請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96962完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江宏仁 | zh_TW |
| dc.contributor.advisor | Hong-Ren Jiang | en |
| dc.contributor.author | 宋佳誠 | zh_TW |
| dc.contributor.author | Chia-Cheng Sung | en |
| dc.date.accessioned | 2025-02-25T16:15:05Z | - |
| dc.date.available | 2025-02-26 | - |
| dc.date.copyright | 2025-02-25 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-14 | - |
| dc.identifier.citation | 1. Lin, Z.-H., et al., Water-solid surface contact electrification and its use for harvesting liquid-wave energy. Angew. Chem. Int. Ed, 2013. 52(48): p. 12545-12549.
2. Lone, S.A., et al., Recent advancements for improving the performance of triboelectric nanogenerator devices. Nano Energy, 2022. 99: p. 107318. 3. Jeon, S.-B., et al., Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight. Nano Energy, 2015. 12: p. 636-645. 4. AlShafi, M. and Y. Bicer, Thermodynamic performance comparison of various energy storage systems from source-to-electricity for renewable energy resources. Energy, 2021. 219: p. 119626. 5. Zhang, M., et al., A droplet-based triboelectric-piezoelectric hybridized nanogenerator for scavenging mechanical energy. Nano Energy, 2022. 104: p. 107992. 6. Hu, S., et al., Superhydrophobic Liquid–Solid Contact Triboelectric Nanogenerator as a Droplet Sensor for Biomedical Applications. ACS Applied Materials & Interfaces, 2020. 12(36): p. 40021-40030. 7. Wang, D., et al., Ethylene chlorotrifluoroethylene/hydrogel-based liquid-solid triboelectric nanogenerator driven self-powered MXene-based sensor system for marine environmental monitoring. Nano Energy, 2022. 100: p. 107509. 8. Zeng, Y., et al., Self-powered rain droplet sensor based on a liquid-solid triboelectric nanogenerator. Nano Energy, 2022. 98: p. 107316. 9. Shi, Q., et al., Self-powered liquid triboelectric microfluidic sensor for pressure sensing and finger motion monitoring applications. Nano Energy, 2016. 30: p. 450-459. 10. Xu, W., et al., Recent advances in enhancing the output performance of liquid-solid triboelectric nanogenerator (L-S TENG): Mechanisms, materials, and structures. Nano Energy, 2024. 131: p. 110191. 11. Xu, W., et al., SLIPS-TENG: robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. National Science Review, 2019. 6(3): p. 540-550. 12. Chen, Y., et al., Electron transfer dominated triboelectrification at the hydrophobic/slippery substrate—water interfaces. Friction, 2023. 11(6): p. 1040-1056. 13. Liu, Y., et al., Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting. Nano Energy, 2019. 61: p. 454-461. 14. Wang, L., et al., Harvesting energy from high-frequency impinging water droplets by a droplet-based electricity generator. EcoMat, 2021. 3(4): p. e12116. 15. Zhang, H., et al., A Robust Droplet Triboelectric Nanogenerator with Self-Cleaning Ability Achieved by Femtosecond Laser. ACS Applied Materials & Interfaces, 2023. 15(25): p. 30902-30912. 16. Williams, M.W., Triboelectric charging of insulating polymers–some new perspectives. AIP Advances, 2012. 2(1): p. 010701. 17. Han, C.B., et al., Removal of Particulate Matter Emissions from a Vehicle Using a Self-Powered Triboelectric Filter. ACS Nano, 2015. 9(12): p. 12552-12561. 