Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96949
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳信樹zh_TW
dc.contributor.advisorHsin-Shu Chenen
dc.contributor.author梁淳皓zh_TW
dc.contributor.authorChun-Hao Liangen
dc.date.accessioned2025-02-25T16:11:35Z-
dc.date.available2025-02-26-
dc.date.copyright2025-02-25-
dc.date.issued2025-
dc.date.submitted2025-02-12-
dc.identifier.citation[ 1 ] X. Lin, S. Cioni, G. Charbit, N. Chuberre, S. Hellsten, and J.-F. Boutillon, "On the Path to 6G: Embracing the Next Wave of Low Earth Orbit Satellite Access," IEEE Communications Magazine, vol. 59, no. 12, pp. 36-42, Dec. 2021.
[ 2 ] Chang Gung Hospital, "News and Events," [Online]. Available: https://www.changgung.hospital/m/news-1.aspx?type=Photo&rows=8&page=1&id=2017042112015075284&mid=999&bid=1.
[ 3 ] R. Baumann, "Soft Errors In Commercial Integration Integrated Circuits," International Journal of High-Speed Electronics and Systems, vol. 14, no. 2, pp. 299-309, 2004.
[ 4 ] M. Poizat, "TID Total Ionizing Dose Radiation," Radiation Environment and its Effects in EEE Components and Hardness Assurance for Space Applications, CERN-ESA-SSC Workshop, 2017.
[ 5 ] I. S. Esqueda, "Modeling of Total Ionizing Dose Effects in Advanced Complementary Metal-Oxide-Semiconductor Technologies," 2011.
[ 6 ] R. Velazco, D. McMorrow, and J. Estela, Radiation Effects on Integrated Circuits and Systems for Space Applications, Springer Nature Switzerland, 2019.
[ 7 ] J. Prinzie, M. Steyaert, and P. Leroux, Radiation Hardened CMOS Integrated Circuits for Time-Based Signal Processing, Springer Nature Switzerland, 2018.
[ 8 ] V. Díez-Acereda, S. L. Khemchandani, J. del Pino, and S. Mateos-Angulo, "RHBD Techniques to Mitigate SEU and SET in CMOS Frequency Synthesizers," Electronics, vol. 8, no. 6, p. 690, 2019.
[ 9 ] NASA, "Lesson Learned Information System," [Online]. Available: https://llis.nasa.gov/lesson/824.
[ 10 ] Space Engineering, Calculation of Radiation and Its Effects and Margin Policy Handbook, ECSS-E-HB-10-12A, Dec. 2010.
[ 11 ] Space Product Assurance, Techniques for Radiation Effects Mitigation in ASICs and FPGAs Handbook, ECSS-Q-HB-60-02A, Sept. 2016.
[ 12 ] R. Baumann and K. Kruckmeyer, Radiation Handbook for Electronics, Texas Instruments Incorporated, 2019.
[ 13 ] T. Calin, M. Nicolaidis, and R. Velazco, "Upset Hardened Memory Design for Submicron CMOS Technology," IEEE Transactions on Nuclear Science, vol. 43, no. 6, pp. 2874-2878, Dec. 1996.
[ 14 ] T. D. Loveless et al., "A Single-Event-Hardened Phase-Locked Loop Fabricated in 130 nm CMOS," IEEE Transactions on Nuclear Science, vol. 54, no. 6, pp. 2012-2020, Dec. 2007.
[ 15 ] J. L. Andrews et al., "Single Event Error Immune CMOS RAM," IEEE Transactions on Nuclear Science, vol. 29, no. 6, pp. 2040-2043, Dec. 1982.
[ 16 ] A. Zanchi et al., "Investigation and Mitigation of Analog SET on a Bandgap Reference in Triple-Well CMOS Using Pulsed Laser Techniques," IEEE Transactions on Nuclear Science, pp. 1-7, 2011.
[ 17 ] S. Buchner and D. McMorrow, "Single-Event Transients in Bipolar Linear Integrated Circuits," IEEE Transactions on Nuclear Science, vol. 53, no. 6, pp. 3079-3102, Dec. 2006.
[ 18 ] J. D. Black et al., "HBD Layout Isolation Techniques for Multiple Node Charge Collection Mitigation," IEEE Transactions on Nuclear Science, vol. 52, no. 6, pp. 2536-2541, Dec. 2005.
[ 19 ] G. C. Messenger, "Collection of Charge on Junction Nodes from Ion Tracks," IEEE Transactions on Nuclear Science, vol. 29, no. 6, pp. 2024-2031, 1982.
[ 20 ] Q. Zhou and K. Mohanram, "Transistor Sizing for Radiation Hardening," Proceedings of the 42nd IEEE International Physical and Reliability Symposium (IPRS), 2004.
[ 21 ] P. Leroux, Radiation Tolerant Electronics, Multidisciplinary Digital Publishing Institute, Basel, Switzerland, 2019.
[ 22 ] R. Trivedi, N. M. Devashrayee, U. S. Mehta, N. M. Desai, and H. Patel, "Development of Radiation Hardened By Design (RHBD) Primitive Gates Using 0.18um CMOS Technology," Proceedings of the 19th International Symposium on VLSI Design and Test, Ahmedabad, 2015.
[ 23 ] A. Makihara et al., "Hardness by Design Approach for 0.15 Vm Fully Depleted CMOS/SOI Digital Logic Devices With Enhanced SEU/SET Immunity," IEEE Transactions on Nuclear Science, vol. 52, pp. 2524-2530, Dec. 2005.
[ 24 ] L. Wang, S. Yue, and Y. Zhao, "Low-Overhead SEU-Tolerant Latches," Proceedings of the IEEE International Conference on Microwave and Millimeter Wave Technology, pp. 1-4, 2007.
[ 25 ] W. Liao, K. Ito, S.-i. Abe, Y. Mitsuyama, and M. Hashimoto, "Characterizing Energetic Dependence of Low-Energy Neutron-Induced SEU and MCU and Its Influence on Estimation of Terrestrial SER in 65-nm Bulk SRAM," IEEE Transactions on Nuclear Science, vol. 68, no. 6, pp. 1228-1234, June 2021.
[ 26 ] B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd ed., McGraw Hill Education.
[ 27 ] Y.-L. Chen, "Design and Implementation of a Single Event Effects Hardening Comparator and Digital Circuit," Master’s Thesis, National Taiwan University, May 2022.
[ 28 ] S. Babayan-Mashhadi and R. Lotfi, "Analysis and Design of a Low-Voltage Low-Power Double-Tail Comparator," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 2, pp. 343-352, Feb. 2014.
[ 29 ] N. W. Van Onno and B. R. Doyle, "Design Considerations and Verification Testing of an SEE-Hardened Quad Comparator," IEEE Transactions on Nuclear Science, vol. 48, no. 6, pp. 1859-1864, Dec. 2001.
[ 30 ] M. van Elzakker et al., "A 10-bit Charge-Redistribution ADC Consuming 1.9μW at 1 MS/s," IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, May 2010.
[ 31 ] C.-C. Liu et al., "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010.
[ 32 ] F. Kuttner, "A 1.2V 10b 20MSample/s Non-Binary Successive Approximation ADC in 0.13μm CMOS," 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, USA, pp. 176-177, 2002.
[ 33 ] C. Liu et al., "A 10b 100MS/s 1.13mW SAR ADC with Binary-Scaled Error Compensation," 2010 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, pp. 386-387, 2010.
[ 34 ] H. Fan, D. Li, Z. Kelin, Y. Cen, Q. Feng, F. Qiao, and H. Heidari, "A 4-Channel 12-Bit High-Voltage Radiation-Hardened Digital-to-Analog Converter for Low Orbit Satellite Applications," IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, pp. 1-9.
[ 35 ] T. L. Turflinger and M. V. Davey, "Understanding Single Event Phenomena in Complex Analog and Digital Integrated Circuits," IEEE Transactions on Nuclear Science, vol. 37, no. 6, pp. 1832-1838, Dec. 1990.
[ 36 ] J. Li and U. Moon, "Background Calibration Techniques for Multistage Pipelined ADCs with Digital Redundancy," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 9, pp. 531-538, Sept. 2003.
[ 37 ] J. S. Kauppila, L. W. Massengill, W. T. Holman, A. V. Kauppila, and S. Sanathanamurthy, "Single Event Simulation Methodology for Analog/Mixed-Signal Design Hardening," IEEE Transactions on Nuclear Science, vol. 51, no. 6, pp. 3603-3608, Dec. 2004.
[ 38 ] H. Venkatram, J. Guerber, M. Gande, and U.-K. Moon, "Detection and Correction Methods for Single Event Effects in Analog to Digital Converters," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 12, pp. 3163-3172, Dec. 2013.
[ 39 ] H. Xu, Y. Cai, L. Du, Y. Zhou, B. Xu, D. Gong, J. Ye, and Y. Chiu, "A 78.5dB-SNDR Radiation- and Metastability-Tolerant Two-Step Split SAR ADC Operating up to 75MS/s with 24.9mW Power Consumption in 65nm CMOS," IEEE Journal of Solid-State Circuits, vol. 54, no. 2, Feb. 2019.
[ 40 ] Single Event Effects Test Method and Guidelines, ESCC Basic Specification No. 25100, 2014.
[ 41 ] V. Pouget, D. Lewis, and P. Fouillat, "Time-Resolved Scanning of Integrated Circuits with a Pulsed Laser: Application to Transient Fault Injection in an ADC," IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 4, pp. 1227-1231, Aug. 2004.
[ 42 ] D. M. Hiemstra and E. W. Blackmore, "LET Spectra of Proton Energy Levels from 50 to 500 MeV and Their Effectiveness for Single Event Effects Characterization of Microelectronics," IEEE Transactions on Nuclear Science, vol. 50, no. 6, pp. 2245-2250, Dec. 2003.
[ 43 ] V. V. Markelov and M. G. Tverskoy, "Evaluation of LET Spectra Produced by High Energy Protons in Si," 8th European Conference on Radiation and Its Effects on Components and Systems, Cap d'Agde, France, pp. PI2-1-PI2-4, 2005.
[ 44 ] N. A. Dodds et al., "Hardness Assurance for Proton Direct Ionization-Induced SEEs Using a High-Energy Proton Beam," IEEE Transactions on Nuclear Science, vol. 61, no. 6, pp. 2904-2914, Dec. 2014.
[ 45 ] National Institute of Standards and Technology (NIST), "PSTAR: Stopping Power and Range Tables for Proton," Available: https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-helium-ions.
[ 46 ] D. L. Hansen, "Proton Cross-Sections from Heavy-Ion Data in Deep-Submicron Technologies," IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp. 2874-2880, Dec. 2015.
[ 47 ] V. Pouget, P. Fouillat, D. Lewis, H. Lapuyade, F. Darracq, and A. Touboul, "Laser Cross-Section Measurement for the Evaluation of Single-Event Effects in Integrated Circuits," Microelectronics Reliability, vol. 40, issues 8-10, pp. 1371-1375, 2000.
[ 48 ] R. Jones, A. M. Chugg, C. M. S. Jones, P. H. Duncan, C. S. Dyer, and C. Sanderson, "Comparison between SRAM SEE Cross-Sections from Ion Beam Testing with Those Obtained Using a New Picosecond Pulsed Laser Facility," 5th European Conference on Radiation and Its Effects on Components and Systems (RADECS 99), Fontevraud, France, pp. 148-153, 1999.
[ 49 ] S.-B. Yu, "Establishment of an Analysis Method for Short-Pulse Laser-Induced Single-Event Transient Phenomena in Comparator Circuits," Master’s Thesis, National Taiwan University, July 2023.
[ 50 ] S. P. Buchner, F. Miller, V. Pouget, and D. P. McMorrow, "Pulsed-Laser Testing for Single-Event Effects Investigation: An Overview," IEEE Transactions on Nuclear Science, vol. 53, no. 6, pp. 3384-3395, Dec. 2006.
[ 51 ] D. Giot, P. Peronnard, and F. Bezerra, "Laser and Heavy Ion Testing of a New Class of Radiation-Hardened SRAM Cells," IEEE Transactions on Nuclear Science, vol. 58, no. 3, pp. 1062-1068, June 2011.
[ 52 ] T. Moon, Error Correction Coding: Mathematical Methods and Algorithms, 2005.
[ 53 ] T. Heijmen, Soft Errors in Modern Electronic Systems, edited by M. Nicolaidis, Springer, November 2010.
[ 54 ] J. Barak, "Analytical microdosimetry model for proton-induced SEU in modern devices," IEEE Transactions on Nuclear Science, vol. 48, no. 6, pp. 1937-1945, December 2001.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96949-
dc.description.abstract近年來,隨著低軌衛星的興起,如何讓晶片在太空環境下穩健運行成為重要課題。太空環境中的單事件效應對先進製程晶片影響尤為顯著,而類比數位轉換器在衛星通訊與訊號處理中扮演關鍵角色。類比數位轉換器的核心元件比較器在設計中需特別關注其在輻射環境下的表現,同時前端取樣電路和後端數位電路也需具備輻射加固與容忍性,以確保整體系統的穩定運作。
本論文探討了具有電阻加固比較器及三倍冗餘模組架構的比較器與傳統比較器在脈衝雷射及高能質子等輻射環境下對於單事件效應的表現,並且提出了一個每秒一百萬次取樣的輻射容忍雙通道十二位元連續漸進式類比數位轉換器並使用錯誤偵測及校正。用於輻射實驗的比較器晶片及類比數位轉換器晶片皆透過一百八十奈米CMOS製程實現。
在低頻範圍,傳統單通道連續漸進式類比數位轉換器可達有效位元數十點七四,Walden品質因數為每步階轉換消耗十九點八四飛焦耳,而雙通道連續漸進式類比數位轉換器可達有效位元數九點八,Walden品質因數為每步階轉換消耗四十九點三二飛焦耳。
在正面雷射照射下,傳統比較器及電阻加固比較器皆可觀測到敏感節點位置,而三倍冗餘模組架構的比較器可完全容忍單點雷射照射,傳統連續漸進式類比數位轉換器及雙通道連續漸進式類比數位轉換器則可被判斷出取樣電路為最敏感電路位置。在背面雷射照射下,雙通道連續漸進式類比數位轉換器可容忍達雷射臨界能量零點九奈焦耳並且截面積相比傳統連續漸進式類比數位轉換器小了十倍。在能量為兩百三十萬電子伏特的質子束照射下,雙通道連續漸進式類比數位轉換器的截面積相比傳統連續漸進式類比數位轉換器在相同的輻射條件下小了十倍至一百倍。
zh_TW
dc.description.abstractIn recent years, the rise of LEO (low Earth orbit) satellites has brought increasing attention to the critical challenge of ensuring reliable chip operation in space environments. SEEs (Single-event effects) have been identified as a significant concern for advanced process nodes. At the same time, ADCs (analog-to-digital converters) play a pivotal role in satellite communication and signal processing. The comparator, as the core component of an ADC, requires careful consideration of its radiation performance during design. Additionally, front-end S/H circuits and back-end digital circuits must be equipped with radiation tolerance to ensure the overall stability of the ADC system.
This thesis investigates the performance of comparators with resistive hardening and TMR (triple modular redundancy) architectures, compared to conventional comparators, under pulsed laser and high-energy proton irradiation. A 12-bit radiation-tolerant split SAR ADC (successive approximation register) operating at 1 MSPS is proposed, incorporating error detection and correction. At low frequencies, the conventional single-channel SAR ADC achieves an ENOB of 10.74, with a FOMw of 19.84 fJ/conversion step. The radiation-tolerant split SAR ADC achieves an ENOB (effective number of bits) of 9.8, with FOMw (Walden figures of merit) of 49.32 fJ/conversion step. Both the comparator and SAR ADC DUTs were fabricated using the 180nm CMOS process.
Under frontside laser irradiation, the sensitive nodes of both conventional and resistive-hardened comparators were identified, while the TMR comparator demonstrated complete immunity to single-point laser strikes. For conventional and radiation-tolerant split SAR ADCs, the S/H circuits were identified as the most sensitive component.
Under backside laser irradiation, the radiation-tolerant split SAR ADC tolerated a laser threshold energy of 0.9 nJ, with a cross-section 10 times smaller than that of the conventional SAR ADC. In 230 MeV proton beam energy testing, the cross-section of the radiation-tolerant split SAR ADC was reduced 10 to 100 times compared to the conventional SAR ADC under identical radiation conditions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:11:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-25T16:11:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 ii
致謝 iv
摘要 vi
ABSTRACT viii
CONTENTS x
LIST OF FIGURES xiv
LIST OF TABLES xxi
ABBREVIATIONS xxii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 4
Chapter 2 Fundamentals of Radiation Effects and Analog-to-Digital Converter 5
2.1 Introduction 5
2.2 Radiation Effects 5
2.2.1 Total Ionizing Dose Effect 9
2.2.2 Single Event Effect 11
2.2.3 Displacement Damage Effect 19
2.2.4 Radiation Hardening Methods 22
2.2.4.1 Process Level Hardening 23
2.2.4.2 Circuit Level Hardening 25
2.2.4.3 System Level Hardening 31
2.3 Analog-to-Digital Converters 35
2.3.1 Static Performance 36
2.3.1.1 Offset Error 36
2.3.1.2 Gain Error 36
2.3.1.3 Differential and Integral Nonlinearity 37
2.3.2 Dynamic Performance 38
2.3.2.1 Signal-to-Noise Ratio (SNR) 38
2.3.2.2 Total Harmonic Distortion (THD) 40
2.3.2.3 Spurious-Free Dynamic Range (SFDR) 40
2.3.2.4 Signal-to-Noise and Distortion Ratio (SNDR) 41
2.3.2.5 Effective Number of Bits (ENOB) 41
2.3.2.6 Figure of Merit (FoM) 41
2.3.3 ADC Architecture 42
2.3.3.1 Flash Architecture 42
2.3.3.2 Pipeline Architecture 43
2.3.3.3 Successive-Approximation-Register (SAR) Architecture 44
Chapter 3 A 12-bit 1MS/s Radiation-Tolerant Split SAR ADC with Error Detection and Correction 47
3.1 Introduction 47
3.2 Previous Comparator Circuits and Their Radiation-Tolerant Features [ 27 ] 48
3.2.1 Latch-type Two-Stage Dynamic Comparator 48
3.2.1.1 Comparator Design 50
3.2.1.2 Offset 53
3.2.1.3 Noise 55
3.2.2 Resistive Hardening Comparator 56
3.2.3 Triple Modular Redundancy and Majority Voter Comparator 58
3.3 Proposed Architecture 61
3.3.1 SAR ADC 62
3.3.1.1 Bootstrap Switch 63
3.3.1.2 Capacitive DAC 66
3.3.1.3 Comparator 69
3.3.1.4 SAR Logic 70
3.3.2 Radiation-Tolerant Split SAR ADC 73
3.3.2.1 Error Detection and Correction Methods 75
3.3.2.2 Circuit Implementation 78
3.4 Simulation Results 82
3.4.1 Transistor Level Simulation 82
3.4.2 SEE Behavior Simulation 86
Chapter 4 Testing Methods and Environment Setup 93
4.1 Introduction 93
4.2 Proton Beam Testing 93
4.2.1 Proton Beam LET and Cross Section 94
4.2.2 Testing Environment Setup 97
4.3 Short Pulse Laser Testing 99
4.3.1 Parameters for Laser Testing 101
4.3.1.1 Laser Threshold Energy and Frontside Laser Model Build-up [ 49 ] 101
4.3.1.2 Laser Cross Section 105
4.3.2 Testing Environment Setup 107
Chapter 5 Experiment Results 110
5.1 Comparators and SAR ADCs Measurement 110
5.1.1 Measurement Setup 110
5.1.2 Measurement Results 112
5.2 Pulse Laser Testing 116
5.2.1 NTU Pulse Laser Testing 116
5.2.1.1 Comparator 117
5.2.1.2 Conventional SAR ADC and Radiation-Tolerant Split SAR ADC 120
5.2.2 ZES Pulse Laser Testing 125
5.2.2.1 Conventional SAR ADC 129
5.2.2.2 Radiation-Tolerant Split SAR ADC 133
5.2.2.3 Comparison 138
5.3 Proton Beam Testing 139
5.3.1 Comparator 139
5.3.2 Conventional SAR ADC and Radiation-Tolerant Split SAR ADC 141
5.4 Summary 146
Chapter 6 Conclusion and Future Work 149
6.1 Conclusion 149
6.2 Future Work 150
Bibliography 152
-
dc.language.isoen-
dc.subject輻射容忍zh_TW
dc.subject類比數位轉換器zh_TW
dc.subject錯誤偵測及校正zh_TW
dc.subject單事件效應zh_TW
dc.subject脈衝雷射zh_TW
dc.subject高能質子束zh_TW
dc.subject比較器zh_TW
dc.subjectHigh-energy protonen
dc.subjectComparatoren
dc.subjectAnalog-to-Digital Converteren
dc.subjectRadiation toleranceen
dc.subjectError detection and correctionen
dc.subjectSingle event effecten
dc.subjectPulse laseren
dc.title一個具有輻射容忍的雙通道連續漸進式類比數位轉換器之設計以及使用短脈衝雷射與質子束進行單粒子事件分析zh_TW
dc.titleA Radiation-Tolerant Split SAR ADC with Single Event Effect Analysis Using Short Pulse Laser and Proton Beamen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李佳翰;蔡坤諭zh_TW
dc.contributor.oralexamcommitteeJia-Han Li;Kuen-Yu Tsaien
dc.subject.keyword比較器,類比數位轉換器,輻射容忍,錯誤偵測及校正,單事件效應,脈衝雷射,高能質子束,zh_TW
dc.subject.keywordComparator,Analog-to-Digital Converter,Radiation tolerance,Error detection and correction,Single event effect,Pulse laser,High-energy proton,en
dc.relation.page158-
dc.identifier.doi10.6342/NTU202500619-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2027-07-01-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  此日期後於網路公開 2027-07-01
7.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved