請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96944
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張日新 | zh_TW |
dc.contributor.advisor | Jih-Hsin Chang | en |
dc.contributor.author | 洪梓疄 | zh_TW |
dc.contributor.author | Zih-Lin Hong | en |
dc.date.accessioned | 2025-02-25T16:10:03Z | - |
dc.date.available | 2025-02-26 | - |
dc.date.copyright | 2025-02-25 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-11 | - |
dc.identifier.citation | Anderson, D. L. (2005). Large igneous provinces, delamination, and fertile mantle. Elements, 1(5), 271–275.
Anderson, D. L. (2011). Hawaii, boundary layers and ambient mantle—geophysical constraints. Journal of Petrology, 52(7-8), 1547–1577. Armitage, J. J., Collier, J. S., & Minshull, T. A. (2010). The importance of rift history for volcanic margin formation. Nature, 465(7300), 913–917. Baker, M. B., & Stolper, E. M. (1994). Determining the composition of high-pressure mantle melts using diamond aggregates. Geochimica et Cosmochimica Acta, 58(13), 2811–2827. Barckhausen, U., Engels, M., Franke, D., Ladage, S., & Pubellier, M. (2014). Evolution of the south china sea: Revised ages for breakup and seafloor spreading. Marine and Petroleum Geology, 58, 599–611. Biari, Y., Klingelhoefer, F., Sahabi, M., Funck, T., Benabdellouahed, M., Schnabel, M., Reichert, C., Gutscher, M.-A., Bronner, A., & Austin, J. (2017). Opening of the central atlantic ocean: Implications for geometric rifting and asymmetric initial seafloor spreading after continental breakup. Tectonics, 36(6), 1129–1150. Boutilier, R., & Keen, C. (1999). Small-scale convection and divergent plate boundaries. Journal of Geophysical Research: Solid Earth, 104(B4), 7389–7403. Bowin, C., Lu, R. S., Lee, C.-S., & Schouten, H. (1978). Plate convergence and accretion in taiwan-luzon region. AAPG bulletin, 62(9), 1645–1672. Bown, J. W., & White, R. S. (1995). Effect of finite extension rate on melt generation at rifted continental margins. Journal of Geophysical Research: Solid Earth, 100(B9), 18011–18029. Breivik, A., Faleide, J. I., Mjelde, R., Flueh, E., & Murai, Y. (2014). Magmatic development of the outer vøring margin from seismic data. Journal of geophysical research: solid earth, 119(9), 6733–6755. Briais, A., Patriat, P., & Tapponnier, P. (1993). Updated interpretation of magnetic anomalies and seafloor spreading stages in the south china sea: Implications for the tertiary tectonics of southeast asia. Journal of Geophysical Research: Solid Earth, 98(B4), 6299–6328. Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the earth’s crust. Bulletin of the seismological Society of America, 95(6), 2081–2092. Brune, S., Kolawole, F., Olive, J.-A., Stamps, D. S., Buck, W. R., Buiter, S. J., Furman, T., & Shillington, D. J. (2023). Geodynamics of continental rift initiation and evolution. Nature Reviews Earth & Environment, 4(4), 235–253. Burke, K. C., & Wilson, J. T. (1976). Hot spots on the earth’s surface. Scientific American, 235(2), 46–59. Chang, J.-H., Hong, Z.-L., Mirza, A., Lin, L.-F., Hsieh, H.-H., Ko, J. Y.-T., Chang, S.-P., Chen, C.-Y., & Liu, T.-Y. (2024). Spatial distribution and possible origin of the high velocity lower crust in the northern margin of the south china sea. Geoscience Letters, 11(1), 51. Chang, J.-H., Hsieh, H.-H., Mirza, A., Chang, S.-P., Hsu, H.-H., Liu, C.-S., Su, C.-C., Chiu, S.-D., Ma, Y.-F., Chiu, Y.-H., et al. (2017). Crustal structure north of the taiping island (itu aba island), southern margin of the south china sea. Journal of Asian Earth Sciences, 142, 119–133. Cheng, J., Zhang, J., Zhao, M., Du, F., Fan, C., Wang, X., & Qiu, X. (2021). Spatial distribution and origin of the high-velocity lower crust in the northeastern south china sea. Tectonophysics, 819, 229086. Cheng, W.-B. (2004). Crustal structure of the high magnetic anomaly belt, western taiwan, and its implications for continental margin deformation. Marine Geophysical Researches, 25(1), 79–93. Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research: Solid Earth, 100(B6), 9761–9788. Christeson, G. (1995). OBSTOOL: Software for processing UTIG OBS data. Institute for Geophysics, Technical Report, 134, 1–27. Clerc, C., Jolivet, L., & Ringenbach, J.-C. (2015). Ductile extensional shear zones in the lower crust of a passive margin. Earth and Planetary Science Letters, 431, 1–7. Coffin, M. F., & Eldholm, O. (1994). Large igneous provinces: Crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32(1), 1–36. Cullen, A., Reemst, P., Henstra, G., Gozzard, S., & Ray, A. (2010). Rifting of the south china sea: New perspectives. Petroleum Geoscience, 16(3), 273–282. Davies, J. H., & Bunge, H.-P. (2006). Are splash plumes the origin of minor hotspots? Geology, 34(5), 349–352. Dewey, J. F., & Burke, K. (1974). Hot spots and continental break-up: Implications for collisional orogeny. Geology, 2(2), 57–60. Ding, W., Schnabel, M., Franke, D., Aiguo, R., & Zhenli, W. (2012). Crustal structure across the northwestern margin of south china sea: Evidence for magma-poor rifting from a wide-angle seismic profile. Acta Geologica Sinica-English Edition, 86(4), 854–866. Dix, C. H. (1955). Seismic velocities from surface measurements. Geophysics, 20(1), 68-86. Doo, W.-B., Hsu, S.-K., & Armada, L. (2015). New magnetic anomaly map of the east asia with some preliminary tectonic interpretations. Terrestrial, Atmospheric & Oceanic Sciences, 26(1). Doo, W.-B., & Huang, Y.-S. (2024). Causal sources of the significant high-amplitude magnetic anomaly zone in the northern south china sea continental margin. Marine and Petroleum Geology, 170, 107128. Doré, T., & Lundin, E. (2015). Research focus: Hyperextended continental margins knowns and unknowns. Geology, 43(1), 95–96. Eakin, D. H., McIntosh, K. D., Van Avendonk, H., Lavier, L., Lester, R., Liu, C.-S., & Lee, C.-S. (2014). Crustal-scale seismic profiles across the manila subduction zone: The transition from intraoceanic subduction to incipient collision. Journal of Geophysical Research: Solid Earth, 119(1), 1–17. Fan, C., Xia, S., Cao, J., Zhao, F., Sun, J., Wan, K., & Xu, H. (2019). Lateral crustal variation and post-rift magmatism in the northeastern south china sea determined by wide-angle seismic data. Marine Geology, 410, 70–87. Fan, C., Xia, S., Zhao, F., Sun, J., Cao, J., Xu, H., & Wan, K. (2017). New insights into the magmatism in the northern margin of the s outh c hina s ea: Spatial features and volume of intraplate seamounts. Geochemistry, Geophysics, Geosystems, 18(6), 2216–2239. Foulger, G. R. (2010). Plates vs plumes: A geological controversy. John Wiley & Sons. Foulger, G. R., Doré, T., Emeleus, C. H., Franke, D., Geoffroy, L., Gernigon, L., Hey, R., Holdsworth, R. E., Hole, M., Höskuldsson, Á., et al. (2020). The iceland microcontinent and a continental greenland-iceland-faroe ridge. Earth-Science Reviews, 206, 102926. Foulger, G., & Natland, J. (2003). Is” hotspot” volcanism a consequence of plate tectonics? Science, 300(5621), 921–922. Franke, D. (2013). Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins. Marine and Petroleum geology, 43, 63–87. Gao, J., Wu, S., McIntosh, K., Mi, L., Yao, B., Chen, Z., & Jia, L. (2015). The continent–ocean transition at the mid-northern margin of the south china sea. Tectonophysics, 654, 1–19. Grove, T. L., Kinzler, R. J., & Bryan, W. B. (1992). Fractionation of mid-ocean ridge basalt (morb). Geophysical Monograph Series, 71, 281–310. Hall, R. (1996). Reconstructing cenozoic se asia. Geological Society, London, Special Publications, 106(1), 153–184. Hao, S., Mei, L., Pang, X., Gernigon, L., Paton, D., Zheng, J., Ye, Q., Zhou, Z., & Zhong, Y. (2023). Rifted margin with localized detachment and polyphase magmatism: A new model of the northern south china sea. Bulletin, 135(7-8), 1667–1687. Hao, S., Mei, L., Shi, H., Paton, D., Mortimer, E., Du, J., Deng, P., & Xu, X. (2021). Rift migration and transition during multiphase rifting: Insights from the proximal domain, northern south china sea rifted margin. Marine and Petroleum Geology, 123, 104729. Hess, H. H. (1962). History of ocean basins. Hill, R., Campbell, I., Davies, G., & Griffiths, R. (1992). Mantle plumes and continental tectonics. Science, 256(5054), 186–193. Hirose, K., & Kushiro, I. (1993). Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters, 114(4), 477–489. Hirschmann, M. M. (2000). Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochemistry, Geophysics, Geosystems, 1(10). Holbrook, W. S., Larsen, H., Korenaga, J., Dahl-Jensen, T., Reid, I., Kelemen, P., Hopper, J., Kent, G., Lizarralde, D., Bernstein, S., et al. (2001). Mantle thermal structure and active upwelling during continental breakup in the north atlantic. Earth and Planetary Science Letters, 190(3-4), 251–266. Holloway, N. (1982). North palawan block, philippines—its relation to asian mainland and role in evolution of south china sea. AAPG Bulletin, 66(9), 1355–1383. Hsu, S.-K., Yeh, Y.-c., Doo, W.-B., & Tsai, C.-H. (2004). New bathymetry and magnetic lineations identifications in the northernmost south china sea and their tectonic implications. Marine Geophysical Researches, 25, 29–44. Huang, J., & Zhao, D. (2006). High-resolution mantle tomography of china and surrounding regions. Journal of Geophysical Research: Solid Earth, 111(B9). Huismans, R. S., Podladchikov, Y. Y., & Cloetingh, S. (2001). Transition from passive to active rifting: Relative importance of asthenospheric doming and passive extension of the lithosphere. Journal of Geophysical Research: Solid Earth, 106(B6), 11271–11291. Kelemen, P. B., & Holbrook, W. S. (1995). Origin of thick, high-velocity igneous crust along the us east coast margin. Journal of Geophysical Research: Solid Earth, 100(B6), 10077–10094. Kinzler, R. J. (1997). Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid-ocean ridge basalt petrogenesis. Journal of Geophysical Research: Solid Earth, 102(B1), 853–874. Kinzler, R. J., & Grove, T. L. (1992). Primary magmas of mid-ocean ridge basalts 1. experiments and methods. Journal of Geophysical Research: Solid Earth, 97(B5), 6885–6906. Kinzler, R. J., & Grove, T. L. (1993). Corrections and further discussion of the primary magmas of mid-ocean ridge basalts, 1 and 2. Journal of Geophysical Research: Solid Earth, 98(B12), 22339–22347. Klein, E. M., & Langmuir, C. H. (1987). Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research: Solid Earth, 92(B8), 8089–8115. Korenaga, J., Holbrook, W., Kent, G., Kelemen, P., Detrick, R., Larsen, H.-C., Hopper, J., & Dahl-Jensen, T. (2000). Crustal structure of the southeast greenland margin from joint refraction and reflection seismic tomography. Journal of Geophysical Research: Solid Earth, 105(B9), 21591–21614. Korenaga, J., & Sager, W. (2012). Seismic tomography of shatsky rise by adaptive importance sampling. Journal of Geophysical Research: Solid Earth, 117(B8). Korenaga, J. (2004). Mantle mixing and continental breakup magmatism. Earth and Planetary Science Letters, 218(3-4), 463–473. Korenaga, J. (2011). Velocity–depth ambiguity and the seismic structure of large igneous provinces: A case study from the ontong java plateau. Geophysical Journal International, 185(2), 1022–1036. Korenaga, J., Kelemen, P. B., & Holbrook, W. S. (2002). Methods for resolving the origin of large igneous provinces from crustal seismology. Journal of Geophysical Research: Solid Earth, 107(B9), ECV–1. Lafond, E. (1966). South china sea (reprinted from the encyclopedia of oceanography). Reinhold Pub. Corp. Lapierre, H., Jahn, B., Charvet, J., & Yu, Y. (1997). Mesozoic felsic arc magmatism and continental olivine tholeiites in zhejiang province and their relationship with the tectonic activity in southeastern china. Tectonophysics, 274(4), 321–338. Larsen, H. C., Mohn, G., Nirrengarten, M., Sun, Z., Stock, J., Jian, Z., Klaus, A., Alvarez Zarikian, C., Boaga, J., Bowden, S., et al. (2018). Rapid transition from continental breakup to igneous oceanic crust in the south china sea. Nature Geoscience, 11(10), 782–789. Larsen, H., & Saunders, A. (1998). 41. tectonism and volcanism at the southeast greenland rifted margin: A record of plume impact and later continental rupture. Proceedings of the Ocean Drilling Program, Scientific Results, 152, 503–533. Lei, J., Zhao, D., Steinberger, B., Wu, B., Shen, F., & Li, Z. (2009). New seismic constraints on the upper mantle structure of the hainan plume. Physics of the Earth and Planetary Interiors, 173(1-2), 33–50. Lester, R., Lavier, L. L., McIntosh, K., Van Avendonk, H. J., & Wu, F. (2012). Active extension in taiwan' s precollision zone: A new model of plate bending in continental crust. Geology, 40(9), 831–834. Lester, R., McIntosh, K., Van Avendonk, H. J., Lavier, L., Liu, C.-S., & Wang, T.-K. (2013). Crustal accretion in the manila trench accretionary wedge at the transition from subduction to mountain-building in taiwan. Earth and Planetary Science Letters, 375, 430–440. Lester, R., Van Avendonk, H. J., McIntosh, K., Lavier, L., Liu, C.-S., Wang, T.-K., & Wu, F. (2014). Rifting and magmatism in the northeastern south china sea from wide-angle tomography and seismic reflection imaging. Journal of Geophysical Research: Solid Earth, 119(3), 2305–2323. Li, C.-F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y., Zhao, X., Liu, Q., Kulhanek, D. K., Wang, J., et al. (2014). Ages and magnetic structures of the south china sea constrained by deep tow magnetic surveys and iodp expedition 349. Geochemistry, Geophysics, Geosystems, 15(12), 4958–4983. Li, C.-F., Zhou, Z., Hao, H., Chen, H., Wang, J., Chen, B., & Wu, J. (2008a). Late mesozoic tectonic structure and evolution along the present-day northeastern south china sea continental margin. Journal of Asian Earth Sciences, 31(4-6), 546–561. Li, C.-F., Zhou, Z., Li, J., Chen, B., & Geng, J. (2008b). Magnetic zoning and seismic structure of the south china sea ocean basin. Marine Geophysical Researches, 29, 223–238. Li, C.-F., Zhou, Z., Li, J., Hao, H., & Geng, J. (2007). Structures of the northeasternmost south china sea continental margin and ocean basin: Geophysical constraints and tectonic implications. Marine Geophysical Researches, 28, 59–79. Li, F., Sun, Z., Pang, X., Liao, J., Yang, H., Xie, H., Zhuo, H., & Zhao, Z. (2019). Low-viscosity crustal layer controls the crustal architecture and thermal distribution at hyperextended margins: Modeling insight and application to the northern south china sea margin. Geochemistry, Geophysics, Geosystems, 20(7), 3248–3267. Li, F., Sun, Z., & Yang, H. (2018). Possible spatial distribution of the mesozoic volcanic arc in the present-day south china sea continental margin and its tectonic implications. Journal of Geophysical Research: Solid Earth, 123(8), 6215–6235. Li, S., Li, X., Zhou, J., Cao, H., Liu, L., Liu, Y., Sun, G., Suo, Y., Li, Y., Yu, S., et al. (2022). Passive magmatism on earth and earth-like planets. Geosystems and Geoenvironment, 1(1), 100008. Li, Y., Abbas, A., Li, C.-F., Sun, T., Zlotnik, S., Song, T., Zhang, L., Yao, Z., & Yao, Y. (2020). Numerical modeling of failed rifts in the northern south china sea margin: Implications for continental rifting and breakup. Journal of Asian Earth Sciences, 199, 104402. Li, Z.-X., & Li, X.-H. (2007). Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in mesozoic south china: A flat-slab subduction model. Geology, 35(2), 179–182. Liao, R., Zhu, H., Li, C., & Sun, W. (2022). Geochemistry of mantle source during the initial expansion and its implications for the opening of the south china sea. Marine Geology, 447, 106798. Lin, A., Watts, A. B., & Hesselbo, S. (2003). Cenozoic stratigraphy and subsidence history of the south china sea margin in the taiwan region. Basin Research, 15(4), 453–478. Lin, J., Xu, Y., Sun, Z., & Zhou, Z. (2019). Mantle upwelling beneath the south china sea and links to surrounding subduction systems. National Science Review, 6(5), 877–881. Liu, C., Reed, D., & Wang, C. (1998). Special issue for tectonics of east asia conference and the taicrust project-preface. Liu, S., Zhao, M., Sibuet, J.-C., Qiu, X., Wu, J., Zhang, J., Chen, C., Xu, Y., & Sun, L. (2018). Geophysical constraints on the lithospheric structure in the northeastern south china sea and its implications for the south china sea geodynamics. Tectonophysics, 742, 101–119. Lundin, E. R., & Doré, A. G. (2011). Hyperextension, serpentinization, and weakening: A new paradigm for rifted margin compressional deformation. Geology, 39(4), 347–350. Manatschal, G. (2004). New models for evolution of magma-poor rifted margins based on a review of data and concepts from west iberia and the alps. International Journal of Earth Sciences, 93, 432–466. McIntosh, K., Lavier, L., van Avendonk, H., Lester, R., Eakin, D., & Liu, C.-S. (2014). Crustal structure and inferred rifting processes in the northeast south china sea. Marine and Petroleum geology, 58, 612–626. McIntosh, K., Nakamura, Y., Wang, T.-K., Shih, R.-C., Chen, A., & Liu, C.-S. (2005). Crustal-scale seismic profiles across taiwan and the western philippine sea. Tectonophysics, 401(1-2), 23–54. McIntosh, K., van Avendonk, H., Lavier, L., Lester, W. R., Eakin, D., Wu, F., Liu, C.-S., & Lee, C.-S. (2013). Inversion of a hyper-extended rifted margin in the southern central range of taiwan. Geology, 41(8), 871–874. Mckenzie, D., & Bickle, M. (1988). The volume and composition of melt generated by extension of the lithosphere. Journal of petrology, 29(3), 625–679. Merle, O. (2011). A simple continental rift classification. Tectonophysics, 513(1-4), 88–95. Michon, L., & Merle, O. (2001). The evolution of the massif central rift; spatio-temporal distribution of the volcanism. Bulletin de la Société géologique de France, 172(2), 201–211. Montelli, R., Nolet, G., Dahlen, F., & Masters, G. (2006). A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochemistry, Geophysics, Geosystems, 7(11). Morgan, W. J. (1971). Convection plumes in the lower mantle. Nature, 230(5288), 42–43. Mutter, J. C., Talwani, M., & Stoffa, P. L. (1982). Origin of seaward-dipping reflectors in oceanic crust off the norwegian margin by“subaerial sea-floor spreading. Geology, 10(7), 353–357. Nielsen, T. K., & Hopper, J. R. (2004). From rift to drift: Mantle melting during continental breakup. Geochemistry, Geophysics, Geosystems, 5(7). Nirrengarten, M., Mohn, G., Schito, A., Corrado, S., Gutiérrez-García, L., Bowden, S. A., & Despinois, F. (2020). The thermal imprint of continental breakup during the formation of the south china sea. Earth and Planetary Science Letters, 531, 115972. Nissen, S. S., Hayes, D. E., Buhl, P., Diebold, J., Bochu, Y., Zeng, W., & Chen, Y. (1995). Deep penetration seismic soundings across the northern margin of the south china sea. Journal of Geophysical Research: Solid Earth, 100(B11), 22407–22433. Parkin, C., & White, R. (2008). Influence of the iceland mantle plume on oceanic crust generation in the north atlantic. Geophysical Journal International, 173(1), 168–188. Péron-Pinvidic, G., Manatschal, G., Minshull, T. A., & Sawyer, D. S. (2007). Tectonosedimentary evolution of the deep iberia-newfoundland margins: Evidence for a complex breakup history. Tectonics, 26(2). Petersen, K. D., & Schiffer, C. (2016). Wilson cycle passive margins: Control of orogenic inheritance on continental breakup. Gondwana Research, 39, 131–144. Qiu, X., Ye, S., Wu, S., Shi, X., Zhou, D., Xia, K., & Flueh, E. R. (2001). Crustal structure across the xisha trough, northwestern south china sea. Tectonophysics, 341(1-4), 179–193. Richardson, K., Smallwood, J., White, R., Snyder, D., & Maguire, P. (1998). Crustal structure beneath the faroe islands and the faroe–iceland ridge. Tectonophysics, 300(1-4), 159–180. Ridges, B. O. (1992). Petrological systematics of mid-ocean ridge. Sallarès, V., Charvis, P., Flueh, E. R., Bialas, J., & Party, S. S. (2005). Seismic structure of the carnegie ridge and the nature of the galápagos hotspot. Geophysical Journal International, 161(3), 763–788. Sandwell, D. T., Müller, R. D., Smith, W. H., Garcia, E., & Francis, R. (2014). New global marine gravity model from cryosat-2 and jason-1 reveals buried tectonic structure. science, 346(6205), 65–67. Sapin, F., Ringenbach, J.-C., & Clerc, C. (2021). Rifted margins classification and forcing parameters. Scientific Reports, 11(1), 8199. Schiffer, C., Doré, A. G., Foulger, G. R., Franke, D., Geoffroy, L., Gernigon, L., Holdsworth, B., Kusznir, N., Lundin, E., McCaffrey, K., et al. (2020). Structural inheritance in the north atlantic. Earth-Science Reviews, 206, 102975. Schiffer, C., Stephenson, R. A., Petersen, K. D., Nielsen, S. B., Jacobsen, B. H., Balling, N., & Macdonald, D. I. (2015). A sub-crustal piercing point for north atlantic reconstructions and tectonic implications. Geology, 43(12), 1087–1090. Sewell, R., & Campbell, S. (1997). Geochemistry of coeval mesozoic plutonic and volcanic suites in hong kong. Journal of the Geological Society, 154(6), 1053–1066. Sleep, N. H. (1992). Hotspot volcanism and mantle plumes. Annual Review of Earth and Planetary Sciences, Vol. 20, p. 19, 20, 19. Smith, A. D., & Lewis, C. (1999). The planet beyond the plume hypothesis. Earth-Science Reviews, 48(3), 135–182. Sun, Z., Lin, J., Qiu, N., Jian, Z., Wang, P., Pang, X., Zheng, J., & Zhu, B. (2019). The role of magmatism in the thinning and breakup of the south china sea continental margin: Special topic: The south china sea ocean drilling. National Science Review, 6(5), 871–876. Sun, Z., Zhimin, J., Stock, J. M., Larsen, H. C., Klaus, A., Zarikian, C. A. A., Boaga, J., Briais, A., Yifeng, C., Dorais, M. J., et al. (2018). Proceedings of the international ocean discovery program; south china sea rifted margin; expeditions 367 and 368 of the riserless drilling platform from and to hong kong, china; sites u1499-u1500, 7 february-9 april 2017; and hong kong, china, to shanghai, china; sites u1501-u1505, 9 april-11, june 2017. Proceedings of the International Ocean Discovery Program. Expedition reports, 367. Tapponnier, P., Peltzer, G., Le Dain, A., Armijo, R., & Cobbold, P. (1982). Propagating extrusion tectonics in asia: New insights from simple experiments with plasticine. Geology, 10(12), 611–616. Taylor, B., & Hayes, D. (1983). The tectonic and geologic evolution of southeast asian seas and islands. part 2: Agu geophysical monograph. Taylor, B., & Hayes, D. E. (1980). The tectonic evolution of the south china basin. Geophysical Monograph Series, 23, 89–104. Thybo, H., & Artemieva, I. (2013). Moho and magmatic underplating in continental lithosphere. Tectonophysics, 609, 605–619. Toomey, D., & Foulger, G. (1989). Tomographic inversion of local earthquake data from the hengill-grensdalur central volcano complex, iceland. Journal of Geophysical Research: Solid Earth, 94(B12), 17497–17510. Tugend, J., Manatschal, G., & Kusznir, N. (2015). Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the iberian-european plate boundary. Geology, 43(1), 15–18. Walter, M. J. (1998). Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of petrology, 39(1), 29–60. Wan, K., Xia, S., Cao, J., Sun, J., & Xu, H. (2017). Deep seismic structure of the north-eastern south china sea: Origin of a high-velocity layer in the lower crust. Journal of Geophysical Research: Solid Earth, 122(4), 2831–2858. Wan, X., Li, C.-F., Zhao, M., He, E., Liu, S., Qiu, X., Lu, Y., & Chen, N. (2019). Seismic velocity structure of the magnetic quiet zone and continent-ocean boundary in the northeastern south china sea. Journal of Geophysical Research: Solid Earth, 124(11), 11866–11899. Wang, K.-L., Lo, Y.-M., Chung, S.-L., Lo, C.-H., Hsu, S.-K., Yang, H.-J., & Shinjo, R. (2012a). Age and geochemical features of dredged basalts from offshore sw taiwan: The coincidence of intra-plate magmatism with the spreading south china sea. Terrestrial, Atmospheric & Oceanic Sciences, 23(6). Wang, Q., Zhao, M., Zhang, J., Zhang, H., Sibuet, J.-C., Li, Z., He, E., Qiu, X., Peng, W., & Chen, G. (2023). Breakup mechanism of the northern south china sea: Evidence from the deep crustal structure across the continent-ocean transition. Gondwana Research, 120, 47–69. Wang, T. K., Chen, M.-K., Lee, C.-S., & Xia, K. (2006). Seismic imaging of the transitional crust across the northeastern margin of the south china sea. Tectonophysics, 412(3-4), 237–254. Wang, X.-C., Li, Z.-X., Li, X.-H., Li, J., Liu, Y., Long, W.-G., Zhou, J.-B., & Wang, F. (2012b). Temperature, pressure, and composition of the mantle source region of late cenozoic basalts in hainan island, se asia: A consequence of a young thermal mantle plume close to subduction zones? Journal of Petrology, 53(1), 177–233. Wang, X.-C., Li, Z.-X., Li, X.-H., Li, J., Xu, Y.-G., & Li, X.-H. (2013). Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: Implications for potential linkages between plume and plate tectonics. Earth and Planetary Science Letters, 377, 248–259. Wei, X.-D., Zhao, M.-H., Ruan, A.-G., Qiu, X.-L., Hao, T.-Y., Wu, Z.-L., Ao, W., & Xiong, H. (2011). Crustal structure of shear waves and its tectonic significance in the mid-northern continental margin of the south china sea. Chinese Journal of Geophysics, 54(12), 3150–3160. White, R., & McKenzie, D. (1989). Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research: Solid Earth, 94(B6), 7685–7729. White, R. S. (1997). Rift–plume interaction in the north atlantic. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 355(1723), 319–339. White, R. S., McKenzie, D., & O’Nions, R. K. (1992). Oceanic crustal thickness from seismic measurements and rare earth element inversions. Journal of Geophysical Research: Solid Earth, 97(B13), 19683–19715. White, R. S., Spence, G. D., Fowler, S. R., McKenzie, D. P., Westbrook, G. K., & Bowen, A. N. (1987). Magmatism at rifted continental margins. Nature, 330(6147), 439–444. White, R., Smith, L., Roberts, A., Christie, P., Kusznir, N., & rest of the iSIMM Team The iSIMM team. (2008). Lower-crustal intrusion on the north atlantic continental margin. Nature, 452(7186), 460–464. Whitmarsh, R., Manatschal, G., & Minshull, T. (2001). Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature, 413(6852), 150–154. Wilson, J. T., et al. (1966). Did the atlantic close and then re-open? Wilson, M. (1993). Magmatism and the geodynamics of basin formation. Sedimentary Geology, 86(1-2), 5–29. Woudloper. (2010). Partial melting asthenosphere. Wu, F. T., Kuo-Chen, H., & McIntosh, K. (2014). Subsurface imaging, taiger experiments and tectonic models of taiwan. Journal of Asian Earth Sciences, 90, 173–208. Xia, B., Zhang, Y., Cui, X., Liu, B., Xie, J., Zhang, S., & Lin, G. (2006). Understanding of the geological and geodynamic controls on the formation of the south china sea: A numerical modelling approach. Journal of Geodynamics, 42(1-3), 63–84. Xia, K.-y., Huang, C.-l., Jiang, S.-r., Zhang, Y.-x., Su, D.-q., Xia, S.-g., & Chen, Z.-r. (1994). Comparison of the tectonics and geophysics of the major structural belts between the northern and southern continental margins of the south china sea. Tectonophysics, 235(1-2), 99–116. Xu, Y., Wei, J., Qiu, H., Zhang, H., & Huang, X. (2012). Opening and evolution of the south china sea constrained by studies on volcanic rocks: Preliminary results and a research design. Chinese Science Bulletin, 57, 3150–3164. Yan, P., Di, Z., & Zhaoshu, L. (2001). A crustal structure profile across the northern continental margin of the south china sea. Tectonophysics, 338(1), 1–21. Yan, Q., & Shi, X. (2008). Olivine chemistry of cenozoic basalts in the south china sea and the potential temperature of the mantle. Acta Petrologica Sinica, 24(1), 176–184. Yan, Q., Shi, X., & Castillo, P. R. (2014). The late mesozoic–cenozoic tectonic evolution of the south china sea: A petrologic perspective. Journal of Asian Earth Sciences, 85, 178–201. Yang, F., Huang, X.-L., Xu, Y.-G., & He, P.-L. (2019). Plume-ridge interaction in the south china sea: Thermometric evidence from hole u1431e of iodp expedition 349. Lithos, 324, 466–478. Yu, M., Yan, Y., Huang, C.-Y., Zhang, X., Tian, Z., Chen, W.-H., & Santosh, M. (2018). Opening of the south china sea and upwelling of the hainan plume. Geophysical Research Letters, 45(6), 2600–2609. Yu, X., & Liu, Z. (2020). Non-mantle-plume process caused the initial spreading of the south china sea. Scientific Reports, 10(1), 8500. Yuan, X., Korenaga, J., Holbrook, W. S., & Kelemen, P. B. (2020). Crustal structure of the greenland-iceland ridge from joint refraction and reflection seismic tomography. Journal of Geophysical Research: Solid Earth, 125(7), e2020JB019847. Zelt, C. A., & Barton, P. J. (1998). Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the faeroe basin. Journal of Geophysical Research: Solid Earth, 103(B4), 7187–7210. Zhang, C., Sun, Z., Manatschal, G., Pang, X., Qiu, N., Su, M., Zheng, J., Li, H., Gu, Y., Zhang, J., et al. (2021a). Syn-rift magmatic characteristics and evolution at a sediment-rich margin: Insights from high-resolution seismic data from the south china sea. Gondwana Research, 91, 81–96. Zhang, G.-L., Luo, Q., Zhao, J., Jackson, M. G., Guo, L.-S., & Zhong, L.-F. (2018a). Geochemical nature of sub-ridge mantle and opening dynamics of the south china sea. Earth and Planetary Science Letters, 489, 145–155. Zhang, G.-L., Sun, W.-D., & Seward, G. (2018b). Mantle source and magmatic evolution of the dying spreading ridge in the south china sea. Geochemistry, Geophysics, Geosystems, 19(11), 4385–4399. Zhang, J., ten Brink, U. S., & Toksöz, M. N. (1998). Nonlinear refraction and reflection travel time tomography. Journal of Geophysical Research: Solid Earth, 103(B12), 29743–29757. Zhang, J., Yang, G., Tan, H., Wu, G., & Wang, J. (2021b). Mapping the moho depth and ocean-continent transition in the south china sea using gravity inversion. Journal of Asian Earth Sciences, 218, 104864. Zhao, M., Qiu, X., Xia, S., Xu, H., Wang, P., Wang, T. K., Lee, C.-S., & Xia, K. (2010). Seismic structure in the northeastern south china sea: S-wave velocity and vp/vs ratios derived from three-component obs data. Tectonophysics, 480(1-4), 183–197. Zhou, D., Wang, W., Wang, J., Pang, X., Cai, D., & Sun, Z. (2006). Mesozoic subduction-accretion zone in northeastern south china sea inferred from geophysical interpretations. Science in China Series D, 49, 471–482. Zhou, X., & Li, W. (2000). Origin of late mesozoic igneous rocks in southeastern china: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4), 269–287. Zhu, J., Qiu, X., Kopp, H., Xu, H., Sun, Z., Ruan, A., Sun, J., & Wei, X. (2012). Shallow anatomy of a continent–ocean transition zone in the northern south china sea from multichannel seismic data. Tectonophysics, 554, 18–29. Zou, H., & Fan, Q. (2010). U–th isotopes in hainan basalts: Implications for subasthenospheric origin of em2 mantle endmember and the dynamics of melting beneath hainan island. Lithos, 116(1-2), 145–152. 姚伯初. (1998). 用海洋地震方法研究岩石圈結構. 地學前缘 , 5(1), 111–118. 陳紀辛. (2013). 由海底地震儀資料探討南海北坡被動大陸邊緣地殼速度構造. 臺灣大學海洋研究所學位論文 , 2013, 1–110. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96944 | - |
dc.description.abstract | 南海北部為最早期開始擴張的位置,其大陸邊緣也記錄了張裂演化歷史。在南海北緣存在一項顯著的地球物理特徵,稱為高速帶(high-velocity layer),即位於莫荷面之上且P波速度超過7km/s的塊體,常被解釋為岩漿添附至下部地殼的底侵作用(underplating)所致。因此,對高速帶的研究能夠更深入了解岩漿活動及其與構造演化的關係。然而,高速帶在南海的空間分布與成因仍有歧見。本研究結合多頻道震測系統與海底地震儀走時資料,建立一位於南海北緣的地殼速度構造剖面。首先,分析多頻道反射震測資料,以獲得基盤以上的初始速度模型。接著,結合海底地震儀所選取的走時資料,採用蒙地卡羅與自適應重要性採樣策略,並使用能聯合逆推折射與反射走時的TOMO2D層析成像法,建立完整地殼速度構造。結果顯示,下部地殼存在有最厚約6公里的高速帶,且呈獨立、塊狀分布,並非單一均勻的層狀構造,而基於速度構造所建立之重力模型亦支持此高速帶特徵的存在。隨後,我們重新檢視並彙整已發表文獻之速度構造剖面,並編繪南海北部陸緣高速帶的厚度與分布,再藉由分析地殼厚度與平均下部地殼速度關係(H–Vp分析),綜合探討高速帶形成時可能的地函動力學狀態。透過H–Vp分析結果與高速帶空間分布,並比較其與磁力異常的關係,揭示南海北緣高速帶的區域差異及演化過程:在大陸棚與大陸斜坡區,高速帶呈條帶狀分布,並對應顯著東北-西南向正磁力異常,H-Vp之正相關顯示接近正常位溫的主動地函上湧,可能由隱沒驅動的小尺度地函對流所致;於臺灣西南側,較厚的高速帶並未直接對應更高的磁力異常,H-Vp呈負相關趨勢,顯示其可能受到繼承構造的影響;至於在大陸海洋過渡帶,高速帶則呈獨立、多塊狀分布,H-Vp的正相關及高溫特徵,推測與岩石圈不穩定導致的區域熱異常事件相關。 | zh_TW |
dc.description.abstract | The northern margin of the South China Sea (SCS) is where continental rifting initially occurred, and may preserve the full history of tectonic evolution. A significant feature in the lower crust of the northern margin of SCS is the high‑velocity layer (HVL), showing a P‑wave seismic velocity exceeding 7 km/s overlying the mantle. The HVL is often interpreted as magmatic underplating, providing crucial insights into magmatic activities during with tectonic evolution. However, the spatial distribution and possible origin of the HVL in the SCS remain subjects of debate. In this study, we integrate multi-channel seismic (MCS) and ocean-bottom seismometer (OBS) traveltime data to construct a crustal velocity structure profile cross the northern margin of the SCS. We firstly analyze MCS data, deriving a robust initial velocity model above the basement. By the Monte-Carlo method and adaptive importance sampling strategies, we perform joint inversion of reflection and refraction data using TOMO2D to construct a crustal velocity model. The final results reveal that HVLs in the lower crust with a maximum thickness of approximately 6 km. The HVL is characterized by isolated blocks rather than a layered structure with uniform thickness, and this HVL geometry is also validated by gravity modeling. Next, we reexamine and compile published profiles to prepare the thickness map of the HVLs along the northern margin of the SCS. Furthermore, by comparing theoretical and observed crustal thickness (H) and average lower-crustal P-wave velocity (Vp) plots (H-Vp plots), along with published magnetic anomaly map, we comprehensively investigate the possible mantle dynamics that drove the formation of the HVL. The positive-to-no H-Vp correlation and corresponding belt-like positive magnetic anomaly along the continental shelf and slope, indicate subduction-driven small-scale mantle convection. The negative H–Vp correlation and the lack of direct correspondence between the thicker HVL and higher magnetic anomalies in the southwest of Taiwan, indicate an influence from inherited structures. The positive H–Vp correlation, along with the isolated, scattered HVL segments and high-temperature features in the continent-ocean transition zone, indicates localized thermal anomaly events caused by lithospheric instability. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:10:03Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-25T16:10:03Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 III Abstract IV 目次 VI 圖次 IX 表次 XII 第一章 緒論 1 1.1 被動大陸邊緣的張裂與地函活動 . . . . . . . . . . . . . . . . . . . 1 1.2 下部地殼高速帶 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 南海成因和下部地殼高速帶 . . . . . . . . . . . . . . . . . . . . . 9 1.4 研究動機與目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 第二章 區域地質與研究 15 2.1 南海地質架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 南海北緣速度構造研究 . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 南海北緣高速帶特徵 . . . . . . . . . . . . . . . . . . . . . . . . . 28 第三章 材料與方法 35 3.1 研究方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 多頻道反射震測資料 . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.1 反射震測介紹與參數 . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.2 反射震測資料處理 . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 海底地震儀資料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.1 海底地震儀資料介紹 . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.2 海底地震儀資料處理 . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 速度構造建立原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.1 速度頻譜法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4.2 TOMO2D 介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.5 速度構造建立策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.1 蒙地卡羅分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.2 自適應重要性採樣 . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.6 不確定性分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6.1 導數權重和 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6.2 棋盤格恢復性測試 . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6.3 蒙地卡羅分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.7 重力模型建立 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.8 𝐻 − 𝑉𝑃 分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.8.1 原理介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 第四章 結果 76 4.1 地殼速度構造 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2 不確定性分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2.1 導數權重和與棋盤格測試 . . . . . . . . . . . . . . . . . . . . . . 79 4.2.2 蒙地卡羅分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.3 自適應採樣結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3 重力模型結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4 𝐻 − 𝑉𝑃 分析結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 第五章 討論 92 5.1 逆推結果特徵與正演結果的比較 . . . . . . . . . . . . . . . . . . . 92 5.2 南海北緣高速帶之厚度分布 . . . . . . . . . . . . . . . . . . . . . 95 5.2.1 磁力異常分布比較 . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.3 𝐻 − 𝑉𝑝 分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.4 南海北部大陸邊緣地殼構造演化 . . . . . . . . . . . . . . . . . . . 109 第六章 結論 111 參考文獻 112 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用折射與反射震測資料之聯合逆推探討南海北部大陸邊緣地殼速度構造 | zh_TW |
dc.title | Crustal Structure of the Northern Margin of the South China Sea from Joint Inversion of Refraction and Reflection Seismic Tomography | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 劉家瑄;郭陳澔;林佩瑩;鄧家明 | zh_TW |
dc.contributor.oralexamcommittee | Char-Shine Liu;Hao Kuo-Chen;Pei-Ying PATTY Lin;Jia-Ming Deng | en |
dc.subject.keyword | 南海北部,被動邊緣,高速帶,海底地震儀,地殼構造,H-Vp分析, | zh_TW |
dc.subject.keyword | the northern South China Sea,passive margin,high-velocity layer,ocean-bottom seismometer,crustal structure,H-Vp analysis, | en |
dc.relation.page | 127 | - |
dc.identifier.doi | 10.6342/NTU202500544 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-02-11 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
dc.date.embargo-lift | 2030-02-10 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 66.63 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。