18. Pan, S. and Z. Zhang, Fundamental theories and basic principles of triboelectric effect: A review. Friction, 2019. 7(1): p. 2-17. 19. McCarty, L.S. and G.M. Whitesides, Electrostatic Charging Due to Separation of Ions at Interfaces: Contact Electrification of Ionic Electrets. Angewandte Chemie International Edition, 2008. 47(12): p. 2188-2207. 20. Xu, C., et al., On the Electron-Transfer Mechanism in the Contact-Electrification Effect. Advanced Materials, 2018. 30(15): p. 1706790. 21. Wang, Z.L. and A.C. Wang, On the origin of contact-electrification. Materials Today, 2019. 30: p. 34-51. 22. Zou, H., et al., Quantifying the triboelectric series. Nature Communications, 2019. 10(1): p. 1427. 23. Le, C.-D., et al., Liquid-solid contact electrification based on discontinuous-conduction triboelectric nanogenerator induced by radially symmetrical structure. Nano Energy, 2021. 80: p. 105571. 24. Niu, S., et al., Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy, 2015. 12: p. 760-774. 25. Wu, C., et al., Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Advanced Energy Materials, 2019. 9(1): p. 1802906. 26. Yang, X., et al., Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range. Nano Energy, 2018. 44: p. 388-398. 27. Tang, W., et al., Liquid-Metal Electrode for High-Performance Triboelectric Nanogenerator at an Instantaneous Energy Conversion Efficiency of 70.6%. Advanced Functional Materials, 2015. 25(24): p. 3718-3725. 28. Xu, M., et al., A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy, 2019. 57: p. 574-580. 29. Yun, S., et al., Reversible switching performance of water droplet-driven triboelectric nanogenerators using a magnetocontrollable lubricant-infused surface for sustainable power generation. Nano Energy, 2022. 103: p. 107783. 30. Zhang, Q., et al., An Amphiphobic Hydraulic Triboelectric Nanogenerator for a Self-Cleaning and Self-Charging Power System. Advanced Functional Materials, 2018. 28(35): p. 1803117. 31. Zhang, X.-S., et al., High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy, 2014. 4: p. 123-131. 32. Kim, W., et al., A self-powered triboelectric microfluidic system for liquid sensing. Journal of Materials Chemistry A, 2018. 6(29): p. 14069-14076. 33. Zhang, R., et al., Liquid–Liquid Triboelectric Nanogenerator for Harvesting Distributed Energy. Advanced Functional Materials, 2022. 32(51): p. 2208393. 34. Preston, D.J., et al., Design of Lubricant Infused Surfaces. ACS Applied Materials & Interfaces, 2017. 9(48): p. 42383-42392. 35. Chung, J., et al., Versatile surface for solid–solid/liquid–solid triboelectric nanogenerator based on fluorocarbon liquid infused surfaces. Science and technology of advanced materials, 2020. 21(1): p. 139-146. 36. Chen, Z., et al., Liquid-solid triboelectric nanogenerators for a wide operation window based on slippery lubricant-infused surfaces (SLIPS). Chemical Engineering Journal, 2022. 439: p. 135688. 37. Wong, T.-S., et al., Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011. 477(7365): p. 443-447. 38. Zhu, X., et al., Simple Way to a Slippery Lubricant Impregnated Coating with Ultrastability and Self-Replenishment Property. Industrial & Engineering Chemistry Research, 2019. 58(19): p. 8148-8153. 39. Wu, H., et al., Charge Trapping-Based Electricity Generator (CTEG): An Ultrarobust and High Efficiency Nanogenerator for Energy Harvesting from Water Droplets. Advanced Materials, 2020. 32(33): p. 2001699. 40. Lin, H.-Y., et al., A high-voltage TENG-based droplet energy generator with ultralow liquid consumption. IEEE Transactions on NanoBioscience, 2021. 21(3): p. 358-362. 41. Wen, R., et al., Remarkably enhanced triboelectric nanogenerator based on flexible and transparent monolayer titania nanocomposite. Nano Energy, 2018. 50: p. 140-147. 42. Kruchinin, R., et al., Flexible carbon cloth-based single-electrode triboelectric nanogenerators with incorporated TiO2 nanoparticles. Energy Reports, 2022. 8: p. 15048-15056. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96962 | - |
| dc.description.abstract | 摩擦起電是一種常見的自然現象,當隨意的兩材料相互接近或摩擦後會產生接觸起電,而在2013年Zong Hong,Lin等人提出固液摩擦奈米發電機(Solid-Liquid Triboelectric Nanogenerator,S-L TENG)[1],開啟了固液摩擦奈米發電機這塊新的領域,此裝置的發電方式是通過液滴與介電層的摩擦產生摩擦起電,使得電極受到靜電感應的影響產生電荷轉移,這樣的發電方式需要可以即時排斥液體的介電層且液滴的滑動速度與接觸面積很大程度上會影響發電效率,在大多數的研究中會製作出具有疏水或超疏水結構的表面,然而很少有研究探討將潤滑油注入表面來改善遲滯對於液滴與表面動態和輸出間的關係。
在此研究中利用旋塗的方法製作薄介電層,以具有指叉狀結構的ITO玻璃作為電極、PDMS作為摩擦層。本研究首先探討潤滑層對於輸出、表面與液滴的接觸影響,因PDMS具有疏水性與較大的遲滯,我們將PDMS 表面浸漬矽油池中降低接觸角滯後,同時維持摩擦發電能力,注入潤滑劑的表面能夠在最小傾斜角度下實現一致的液滴滑動和能量產生,而不會影響電力輸出,接著,我們測量液滴與表面滑動的速度與接觸面積變化,觀察出在滑動初期矽油層對輸出影響較重而後期則是滑動速度對輸出影響較大,並透過在連續液滴衝擊下的延長測試驗證了系統的耐用性,再來,我們觀察其表面的自修復能力以及測量自修復後的輸出,發現我們所製作的介電層較薄導致自修復後的輸出並未恢復到原始狀態,最後為了要提高摩擦電輸出性能,我們將高介電材料(例如 TiO2)摻入 PDMS 基質中,高介電常數奈米顆粒可與PDMS形成複合材料介電層,高介電常數可以增強介電層的極化能力使得電場更容易在介電層中建立穩定分布提升摩擦電壓,從而提高整體能量產生效率。 | zh_TW |
| dc.description.abstract | Triboelectrification is a common natural phenomenon. When two materials come into contact or rub against each other, contact electrification occurs. In 2013, Zong-Hong Lin et al. proposed the solid-liquid triboelectric nanogenerator (S-L TENG) [1], pioneering a new field in solid-liquid triboelectric nanogenerators. This device generates electricity through the friction between liquid droplets and a dielectric layer, resulting in triboelectric charging. The induced electrostatic effect on the electrodes causes charge transfer. This power generation method requires a dielectric layer capable of repelling liquids in real-time, and both the sliding speed and contact area of the droplets significantly impact power generation efficiency. Most studies have focused on fabricating surfaces with hydrophobic or superhydrophobic structures; however, few have explored the injection of lubricating oil into the surface to mitigate hysteresis and its effects on droplet dynamics and electrical output.
In this study, a thin dielectric layer was fabricated using a spin-coating method, with interdigitated ITO glass as the electrode and PDMS as the triboelectric layer. First, we investigated the effect of the lubricant layer on electrical output and droplet-surface interactions. Due to the hydrophobicity and high hysteresis of PDMS, we immersed the PDMS surface in a silicone oil bath to reduce contact angle hysteresis while maintaining triboelectric power generation capability. The lubricated surface enabled consistent droplet motion and energy generation at minimal inclination angles without compromising electrical output. Subsequently, we measured changes in droplet sliding speed and contact area, observing that in the initial sliding phase, the silicone oil layer had a greater impact on output, whereas in the later phase, sliding speed played a more dominant role. The durability of the system was validated through extended testing under continuous droplet impact. Furthermore, we examined the self-healing ability of the surface and measured its output after self-healing. It was found that the thin dielectric layer resulted in incomplete recovery of the original output performance. Finally, to enhance triboelectric output performance, high-dielectric-constant materials (e.g., TiO₂) were incorporated into the PDMS matrix. The high-dielectric-constant nanoparticles formed a composite dielectric layer with PDMS, enhancing dielectric polarization and facilitating a more stable electric field distribution within the dielectric layer, thereby improving overall energy generation efficiency. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:15:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-25T16:15:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目次 v 圖次 viii 表次 xii 第一章 緒論 1 1.1 前言 1 1.2 研究背景 1 1.3 研究動機 5 1.4 內容簡介 5 第二章 文獻回顧與理論基礎 6 2.1 摩擦奈米發電機 6 2.1.1 摩擦起電介紹 6 2.1.2 基本原理 11 2.2 接觸模式與機制 13 2.3 S-L TENG受影響因素 17 2.3.1 表面粗糙度對輸出的影響 17 2.3.2 液體濃度對輸出特性的影響 19 2.4 自潤滑材料 19 2.4.1 光滑液體注入多孔表面 20 2.4.2 潤滑表面受影響因素 21 2.4.3 自潤滑表面的製作 22 第三章 實驗方法 25 3.1 實驗材料 25 3.1.1 ITO(Induim Tin Oxide)導電玻璃 25 3.1.2 聚二甲基矽氧烷(PDMS) 25 3.1.3 二氧化鈦(TiO2) 26 3.1.4 銅粉(Copper powder) 26 3.1.5 矽油 27 3.2 介電層的製備 27 3.2.1 製備指叉狀電極 27 3.2.2 製備自潤滑表面之介電層 28 3.3 實驗設備 30 3.3.1 雷射雕刻機 30 3.3.2 數位萬用電表 31 3.3.3 注射式幫浦 31 3.4 量測方法與架設 32 3.4.1 TENG輸出訊號之量測 32 第四章 固液摩擦奈米發電機之輸出特性研究 34 4.1 探討潤滑層對輸出特性之影響 37 4.1.1 浸漬時間對輸出電壓之影響 38 4.1.2 潤滑表面之特性 40 4.1.3 不同黏度矽油對電輸出之關係 41 4.1.4 液滴在潤滑表面上的動態行為 42 4.2 液滴在潤滑表面滑落之輸出特性 45 4.2.1 液滴大小與角度對輸出之影響 45 4.2.2 探討小液滴對輸出之影響 49 4.3 探討浸漬矽油之滲出特性 49 4.3.1 表面自修復特性 50 4.3.2 表面自修復對輸出特性的影響 50 4.3.3 再次浸漬矽油後的輸出變化 51 4.3.4 表面翻模對於耐久度之影響 52 4.4 介電層對於電輸出特性的影響 53 4.4.1 不同厚度對於輸出之影響 54 4.4.2 TiO2/PDMS介電材料之摩擦電輸出 55 4.4.3 Cu/TiO2/PDMS介電材料之摩擦電輸出 57 第五章 總結 60 參考文獻 62 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 接觸角 | zh_TW |
| dc.subject | 自潤滑表面 | zh_TW |
| dc.subject | 固液摩擦奈米發電機 | zh_TW |
| dc.subject | 自修復 | zh_TW |
| dc.subject | 接觸角滯後 | zh_TW |
| dc.subject | Contact angle hysteresis (CAH) | en |
| dc.subject | Solid-Liquid Triboelectric Nanogenerator (S-L TENG) | en |
| dc.subject | Self-lubricating surface | en |
| dc.subject | Self-healing | en |
| dc.subject | Contact angle (CA) | en |
| dc.title | 自潤滑固液摩擦奈米發電機之研究 | zh_TW |
| dc.title | Study of Solid-Liquid Triboelectric Nanogenerator on Self-Lubricating surface | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳建彰;李尉彰;蔡日強 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Zhang Chen;Wei-Chang Li;Jih-Chiang Tsai | en |
| dc.subject.keyword | 固液摩擦奈米發電機,自潤滑表面,自修復,接觸角,接觸角滯後, | zh_TW |
| dc.subject.keyword | Solid-Liquid Triboelectric Nanogenerator (S-L TENG),Self-lubricating surface,Self-healing,Contact angle (CA),Contact angle hysteresis (CAH), | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202500711 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-02-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 5.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
