Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96919
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃奎隆zh_TW
dc.contributor.advisorKwei-Long Huangen
dc.contributor.author許世佑zh_TW
dc.contributor.authorShih-Yu Hsuen
dc.date.accessioned2025-02-24T16:33:31Z-
dc.date.available2025-02-25-
dc.date.copyright2025-02-24-
dc.date.issued2025-
dc.date.submitted2025-02-11-
dc.identifier.citation[1]Ayhan, M. B., & Kilic, H. S. (2015). A two stage approach for supplier selection problem in multi-item/multi-supplier environment with quantity discounts. Computers & Industrial Engineering, 85, 1-12.
[2] Basnet, C., & Leung, J. M. (2005). Inventory lot-sizing with supplier selection. Computers & Operations Research, 32(1), 1-14.
[3] Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
[4] Chaudhry, S. S., Forst, F. G., & Zydiak, J. L. (1993). Vendor selection with price breaks. European Journal of Operational Research, 70(1), 52-66.
[5] Geyman, C., & Settanni, E. (2020). Understanding risk in pharmaceutical supply chains.
[6] Ghodsypour, S. H., & O'Brien, C. (2001). The total cost of logistics in supplier selection, under conditions of multiple sourcing, multiple criteria and capacity constraint. International Journal of Production Economics, 73(1), 15-27.
[7] Golmohammadi, D., Creese, R. C., Valian, H., & Kolassa, J. (2009). Supplier selection based on a neural network model using genetic algorithm. IEEE Transactions on Neural Networks, 20(9), 1504-1519.
[8] Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.
[9] Kaplan, R. S., & Norton, D. P. (2005). The balanced scorecard: measures that drive performance (Vol. 70, pp. 71-79). Boston, MA: Harvard business review.
[10] Lee, A. H., Kang, H. Y., Lai, C. M., & Hong, W. Y. (2013). An integrated model for lot sizing with supplier selection and quantity discounts. Applied Mathematical Modelling, 37(7), 4733-4746.
[11] Liberman, J. N., & Roebuck, M. C. (2010). Prescription drug costs and the generic dispensing ratio. Journal of Managed Care Pharmacy, 16(7), 502-506.
[12] Moghadam, M. R. S., Afsar, A., & Sohrabi, B. (2008). Inventory lot-sizing with supplier selection using hybrid intelligent algorithm. Applied Soft Computing, 8(4), 1523-1529.
[13] Pan, P. J., Tsai, C. S., & Cheng, C. H. (1989). Supplier selection with order doi:10.6342/NTU20250057076 allocation using linear programming. International Journal of Production Economics, 20(2), 45-53.
[14] Rajiv, B., & Darshana, B. (2014). Supplier selection for construction projects through ‘TOPSIS’and ‘VIKOR’multi-criteria decision-making methods. Int J Eng Res Technol, 3(5).
[15] R. Harikrishnakumar, A. Dand, S. Nannapaneni and K. Krishnan, "Supervised Machine Learning Approach for Effective Supplier Classification," 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 2019, pp. 240-245, doi: 10.1109/ICMLA.2019.00045.
[16] Ryan, C. & Kristin, D. (2022). Estimating Cost Savings from New Generic Drug Approvals in 2021 Report. U.S. Food & Drug Administration Center For Drug Evaluation and Research . Available at: https://www.fda.gov/media/172608/download?attachment
[17] Tempelmeier, H. (2002). A simple heuristic for dynamic order sizing and supplier selection with time‐varying data. Production and Operations Management, 11(4), 499-515.
[18] U.S. Congressional Budget Office’s report. Prescription Drugs: Spending, Use, and Prices, January 19, 2022. Available at: https://www.cbo.gov/system/files/2022-01/57050-Rx-Spending.pdf
[19] Xia, W., & Wu, Z. (2007). Supplier selection with multiple criteria in volume discount environments. Omega, 35(5), 494-504.
[20] Yu, G., Zeng, A. Z., & Zhao, L. (2012). "Single or dual sourcing: Decision-making in the presence of supply chain disruption risks." OMEGA - The International Journal of Management Science, 40(6), 760-772.
[21] Zadeh, L. A. (1965). Fuzzy sets. Information and Control.
[22] Zhao, K., & Yu, X. (2011). A case based reasoning approach on supplier selection in petroleum enterprises. Expert Systems with Applications, 38(6), 6839-6847.
[23] Zimmer, K., Fröhling, M., & Schultmann, F. (2015). Sustainable supplier management – a review of models supporting sustainable supplier selection, monitoring and development. International Journal of Production Research, doi:10.6342/NTU20250057077 54(5), 1412–1442.
[24] 吳駿竑. (2018).多種型態的採購合約之下連鎖藥局的供應商選擇問題(Doctoral dissertation).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96919-
dc.description.abstract在當今的藥品供應鏈管理中,選擇合適的供應商對於維持供應鏈的效率和降低成本至關重要。隨著藥品市場全球化的日益複雜化,供應商的選擇需充分考量各類採購合約對採購成本的影響。學名藥合規率(Generic Compliance Ratio, GCR)作為評估供應商折讓的關鍵指標,為供應商選擇提供了重要的量化依據,一般而言,GCR 在實務中主要有以下兩種計算方法:
1. 學名藥採購總成本(Cost of Goods, COGs)佔處方藥 COGs 的比例
2. 學名藥 COGs 佔專利藥 COGs 的比例
本研究採用第二種方法進行計算,並在後續章節進一步闡述學名藥與專利藥在藥品供應鏈中的差異。在實務應用中,無論是大型藥企還是小型藥商,GCR 都是採購中的重要考量指標,然而,過去的文獻中對於該指標的專門探討相對少見,甚至對於藥品庫存的優化方面也缺乏深入研究。因此,在基於 GCR 的合約下,通過控制 GCR 實現最低化 COGs 成為我們的研究重點。本研究的目的為:
1. 建立數學混和整數線性規劃模型(Mixed-Integer Linear Programming Model, MILP Model)找到 COGs 的最優解。
2. 提出一種基於學名藥價差比率分級與排序的啟發式採購演算法(Generic Drug Pricing Difference Ratio Heuristic Algorithm, GPDR_Alg),以快速找到最優 GCR 以及學名藥價差比率(Generic Drug Pricing Difference Ratio, GPDR)來最小化 COGs,並與 MILP Model 比較。
3. 在考慮現有庫存數量以及藥品特性的基礎上建立存貨調用的啟發式演算法(Inventory Deployment Heuristic Algorithm, ID_Alg)優化採購需求量。
最後,為驗證方法的實用性,研究將結合真實採購、庫存與處方數據,利用上述三種演算法模型進行數值分析,探索基於 GCR 指標合約的 COGs 最小化方法。
zh_TW
dc.description.abstractIn today's pharmaceutical supply chain management, selecting the right suppliers and accurately forecasting demand are critical for maintaining efficiency and reducing costs. The Generic Compliance Ratio (GCR) is a metric that ties to rebates. It has been utilized to evaluate a pharmacy’s procurement strategy. It helps pharmacies to qualify for rebates by maintaining the favorable GCR. Designing an achievable GCR helps pharmacies to qualify for rebates. Different variations are formulated in practice. Some commonly used variants include:
1. The proportion of the cost of goods(COGs) of Generic Drugs to the COGs of Prescription Drugs
2. The proportion of the COGs of Generic Drugs to the COGs of Branded Drugs
This study adopts the second method for calculation and further elaborates on the differences between generic drugs and patented drugs in the pharmaceutical supply chain in subsequent sections. With a GCR based contract, managing GCR to minimizing the COGs makes room for secondary suppliers which leads to our research to
1. Establish a MILP model to find the optimal solution for minimizing COGs
2. Propose a heuristic algorithm(Generic Drug Pricing Difference Ratio Heuristic Algorithm, GPDR_Alg) and compare the result against the MILP model
3. Optimize the procurement demand considering inventory on hand quantities(Inventory Deployment Heuristic Algorithm, ID_Alg)
Finally, the study will incorporate real-world inventory and prescription data to optimize procurement needs, and numerical analyses will be conducted using aforementioned three methods.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:33:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-24T16:33:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 ...........................................................................................................#
誌謝 ................................................................................................................................... i
中文摘要 .......................................................................................................................... ii
ABSTRACT .................................................................................................................... iii
目次 ................................................................................................................................. iv
圖次 ................................................................................................................................. vi
表次 ................................................................................................................................ vii
第一章 緒論............................................................................................................1
1.1 研究背景 ........................................................................................................1
1.2 研究動機 ........................................................................................................3
1.3 研究目的 ........................................................................................................4
1.4 研究架構 ........................................................................................................4
第二章 文獻回顧....................................................................................................6
2.1 供應商選擇方法 ............................................................................................6
2.2 線性規劃求解供應商選擇問題 ..................................................................10
2.3 數量折讓的供應商選擇問題 ...................................................................... 11
第三章 研究方法與模型......................................................................................14
3.1 研究架構 ......................................................................................................14
3.2 問題描述 ......................................................................................................16
3.3 問題基本假設條件 ......................................................................................19
3.4 混 合 線 性 規 劃 模 型 (Mixed-Integer Linear Programming Model, MILP Model)...........................................................................................................20
3.4.1 指標 .....................................................................................................20
3.4.2 決策變數 .............................................................................................21
3.4.3 參數 .....................................................................................................21
3.4.4 模型建構 .............................................................................................21
3.4.5 限制式說明 .........................................................................................23
3.4.6 MILP Model 範例說明 ......................................................................24
第四章 啟發式演算法與實例驗證......................................................................34
4.1 學 名 藥 價 差 比 率 分 級 與 排 序 啟 發 式 演 算 法 (Generic Drug Pricing Difference Ratio Heuristic Algorithm, GPDR_Alg).....................................34
4.1.1 GPDR_Alg 參數定義 ........................................................................35
4.1.2 GPDR_Alg 流程 ................................................................................36
4.1.3 GPDR_Alg Pseudocode ......................................................................39
4.1.4 GPDR_Alg 範例說明 ........................................................................42
4.2 存 貨 調 用 啟 發 式 演 算 法 (Inventory Deployment Heuristic Algorithm, ID_Alg) .........................................................................................................48
4.2.1 ID_Alg 參數定義 ...............................................................................48
4.2.2 ID_Alg 流程 .......................................................................................49
4.2.3 ID_Alg Pseudocode.............................................................................51
4.2.4 ID_Alg 範例說明 ...............................................................................52
4.3 實例驗證與數值分析 ..................................................................................56
4.3.1 資料描述 .............................................................................................56
4.3.2 數值分析-MILP Model 與 GPDR_Alg (不考慮存貨數量) ..............60
4.3.3 數值分析-ID_Alg+MILP Model 與 ID_Alg+GPDR_Alg .................66
4.3.1 整體比較 .............................................................................................68
第五章 結論..........................................................................................................72
5.1 結論與建議 ..................................................................................................72
5.2 未來研究方向 ..............................................................................................73
參考文獻 75
-
dc.language.isozh_TW-
dc.subject混合整數線性規劃zh_TW
dc.subject學名藥合規率zh_TW
dc.subject藥商供應商選擇zh_TW
dc.subject存貨zh_TW
dc.subjectInventory Optimizationen
dc.subjectSupplier Selectionen
dc.subjectGeneric Drug Compliance Rateen
dc.subjectMixed-Integer Linear Programmingen
dc.title考量具學名藥合規率之採購合約之供應商選擇問題zh_TW
dc.titleSupplier Selection Problem for Pharmacy Chain Stores Considering the Generic Compliance Ratio Contracten
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃道宏;藍俊宏;余峻瑜zh_TW
dc.contributor.oralexamcommitteeDow-Hon Huang;Chun-Hung Lan;Jiun-Yu Yuen
dc.subject.keyword藥商供應商選擇,學名藥合規率,混合整數線性規劃,存貨,zh_TW
dc.subject.keywordSupplier Selection,Generic Drug Compliance Rate,Mixed-Integer Linear Programming,Inventory Optimization,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202500570-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-02-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
dc.date.embargo-lift2028-03-01-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
3.29 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved