaryova, O.; et al. Adv. Funct. Mater. 2011, 21 (5), 897-910.
34. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Chem. Rev. 2009, 109 (11), 5868-5923.
35. Ajayaghosh, A. Chem. Soc. Rev. 2003, 32 (4), 181-191, 10.1039/B204251G.
36. Li, Y.; Zha, M.; Yang, G.; Wang, S.; Ni, J.-S.; Li, K. Chem. Eur. J. 2021, 27 (51), 13085-13091.
37. Papež, N.; Dallaev, R.; Ţălu, Ş.; Kaštyl, J. Materials 2021, 14 (11), 3075.
38. Lee, T. D.; Ebong, A. U. Renew. Sustain. Energy Rev. 2017, 70, 1286-1297.
39. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110 (11), 6595-6663.
40. Su, Y.-W.; Lan, S.-C.; Wei, K.-H. Mater. Today 2012, 15 (12), 554-562.
41. Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photonics 2014, 8 (7), 506-514.
42. Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342 (6156), 344-347.
43. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7 (3), 982-988, 10.1039/C3EE43822H.
44. Nasti, G.; Abate, A. Adv. Energy Mater. 2020, 10 (13), 1902467.
45. Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. J. Am. Chem. Soc. 2015, 137 (32), 10276-10281.
46. Lin, X.; Cui, D.; Luo, X.; Zhang, C.; Han, Q.; Wang, Y.; Han, L. Energy Environ. Sci. 2020, 13 (11), 3823-3847, 10.1039/D0EE02017F.
47. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131 (17), 6050-6051.
48. Kim, M.; Jeong, J.; Lu, H.; Lee, T. K.; Eickemeyer, F. T.; Liu, Y.; Choi, I. W.; Choi, S. J.; Jo, Y.; Kim, H.-B.; et al. Science 2022, 375 (6578), 302-306.
49. Gao, F.; Zhao, Y.; Zhang, X.; You, J. Adv. Energy Mater. 2020, 10 (13), 1902650.
50. Son, D.-Y.; Kim, S.-G.; Seo, J.-Y.; Lee, S.-H.; Shin, H.; Lee, D.; Park, N.-G. J. Am. Chem. Soc. 2018, 140 (4), 1358-1364.
51. Zheng, F.; Chen, W.; Bu, T.; Ghiggino, K. P.; Huang, F.; Cheng, Y.; Tapping, P.; Kee, T. W.; Jia, B.; Wen, X. Adv. Energy Mater. 2019, 9 (24), 1901016.
52. Gong, X.; Guan, L.; Pan, H.; Sun, Q.; Zhao, X.; Li, H.; Pan, H.; Shen, Y.; Shao, Y.; Sun, L.; et al. Adv. Funct. Mater. 2018, 28 (50), 1804286.
53. Kim, G. Y.; Oh, S. H.; Nguyen, B. P.; Jo, W.; Kim, B. J.; Lee, D. G.; Jung, H. S. J. Phys. Chem. Lett. 2015, 6 (12), 2355-2362.
54. He, J.; Chen, T. J. Mater. Chem. A 2015, 3 (36), 18514-18520, 10.1039/C5TA05373K.
55. Li, N.; Tao, S.; Chen, Y.; Niu, X.; Onwudinanti, C. K.; Hu, C.; Qiu, Z.; Xu, Z.; Zheng, G.; Wang, L.; et al. Nat. Energy 2019, 4 (5), 408-415.
56. Son, D.-Y.; Lee, J.-W.; Choi, Y. J.; Jang, I.-H.; Lee, S.; Yoo, P. J.; Shin, H.; Ahn, N.; Choi, M.; Kim, D.; et al. Nat. Energy 2016, 1 (7), 16081.
57. Hawash, Z.; Raga, S. R.; Son, D.-Y.; Ono, L. K.; Park, N.-G.; Qi, Y. J. Phys. Chem. Lett. 2017, 8 (17), 3947-3953.
58. Wang, Z.; Lin, Q.; Chmiel, F. P.; Sakai, N.; Herz, L. M.; Snaith, H. J. Nat. Energy 2017, 2 (9), 17135.
59. Wang, F.; Geng, W.; Zhou, Y.; Fang, H.-H.; Tong, C.-J.; Loi, M. A.; Liu, L.-M.; Zhao, N. Adv. Mater. 2016, 28 (45), 9986-9992.
60. Hu, Y.; Schlipf, J.; Wussler, M.; Petrus, M. L.; Jaegermann, W.; Bein, T.; Müller-Buschbaum, P.; Docampo, P. ACS Nano 2016, 10 (6), 5999-6007.
61. Xu, J.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J. J.; et al. Nat. Commun. 2015, 6 (1), 7081.
62. Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. ACS Nano 2014, 8 (10), 9815-9821.
63. Zhang, Y.; Grancini, G.; Fei, Z.; Shirzadi, E.; Liu, X.; Oveisi, E.; Tirani, F. F.; Scopelliti, R.; Feng, Y.; Nazeeruddin, M. K.; et al. Nano Energy 2019, 58, 105-111.
64. Lin, C.-T.; De Rossi, F.; Kim, J.; Baker, J.; Ngiam, J.; Xu, B.; Pont, S.; Aristidou, N.; Haque, S. A.; Watson, T. J. Mater. Chem. A 2019, 7 (7), 3006-3011.
65. Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; et al. Nat. Commun. 2017, 8 (1), 15684.
66. Zhang, H.; Wu, Y.; Shen, C.; Li, E.; Yan, C.; Zhang, W.; Tian, H.; Han, L.; Zhu, W.-H. Adv. Energy Mater. 2019, 9 (13), 1803573.
67. Zheng, X.; Deng, Y.; Chen, B.; Wei, H.; Xiao, X.; Fang, Y.; Lin, Y.; Yu, Z.; Liu, Y.; Wang, Q.; et al. Adv. Mater. 2018, 30 (52), 1803428.
68. Wali, Q.; Iftikhar, F. J.; Khan, M. E.; Balilonda, A.; Aamir, M.; Fan, W.; Yang, S. J. Mater. Chem. C 2022, 10 (36), 12908-12928, 10.1039/D2TC02592B.
69. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Energy Environ. Sci. 2015, 8 (5), 1602-1608, 10.1039/C5EE00120J.
70. Al-Ashouri, A.; Köhnen, E.; Li, B.; Magomedov, A.; Hempel, H.; Caprioglio, P.; Márquez, J. A.; Morales Vilches, A. B.; Kasparavicius, E.; Smith, J. A.; et al. Science 2020, 370 (6522), 1300-1309.
71. Al-Ashouri, A.; Magomedov, A.; Roß, M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Bertram, T.; Márquez, J. A.; Köhnen, E.; Kasparavičius, E.; et al. Energy Environ. Sci. 2019, 12 (11), 3356-3369, 10.1039/C9EE02268F.
72. Guo, Y.; Ma, J.; Lei, H.; Yao, F.; Li, B.; Xiong, L.; Fang, G. J. Mater. Chem. A 2018, 6 (14), 5919-5925, 10.1039/C8TA00583D.
73. Gharibzadeh, S.; Fassl, P.; Hossain, I. M.; Rohrbeck, P.; Frericks, M.; Schmidt, M.; Duong, T.; Khan, M. R.; Abzieher, T.; Nejand, B. A.; et al. Energy Environ. Sci. 2021, 14 (11), 5875-5893, 10.1039/D1EE01508G.
74. Lan, Z.-R.; Wang, Y.-D.; Shao, J.-Y.; Ma, D.-X.; Liu, Z.; Li, D.; Hou, Y.; Yao, J.; Zhong, Y.-W. Adv. Funct. Mater. 2024, 34 (12), 2312426.
75. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13 (9), 897-903.

第二章
1. Eckstein-Andicsová, A.; Tokárová, Z.; Kozma, E.; Balogh, R.; Vykydalová, A.; Mróz, W.; Tokár, K. New J. Chem. 2023, 47 (23), 11165-11175, 10.1039/D3NJ01633A.
2. Van Mierloo, S.; Vasseur, K.; Van den Brande, N.; Boyukbayram, A. E.; Ruttens, B.; Rodriguez, S. D.; Botek, E.; Liégeois, V.; D'Haen, J.; Adriaensens, P. J.; et al. ChemPlusChem 2012, 77 (10), 923-930.
3. Nazim, M.; Ameen, S.; Shaheer Akhtar, M.; Shin, H.-S. Solar Energy 2018, 171, 366-373.
4. Sayresmith, N. A.; Saminathan, A.; Sailer, J. K.; Patberg, S. M.; Sandor, K.; Krishnan, Y.; Walter, M. G. J. Am. Chem. Soc. 2019, 141 (47), 18780-18790.
5. Neto, B. A. D.; Lapis, A. A. M.; da Silva Júnior, E. N.; Dupont, J. Eur. J. Org. Chem. 2013, 2013 (2), 228-255.
6. Xu, Y.; Zhang, H.; Zhang, N.; Xu, R.; Wang, Z.; Zhou, Y.; Shen, Q.; Dang, D.; Meng, L.; Tang, B. Z. Mater. Chem. Front. 2021, 5 (4), 1872-1883, 10.1039/D0QM00682C.
7. Dessì, A.; Calamante, M.; Mordini, A.; Zani, L.; Taddei, M.; Reginato, G. RSC Advances 2014, 4 (3), 1322-1328, 10.1039/C3RA45015E.
8. Ting, H.-C.; Chen, Y.-H.; Lin, L.-Y.; Chou, S.-H.; Liu, Y.-H.; Lin, H.-W.; Wong, K.-T. ChemSusChem 2014, 7 (2), 457-465.
9. Okuda, Y.; Lakshmikantham, M.; Cava, M. P. J. Org. Chem. 1991, 56 (21), 6024-6026.
10. Liu, S.; Xu, W.; Li, X.; Pang, D.-W.; Xiong, H. ACS Nano 2022, 16 (10), 17424-17434.
11. Shen, H.; Sun, F.; Zhu, X.; Zhang, J.; Ou, X.; Zhang, J.; Xu, C.; Sung, H. H. Y.; Williams, I. D.; Chen, S.; et al. J. Am. Chem. Soc. 2022, 144 (33), 15391-15402.
12. Mao, D.; Wu, W.; Ji, S.; Chen, C.; Hu, F.; Kong, D.; Ding, D.; Liu, B. Chem 2017, 3 (6), 991-1007.

第三章
1. Wu, T.; Wang, Y.; Li, X.; Wu, Y.; Meng, X.; Cui, D.; Yang, X.; Han, L. Adv. Energy Mater. 2019, 9 (17), 1803766.
2. Li, X.; Chen, C.-C.; Cai, M.; Hua, X.; Xie, F.; Liu, X.; Hua, J.; Long, Y.-T.; Tian, H.; Han, L. Adv. Energy Mater. 2018, 8 (20), 1800715.
3. Mai, C.-L.; Zhou, Q.; Xiong, Q.; Chen, C.-C.; Xu, J.; Zhang, Z.; Lee, H.-W.; Yeh, C.-Y.; Gao, P. Adv. Funct. Mater. 2021, 31 (7), 2007762.
4. Wu, T.; Liu, X.; He, X.; Wang, Y.; Meng, X.; Noda, T.; Yang, X.; Han, L. Sci. China Chem. 2020, 63 (1), 107-115.
5. Zhang, T.; Yang, X.; Zhang, L.; Deng, Z.; Yang, K.; Cui, H.; Hou, Q.; Ji, W. Energy Technol. 2022, 10 (7), 2200262.
6. Liu, X.; Min, J.; Chen, Q.; Liu, T.; Qu, G.; Xie, P.; Xiao, H.; Liou, J.-J.; Park, T.; Xu, Z.-X. Angewandte Chemie International Edition 2022, 61 (11), e202117303.
7. Gharibzadeh, S.; Fassl, P.; Hossain, I. M.; Rohrbeck, P.; Frericks, M.; Schmidt, M.; Duong, T.; Khan, M. R.; Abzieher, T.; Nejand, B. A.; Schackmar, F.; Almora, O.; Feeney, T.; Singh, R.; Fuchs, D.; Lemmer, U.; Hofmann, J. P.; Weber, S. A. L.; Paetzold, U. W. Energy Environ. Sci. 2021, 14 (11), 5875-5893, 10.1039/D1EE01508G.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96965-
dc.description.abstract近年來有機小分子材料的研究蓬勃發展,無論在生醫或光電領域皆有廣泛的應用。本篇論文以推電子基 (Donor, D) 與拉電子基 (Acceptor, A) 之組合調控分子的吸收光波段,以期得到理想材料性質,內容主要分為兩部分:
第一部分著重於遠紅光分子的設計與其化學放光應用。化學放光不需外加激發光源,相較於螢光顯影更能提升在生物體中的訊噪比,因此具生物顯影潛力。本研究以噻唑並[5,4-d]噻唑 (Thiazolo[5,4-d]thiazole, Tz) 作為核心,合成出 D-A-A'-A-D 結構分子,並藉由增強電子受體的拉電子性質使分子吸放光波段紅移。再使用高分子界面活性劑 F127 將此系列分子與雙[3,4,6-三氯-2-(戊氧基羰基)[苯基]草酸酯 (bis[3,4,6-trichloro-2-(pentyloxycarbonyl) phenyl]oxalate, CPPO) 共同包裹形成奈米粒子,與雙氧水反應可產生化學放光,期望能應用於生物體內癌細胞顯影。
第二部分致力於開發鈣鈦礦太陽能電池之鈍化劑。鈣鈦礦太陽能電池具有光吸收係數高與製作容易等優勢,然而在溶劑製程中會產生缺陷,導致其穩定性下降。本研究以1,3-二甲基苯並咪唑碘化物 (1,3-dimethylbenzimidazolium iodide) 單元修飾 D-A 分子中電子受體,D-A 結構容易調控電子密度分佈,使有機陽離子更能與鈣鈦礦陰離子結合,分子中碘離子亦能填補鈣鈦礦晶體的空缺。將此系列分子作為鈍化劑加入鈣鈦礦太陽能電池之中,進一步探討元件性質,期望提升電池能量轉換效率。
zh_TW
dc.description.abstractOrganic small molecular materials for biomedical and photovoltaic application have been developed in recent years. Here in, novel molecules were designed by modifying donor (D) and acceptor (A), aiming to achieve ideal material properties.
The first part of the thesis focuses on the design of deep-red molecules and their chemiluminescence (CL) applications. Compared to fluorescence imaging, CL imaging can achieve a higher signal-to-noise ratio due to the elimination of external excitation light. A series of novel molecules with D-A-A’-A-D structure were designed for CL senor, while the thiazolo[5,4-d]thiazole (Tz) group was selected as the cores. By enhancing the electron-withdrawing property of the A part, the molecules exhibit red-shifted absorption and NIR emission. These molecules were encapsulated into polymeric surfactant F127 along with bis[3,4,6-trichloro-2(pentyloxycarbonyl)phenyl]oxalate (CPPO) to form biocompatible nanoparticles, which can react with hydrogen peroxide to release CL. This result suggests that the CL system is a potential candidate for biological applications.
In the second part, we dedicated to developing passivators in perovskite solar cells (PSCs). Organometal halide perovskites were inherent materials for photovoltaic devices because of their strong light-absorption coefficients and low cost. However, defects generated during the solution process result in lower stability of PSCs. Here in, 1,3-dimethylbenzimidazolium iodide was connected to the D-A structure, which exhibits a tunable electron density distribution, allowing organic cations to better bind with perovskite anions. Additionally, the iodide ions in these molecules can passivate ionic defects within the perovskite. These molecules are used as passivators in PSCs, and the device properties are further investigated.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:15:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-25T16:15:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract ii
目次 iii
圖次 v
表次 viii
化學結構索引 ix
第一章 緒論 1
1-1 生醫應用 1
1-1-1 螢光顯影 1
1-1-2 化學放光顯影 3
1-1-3 近紅外光分子設計 11
1-2 鈣鈦礦太陽能電池 15
1-2-1 太陽能電池發展及近況 15
1-2-2 鈣鈦礦太陽能電池 15
1-2-3 鈣鈦礦太陽能電池運作原理 16
1-2-4 鈣鈦礦太陽能電池鈍化劑 17
1-2-5 反結構鈣鈦礦太陽能電池 21
1-3 參考文獻 24
第二章 以噻唑並噻唑為核心之 D-A-A'-A-D 分子並用於化學放光成像 30
2-1 前言 30
2-2 合成 32
2-3 光物理性質 36
2-4 電化學分析 38
2-5 理論計算 40
2-6 化學放光性質 41
2-7 結論 43
2-8 參考文獻 44
第三章 苯並咪唑衍生之 D-A 分子用於鈣鈦礦太陽能電池鈍化劑 45
3-1 前言 45
3-2 合成 50
3-3 光物理性質 51
3-4 電化學分析 52
3-5 理論計算 54
3-6 鈣鈦礦太陽能電池元件製作與表現 55
3-7 結論 60
3-8 參考文獻 61
第四章 實驗部分 62
4-1 實驗儀器 62
4-2 分子合成實驗步驟 64
4-3 化學放光奈米粒子合成步驟 76
附錄 1H 和 13C NMR 圖譜 77
-
dc.language.isozh_TW-
dc.title以噻唑並噻唑及苯並咪唑為主體之有機功能性材料的設計、合成與應用zh_TW
dc.titleDesign, Synthesis and Application of Thiazolo[5,4-d]thiazole-Based and Benzimidazole-Based Organic Functional Materialsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee何佳安;陳志平zh_TW
dc.contributor.oralexamcommitteeJa-an Annie Ho;Chih-Ping Chenen
dc.subject.keyword化學放光,生物顯影,鈣鈦礦太陽能電池,鈍化劑,zh_TW
dc.subject.keywordchemiluminescence,bioimaging,perovskite solar cells,passivators,en
dc.relation.page89-
dc.identifier.doi10.6342/NTU202500552-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2027-02-28-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  此日期後於網路公開 2027-02-28
4.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved