請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96927
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 盧彥文 | zh_TW |
dc.contributor.advisor | Yen-Wen Lu | en |
dc.contributor.author | 陳泓碩 | zh_TW |
dc.contributor.author | HUNG SHUO CHEN | en |
dc.date.accessioned | 2025-02-24T16:35:38Z | - |
dc.date.available | 2025-02-25 | - |
dc.date.copyright | 2025-02-24 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-07 | - |
dc.identifier.citation | Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. J Adv Res, 6(2), 105-121. https://doi.org/10.1016/j.jare.2013.07.006
Berthier, J. (2013). Introduction to Liquid Dielectrophoresis. In Micro-Drops and Digital Microfluidics (pp. 303-324). https://doi.org/10.1016/b978-1-4557-2550-2.00006-7 Caro‐Pérez, O., Casals‐Terré, J., & Roncero, M. B. (2022). Materials and Manufacturing Methods for EWOD Devices: Current Status and Sustainability Challenges. Macromolecular Materials and Engineering, 308(1). https://doi.org/10.1002/mame.202200193 Chen, C.-H., Chen, S.-Y., Chu, C. Y. P., & Tai, Y.-H. (2023). Experimental and theoretical investigation of frequency-dependent and conductivity-dependent threshold actuation voltage of electrowetting-on-dielectric and liquid dielectrophoresis on a one-plate device. Sensors and Actuators A: Physical, 354, 114256. Chen, C.-H., Tsai, S.-L., & Jang, L.-S. (2009). Droplet creation using liquid dielectrophoresis. Sensors and Actuators B: Chemical, 142(1), 369-376. https://doi.org/10.1016/j.snb.2009.08.001 Chen, M., Aluunmani, R., Bolognesi, G., & Vladisavljević, G. T. (2022). Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device. Molecules, 27(13), 4013. https://www.mdpi.com/1420-3049/27/13/4013 Cheng, Y.-H., Yang, T.-J., & Lu, Y.-W. (2023). Simultaneous multiple-droplet generation with meniscus filling on digital microfluidics chip. Sensors and Actuators B: Chemical, 390. https://doi.org/10.1016/j.snb.2023.133989 Chiang, M.-Y., Hsu, Y.-W., Hsieh, H.-Y., Chen, S.-Y., & Fan, S.-K. (2016). Constructing 3D heterogeneous hydrogels from electrically manipulated prepolymer droplets and crosslinked microgels. Science Advances, 2(10), e1600964. https://doi.org/doi:10.1126/sciadv.1600964 Davachi, S. M., Mokhtare, A., Torabi, H., Enayati, M., Deisenroth, T., Van Pho, T., Qu, L., Tucking, K. S., & Abbaspourrad, A. (2023). Screening the Degradation of Polymer Microparticles on a Chip. ACS Omega, 8(1), 1710-1722. https://doi.org/10.1021/acsomega.2c07704 Duclairoir, C., Orecchioni, A.-M., Depraetere, P., Osterstock, F., & Nakache, E. (2003). Evaluation of gliadins nanoparticles as drug delivery systems: a study of three different drugs. International journal of pharmaceutics, 253(1-2), 133-144. Han, W. T., Jang, T., Chen, S., Chong, L. S. H., Jung, H. D., & Song, J. (2019). Improved cell viability for large-scale biofabrication with photo-crosslinkable hydrogel systems through a dual-photoinitiator approach. Biomater Sci, 8(1), 450-461. https://doi.org/10.1039/c9bm01347d Ho, B., Phan, C. M., Garg, P., Shokrollahi, P., & Jones, L. (2023). A Rapid Screening Platform for Simultaneous Evaluation of Biodegradation and Therapeutic Release of an Ocular Hydrogel. Pharmaceutics, 15(11). https://doi.org/10.3390/pharmaceutics15112625 Hoare, T. R., & Kohane, D. S. (2008). Hydrogels in drug delivery: Progress and challenges. polymer, 49(8), 1993-2007. Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced drug delivery reviews, 64, 18-23. https://doi.org/10.1016/j.addr.2012.09.010 Jung, S. H., Bulut, S., Busca Guerzoni, L. P. B., Gunther, D., Braun, S., De Laporte, L., & Pich, A. (2022). Fabrication of pH-degradable supramacromolecular microgels with tunable size and shape via droplet-based microfluidics. J Colloid Interface Sci, 617, 409-421. https://doi.org/10.1016/j.jcis.2022.02.065 Krutkramelis, K., Xia, B., & Oakey, J. (2016). Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device. Lab Chip, 16(8), 1457-1465. https://doi.org/10.1039/c6lc00254d Kumemura, M., Collard, D., Yoshizawa, S., Wee, B., Takeuchi, S., & Fujita, H. (2012). Enzymatic reaction in droplets manipulated with liquid dielectrophoresis. Chemphyschem, 13(14), 3308-3312. https://doi.org/10.1002/cphc.201200354 Lei, K., Sun, Y., Sun, C., Zhu, D., Zheng, Z., & Wang, X. (2019). Fabrication of a Controlled in Situ Forming Polypeptide Hydrogel with a Good Biological Compatibility and Shapeable Property. ACS Applied Bio Materials, 2(4), 1751-1761. https://doi.org/10.1021/acsabm.9b00157 Li, J., & Kim, C. C. (2020). Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics. Lab Chip, 20(10), 1705-1712. https://doi.org/10.1039/d0lc00144a Peppas, N. A., Hilt, J. Z., Khademhosseini, A., & Langer, R. (2006). Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Advanced Materials, 18(11), 1345-1360. https://doi.org/10.1002/adma.200501612 Qiu, Y., & Park, K. (2001). Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews, 53(3), 321-339. Renaudot, R., Agache, V., Daunay, B., Lambert, P., Kumemura, M., Fouillet, Y., Collard, D., & Fujita, H. (2011). Optimization of Liquid DiElectroPhoresis (LDEP) Digital Microfluidic Transduction for Biomedical Applications. Micromachines, 2(2), 258-273. https://doi.org/10.3390/mi2020258 Rui, X., Song, S., Wang, W., & Zhou, J. (2020). Applications of electrowetting-on-dielectric (EWOD) technology for droplet digital PCR. Biomicrofluidics, 14(6), 061503. https://doi.org/10.1063/5.0021177 Shawgo, R. S., Grayson, A. C. R., Li, Y., & Cima, M. J. (2002). BioMEMS for drug delivery. Current Opinion in Solid State and Materials Science, 6(4), 329-334. Stillman, Z., Jarai, B. M., Raman, N., Patel, P., & Fromen, C. A. (2020). Degradation profiles of poly(ethylene glycol)diacrylate (PEGDA)-based hydrogel nanoparticles [10.1039/C9PY01206K]. Polymer Chemistry, 11(2), 568-580. https://doi.org/10.1039/C9PY01206K Sung Kwon, C., Hyejin, M., & Chang-Jin, K. (2003). Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 12(1), 70-80. https://doi.org/10.1109/jmems.2002.807467 Vashist, A., Vashist, A., Gupta, Y., & Ahmad, S. (2014). Recent advances in hydrogel based drug delivery systems for the human body. Journal of Materials Chemistry B, 2(2), 147-166. Wang, K. L., Jones, T. B., & Raisanen, A. (2007). Dynamic control of DEP actuation and droplet dispensing. Journal of Micromechanics and Microengineering, 17(1), 76-80. https://doi.org/10.1088/0960-1317/17/1/010 Wei, Q., Yao, W., Gu, L., Fan, B., Gao, Y., Yang, L., Zhao, Y., & Che, C. (2021). Modeling, simulation, and optimization of electrowetting-on-dielectric (EWOD) devices. Biomicrofluidics, 15(1), 014107. https://doi.org/10.1063/5.0029790 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96927 | - |
dc.description.abstract | 水凝膠的生物相容性與多孔性使其在生物醫學與藥物傳遞應用中扮演關鍵角色。本研究提出了數位微流控(DMF)的最新進展,利用液體介電泳(LDEP)增強水凝膠的操作能力,實現液體的拉伸操作,並比較了不同液體在拉伸距離和最小驅動電壓上的實驗結果與理論值。此外,研究還測試了相同液體在不同電極寬度下的位移,以及在相同LDEP力下,不同濃度PEGDA(10%、30%、50%,分別代表三種不同黏度)的拉伸距離,進行理論與實驗結果的比較。
本研究所設計的DMF裝置能夠高效且穩定地生成並控制多個水凝膠液滴,同時對五種不同液體進行測試,並達到低CV值:10wt% PEGDA為5.0%,50wt% PEGDA為6.0%,Na₂HPO₄為5.1%,NaH₂PO₄更低,僅4.0%,而H₂O₂則為5.9%。此技術克服了傳統方法的限制,顯著提高了液滴體積與穩定性的控制能力,促進了平行測試,拓展了水凝膠的應用範圍。 由於市場上水凝膠種類的日益增加以及測試方法的需求持續存在,本研究利用液滴生成技術提供了一個多次重複測試的水凝膠平台。該技術減少了溶液消耗,簡化了操作過程並節省了時間。經過大量實驗測試發現,奈升(nL)尺度的液滴行為與毫升(mL)尺度液滴趨勢相同,但反應更快。在10nL尺度中,10wt% PEGDA剩餘32%,50wt% PEGDA剩餘54.5%;相比之下,在10μL尺度中,10wt% PEGDA剩餘41.3%,50wt% PEGDA剩餘71.8%。這表明奈升尺度平台具有更高的反應速率,顯示其在進一步應用中的潛力。 | zh_TW |
dc.description.abstract | Hydrogel's biocompatibility and porosity make it crucial for biomedical and drug delivery applications. This paper presents advancements in Digital Microfluidics (DMF) that enhance hydrogel manipulation using liquid dielectrophoresis (LDEP) to elongate the liquid. It compares the theoretical and experimental results regarding elongation distance and the minimum applied voltage for different liquids. Additionally, the study examines the displacement of the same liquid under varying electrode widths and evaluates the elongation distances of PEGDA at concentrations of 10%, 30%, and 50%—representing three different viscosities—under the same LDEP force.
Our DMF device efficiently generates and controls multiple hydrogel droplets simultaneously using five different liquids while maintaining a low coefficient of variation (CV). The CV values were as follows: 10 wt% PEGDA at 5.0%, 50 wt% PEGDA at 6.0%, Na₂HPO₄ at 5.1%, NaH₂PO₄ at 4.0% (the lowest), and H₂O₂ at 5.9%. By overcoming the limitations of traditional methods, this approach improves droplet volume control and stability, facilitating parallel testing and expanding hydrogel applications. With the increasing variety of hydrogels available on the market and the continuous demand for reliable testing methods, this study leverages droplet generation technology to establish a high-throughput hydrogel testing platform. This approach reduces solution consumption, simplifies the operation process, and minimizes time wastage. Through extensive experimental testing, it was observed that the behavior of nanoliter-sized droplets follows the same trend as milliliter-sized droplets but with a faster response. Both 10 wt% (32% remaining) and 50 wt% (54.5% remaining) demonstrated that the reaction rate at the 10 nL scale was significantly faster than at the 10 μL scale, where 10 wt% (41.3% remaining) and 50 wt% (71.8% remaining) were observed. This finding highlights the potential utility of the platform for further applications. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:35:37Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-24T16:35:38Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 ii
中文摘要 iii Abstract v List of Figures vii List of Tables xiv Chapter 1 Introduction 1 1.1 Background 1 1.2 Applications of Hydrogel (PEGDA) 2 1.3 Importance of Droplet-Based Degradation Tests 4 1.4 Innovative Platform for Droplet Manipulation and Degradation 5 Chapter 2 Literature Review 7 2.1 EWOD force 7 2.2 LDEP force 9 2.3 Curing and Degradation of Hydrogel 13 2.4 PEGDA Demonstrate on DMF Chip 15 2.5 Degradation Record by Image on Chip 17 2.6 Droplet Generation Pattern Design 20 Chapter 3 Materials and Methods 22 3.1 EWOD force 23 3.2 LDEP force (Chen et al., 2023) 25 3.3 Device Fabrication 31 3.4 Experiment Setup 35 3.5 Hydrogel material synthesis 36 3.6 Data analysis 38 3.7 Pattern Design 39 Chapter 4 Results 42 4.1 Minimum Voltage For Loading The Electrode 42 4.2 Change in Electrode Width Leading to Stretching Distance 44 4.3 Degradation Test Out of the Chip 47 4.4 Degradation Test in Different Solution 50 4.5 Droplet Generation of Different liquid Solution on DMF Chip 55 4.6 Meniscus Filling for Moving Droplets 60 4.7 Curing and Degradation on Chip 64 Chapter 5 Discussion 69 5.1 Minimum Voltage for Loading the Electrode 69 5.2 Moving electrode – finger electrode and Chevron -shaped electrode 70 5.3 Degradation Tests 70 5.4 Grayscale Changes and Dye Migration in Transparent PEGDA 72 5.5 Interaction Between Degradation and Evaporation 73 Chapter 6 Conclusions and Prospective 74 6.1 Conclusions 74 6.2 Future prospects 75 Appendix I 76 References 91 | - |
dc.language.iso | en | - |
dc.title | 在數位微流體平台上生成複數聚(乙二醇)二丙烯酸酯液滴並進行降解測試 | zh_TW |
dc.title | Multiple polyethylene glycol diacrylate droplet generation and degradation testing on digital microfluidics | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林宗宏;蔣雅郁;侯詠德 | zh_TW |
dc.contributor.oralexamcommittee | Zong-Hong Lin;Ya-Yu Chiang;Yung-Te Hou | en |
dc.subject.keyword | 數位微流體,液滴,降解,水膠, | zh_TW |
dc.subject.keyword | Digital microfluidic,droplet,EWOD,PEGDA,hydrogel,degradation, | en |
dc.relation.page | 95 | - |
dc.identifier.doi | 10.6342/NTU202500504 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2025-02-08 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物機電工程學系 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 3.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。