Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96918
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉如熹zh_TW
dc.contributor.advisorRu-Shi Liuen
dc.contributor.author艾莎雅zh_TW
dc.contributor.authorAishwarya Satpathyen
dc.date.accessioned2025-02-24T16:33:13Z-
dc.date.available2025-02-25-
dc.date.copyright2025-02-24-
dc.date.issued2024-
dc.date.submitted2025-02-10-
dc.identifier.citation(1) Nizamutdinov, D.; Ezeudu, C.; Wu, E.; Huang, J. H.; Yi, S. S. Transcranial Near-Infrared Light in Treatment of Neurodegenerative Diseases. Front Pharmacol 2022, 13, 965788.
(2) Jackson, C. T.; Jeong, S.; Dorlhiac, G. F.; Landry, M. P. Advances in Engineering Near-Infrared Luminescent Materials. iScience 2021, 24,102156.
(3) Barr, E. S. Historical Survey of the Early Development of the Infrared Spectral Region. Am. J. Phys. 1960, 28, 42–54.
(4) Vatansever, F.; Hamblin, M. R. Far Infrared Radiation (FIR): Its Biological Effects and Medical Applications. Photonics Lasers Med. 2012, 4, 255–266.
(5) Turker-Kaya, S.; Huck, C. W. A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis. Molecules 2017, 22, 168.
(6) Plaghki, L.; Decruynaere, C.; Van Dooren, P.; Le Bars, D. The Fine-Tuning of Pain Thresholds: A Sophisticated Double Alarm System. PLoS One 2010, 5, e10269.
(7) Cai, Y.; Wei, Z.; Song, C.; Tang, C.; Han, W.; Dong, X. Optical Nano-Agents in the Second Near-Infrared Window for Biomedical Applications. Chem. Soc. Rev. 2019, 48, 22–37.
(8) Du, P.; An, R.; Liang, Y.; Lei, P.; Zhang, H. Emerging NIR-II Luminescent Bioprobes Based on Lanthanide-Doped Nanoparticles: From Design Towards Diverse Bioapplications. Coord. Chem. Rev. 2022, 471, 214745.
(9) Hemmer, E.; Benayas, A.; Legare, F.; Vetrone, F. Exploiting the Biological Windows: Current Perspectives on Fluorescent Bioprobes Emitting Above 1000 nm. Nanoscale Horiz. 2016, 1, 168–184.
(10) Yao, J.; Wang, L. V. Sensitivity of Photoacoustic Microscopy. Photoacoustics 2014, 2, 87–101.
(11) Shi, J.; Wong, T. T. W.; He, Y.; Li, L.; Zhang, R.; Yung, C. S.; Hwang, J.; Maslov, K.; Wang, L. V. High-resolution, High-Contrast Mid-Infrared Imaging of Fresh Biological Samples with Ultraviolet-Localized Photoacoustic Microscopy. Nat. Photonics 2019, 13, 609–615.
(12) Hu, S.; Maslov, K.; Wang, L. V. Second-Generation Optical-Resolution Photoacoustic Microscopy with Improved Sensitivity and Speed. Opt. Lett. 2011, 36, 1134–1136.
(13) Lin, L.; Yao, J.; Li, L.; Wang, L. V. In Vivo Photoacoustic Tomography of Myoglobin Oxygen Saturation. J. Biomed. Opt. 2016, 21, 61002.
(14) Wood, C.; Harutyunyan, K.; Sampaio, D. R. T.; Konopleva, M.; Bouchard, R. Photoacoustic-Based Oxygen Saturation Assessment of Murine Femoral Bone Marrow in a Preclinical Model of Leukemia. Photoacoustics 2019, 14, 31–36.
(15) Yao, J.; Wang, L.; Yang, J. M.; Maslov, K. I.; Wong, T. T.; Li, L.; Huang, C. H.; Zou, J.; Wang, L. V. High-Speed Label-Free Functional Photoacoustic Microscopy of Mouse Brain in Action. Nat. Methods 2015, 12, 407–410.
(16) Hui, J.; Li, R.; Phillips, E. H.; Goergen, C. J.; Sturek, M.; Cheng, J. X. Bond-Selective Photoacoustic Imaging by Converting Molecular Vibration into Acoustic Waves. Photoacoustics 2016, 4, 11–21.
(17) Jacques, S. L. Optical Properties of Biological Tissues: A Review. Phys. Med. Biol. 2013, 58, R37–61.
(18) Upputuri, P. K.; Pramanik, M. Photoacoustic Imaging in the Second Near-Infrared Window: A Review. J. Biomed. Opt. 2019, 24, 1–20.
(19) Fernandez-Garcia, E. Skin Protection against UV Light by Dietary Antioxidants. Food Funct 2014, 5, 1994–2003.
(20) Sandell, J. L.; Zhu, T. C. A review of In-Vivo Optical Properties of Human Tissues and its Impact on PDT. J Biophotonics 2011, 4, 773–787.
(21) Li, K.; Liu, B. Polymer-Encapsulated Organic Nanoparticles for Fluorescence and Photoacoustic Imaging. Chem Soc Rev 2014, 43, 6570–659.
(22) Sheng, Z.; Guo, B.; Hu, D.; Xu, S.; Wu, W.; Liew, W. H.; Yao, K.; Jiang, J.; Liu, C.; Zheng, H.; Liu, B. Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors. Adv. Mater. 2018, 30, e1800766.
(23) Sun, Y.; Ding, F.; Chen, Z.; Zhang, R.; Li, C.; Xu, Y.; Zhang, Y.; Ni, R.; Li, X.; Yang, G.; Sun, Y.; Stang, P. J. Melanin-Dot-Mediated Delivery of Metallacycle for NIR-II/Photoacoustic Dual-Modal Imaging-Guided Chemo-Photothermal Synergistic Therapy. Proc. Natl. Acad. Sci. U S A 2019, 116, 16729–16735.
(24) Wong, T. T. W.; Zhang, R.; Hai, P.; Zhang, C.; Pleitez, M. A.; Aft, R. L.; Novack, D. V.; Wang, L. V. Fast Label-Free Multilayered Histology-Like Imaging of Human Breast Cancer by Photoacoustic Microscopy. Sci. Adv. 2017, 3, e1602168.
(25) Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-Earth-Doped Biological Composites as In Vivo Shortwave Infrared Reporters. Nat. Commun. 2013, 4, 2199.
(26) Mourant, J. R.; Canpolat, M.; Brocker, C.; Esponda-Ramos, O.; Johnson, T. M.; Matanock, A.; Stetter, K.; Freyer, J. P. Light Scattering from Cells: The Contribution of the Nucleus and the Effects of Proliferative Status. J. Biomed. Opt. 2000, 5, 131–137.
(27) Mourant, J. R.; Freyer, J. P.; Hielscher, A. H.; Eick, A. A.; Shen, D.; Johnson, T. M. Mechanisms of Light Scattering from Biological Cells Relevant to Noninvasive Optical-Tissue Diagnostics. Appl. Opt. 1998, 37, 3586–3593.
(28) Schmoldt, A.; Benthe, H. F.; Haberland, G. Digitoxin Metabolism by Rat Liver Microsomes. Biochem Pharmacol 1975, 24, 1639–1641.
(29) Del Rosal, B.; Villa, I.; Jaque, D.; Sanz-Rodriguez, F. In vivo Autofluorescence in the Biological Windows: The Role of Pigmentation. J. Biophotonics 2016, 9, 1059–1067.
(30) Diao, S.; Hong, G. S.; Antaris, A. L.; Blackburn, J. L.; Cheng, K.; Cheng, Z.; Dai, H. J. Biological Imaging without Autofluorescence in the Second Near-Infrared Region. Nano Res. 2015, 8, 3027–3034.
(31) Villa, I.; Vedda, A.; Cantarelli, I. X.; Pedroni, M.; Piccinelli, F.; Bettinelli, M.; Speghini, A.; Quintanilla, M.; Vetrone, F.; Rocha, U.; Jacinto, C.; Carrasco, E.; Rodríguez, F. S.; Juarranz, A.; del Rosal, B.; Ortgies, D. H.; Gonzalez, P. H.; Solé, J. G.; García, D. J. 1.3 μm Emitting SrF2:Nd3+ Nanoparticles for High Contrast In Vivo Imaging in the Second Biological Window. Nano Res. 2015, 8, 649–665.
(32) Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-Infrared Fluorophores for Biomedical Imaging. Nat. Biomed. Eng. 2017, 1, 0010.
(33) Ackermann, J.; Metternich, J. T.; Herbertz, S.; Kruss, S. Biosensing with Fluorescent Carbon Nanotubes. Angew. Chem. Int. Ed. Engl. 2022, 61, e202112372.
(34) Ansari, A. A. A.; Parchur, A. K. K.; Chen, G. Y. Surface Modified Lanthanide Upconversion Nanoparticles for Drug Delivery, Cellular Uptake Mechanism, and Current Challenges in NIR-Driven Therapies. Coord. Chem. Rev. 2022, 457, 214423.
(35) Liu, D.; Li, G.; Dang, P.; Zhang, Q.; Wei, Y.; Qiu, L.; Molokeev, M. S.; Lian, H.; Shang, M.; Lin, J. Highly Efficient Fe3+-Doped A2BB'O6 (A = Sr2+, Ca2+; B, B' = In3+, Sb5+, Sn4+) Broadband Near-Infrared-Emitting Phosphors for Spectroscopic Analysis. Light Sci. Appl. 2022, 11, 112.
(36) Yu, D.; Yu, T.; Van Bunningen, A. J.; Zhang, Q.; Meijerink, A.; Rabouw, F. T. Understanding and Tuning Blue-to-Near-Infrared Photon Cutting by the Tm3+/Yb3+ Couple. Light Sci. Appl. 2020, 9, 107.
(37) Jobsis, F. F. Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters. Science 1977, 198, 1264–1267.
(38) Liu, S. Y.; Xue, B.; Yan, W. Y.; Rwei, A. Y.; Wu, C. S. Recent Advances and Design Strategies Towards Wearable Near-Infrared Spectroscopy. IEEE Open J. Nanotechnol. 2023, 4, 25–35.
(39) Hiura, M.; Nariai, T.; Takahashi, K.; Muta, A.; Sakata, M.; Ishibashi, K.; Toyohara, J.; Wagatsuma, K.; Tago, T.; Ishii, K.; Maehara, T. Dynamic Exercise Elicits Dissociated Changes Between Tissue Oxygenation and Cerebral Blood Flow in the Prefrontal Cortex: A Study Using NIRS and PET. Adv. Exp. Med. Biol. 2018, 1072, 269–274.
(40) Hock, C.; Villringer, K.; Muller-Spahn, F.; Wenzel, R.; Heekeren, H.; Schuh-Hofer, S.; Hofmann, M.; Minoshima, S.; Schwaiger, M.; Dirnagl, U.; Villringer, A. Decrease in Parietal Cerebral Hemoglobin Oxygenation During Performance of a Verbal Fluency Task in Patients with Alzheimer’s Disease Monitored by Means of Near-Infrared Spectroscopy (NIRS)-Correlation with Simultaneous rCBF-PET Measurements. Brain Res. 1997, 755, 293–303.
(41) Rostrup, E.; Law, I.; Pott, F.; Ide, K.; Knudsen, G. M. Cerebral hemodynamics Measured with Simultaneous PET and Near-Infrared Spectroscopy in Humans. Brain Res. 2002, 954, 183–193.
(42) De Guzman, G. N. A.; Fang, M. H.; Liang, C. H.; Bao, Z.; Hu, S. F.; Liu, R. S. Near-Infrared Phosphors and Their Full Potential: A Review on Practical Applications and Future Perspectives. J. Lumin. 2020, 219, 116944.
(43) Wong, M. Y.; Zysman-Colman, E. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Adv. Mater. 2017, 29, 1605444.
(44) Xu, M.; Li, X.; Liu, S.; Zhang, L.; Xie, W. Near-Infrared Organic Light-Emitting Materials, Devices and Applications. Mater. Chem. Front. 2023, 7, 4744–4767.
(45) Su, Y.; Yu, B.; Wang, S.; Cong, H.; Shen, Y. NIR-II Bioimaging of Small Organic Molecule. Biomater. 2021, 271, 120717.
(46) Cao, J.; Zhu, B.; Zheng, K.; He, S.; Meng, L.; Song, J.; Yang, H. Recent Progress in NIR-II Contrast Agent for Biological Imaging. Front. Bioeng. Biotechnol. 2019, 7, 487.
(47) Tsai, S. R.; Hamblin, M. R. Biological Effects and Medical Applications of Infrared Radiation. J. Photochem. Photobiol. B 2017, 170, 197–207.
(48) Heilmeier, G. H.; Zanoni, L. A.; Barton, L. A. Dynamic Scattering - A New Electrooptic Effect in Certain Classes of Nematic Liquid Crystals. Pr. Inst. Electr. Elect. 1968, 56, 1162.
(49) Schadt, M.; Helfrich, W. Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal. Appl. Phys. Lett. 1971, 18, 127.
(50) Schiekel, M. F.; Fahrenschon, K. Deformation of Nematic Liquid Crystals with Vertical Orientation in Electrical Fields. Appl. Phys. Lett. 1971, 19, 391.
(51) Chen, H.; Tan, G.; Wu, S. T. Ambient Contrast Ratio of LCDs and OLED Displays. Opt. Express 2017, 25, 33643–33656.
(52) Gou, F.; Hsiang, E. L.; Tan, G.; Lan, Y. F.; Tsai, C. Y.; Wu, S. T. Tripling the Optical Efficiency of Color-Converted Micro-LED Displays with Funnel-Tube Array. Cryst. 2019, 9, 39.
(53)Huang, Y.; Hsiang, E. L.; Deng, M. Y.; Wu, S. T. Mini-LED, Micro-LED and OLED displays: Present Status and Future Perspectives. Light Sci Appl 2020, 9, 105.
(54) Anwar, D. N.; Srivastava, A. Constellation Design for Single Photodetector Based CSK with Probabilistic Shaping and White Color Balance. Ieee Access 2020, 8, 159609–159621
(55) Schubert, E. F. Light-Emitting Diodes; Cambridge University Press, 2012.
(56) Wu, T.; Sher, C. W.; Lin, Y.; Lee, C. F.; Liang, S.; Lu, Y.; Huang Chen, S. W.; Guo, W.; Kuo, H. C.; Chen, Z. Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology. Appl. Sci. 2018, 8, 1557.
(57) Tan, G.; Huang, Y.; Li, M. C.; Lee, S. L.; Wu, S. T. High Dynamic Range Liquid Crystal Displays with a Mini-LED Backlight. Opt. Express 2018, 26, 16572–16584.
(58) Deng, Z.; Zheng, B.; Zheng, J.; Wu, L.; Yang, W.; Lin, Z.; Shen, P.; Li, J. 74‐5: Late-News Paper: High Dynamic Range In-cell LCD with Excellent Performance. Dig. Tech. Pap.- SID Int. Symp. 2018, 49, 996–998.
(59) Rajendran, V.; Chang, H.; Liu, R. S. Recent Progress on Broadband Near-Infrared Phosphors-Converted Light Emitting Diodes for Future Miniature Spectrometers. Opt. Mater.: X 2019, 1, 100011.
(60) Pan, Z.; Lu, Y. Y.; Liu, F. Sunlight-Activated Long-Persistent Luminescence in the Near-Infrared from Cr3+-Doped Zinc Gallogermanates. Nat. Mater. 2011, 11, 58–63.
(61) Shao, Q.; Ding, H.; Yao, L.; Xu, J.; Liang, C.; Jiang, J. Photoluminescence Properties of a ScBO3:Cr3+ Phosphor and its Applications for Broadband Near-Infrared LEDs. RSC Adv. 2018, 8, 12035–12042.
(62) Shao, Q.; Ding, H.; Yao, L.; Xu, J.; Liang, C.; Li, Z.; Dong, Y.; Jiang, J. Broadband Near-Infrared Light Source Derived from Cr3+-Doped Phosphors and a Blue LED Chip. Opt. Lett. 2018, 43, 5251–5254.
(63) Armaroli, N.; Bolink, H. J. Luminescence: The Never-Ending Story. Top Curr. Chem. (Cham) 2016, 374, 44.
(64) Chen, L.; Lin, C. C.; Yeh, C. W.; Liu, R. S. Light Converting Inorganic Phosphors for White Light-Emitting Diodes. Mater. 2010, 3, 2172–2195
(65) Dereń, P. J.; Watras, A.; Gągor, A.; Pązik, R. Weak Crystal Field in Yttrium Gallium Garnet (YGG) Submicrocrystals Doped with Cr3+. Cryst. Growth Des. 2012, 12, 4752–4757.
(66) Sugano, S.; Tanabe, Y. Absorption Spectra of Cr3+ in Al2O3 Part A. Theoretical Studies of the Absorption Bands and Lines. J. Phys. Soc. Jpn. 1958, 13, 880–899.
(67) Bessière, A.; Sharma, S. K.; Basavaraju, N.; Priolkar, K. R.; Binet, L.; Viana, B.; Bos, A. J. J.; Maldiney, T.; Richard, C.; Scherman, D.; Gourier, D. Storage of Visible Light for Long-Lasting Phosphorescence in Chromium-Doped Zinc Gallate. Chem. Mater. 2014, 26, 1365–1373.
(68) Rajendran, V.; Fang, M. H.; Guzman, G. N. D.; Lesniewski, T.; Mahlik, S.; Grinberg, M.; Leniec, G.; Kaczmarek, S. M.; Lin, Y. S.; Lu, K. M.; Lin, C. M.; Chang, H.; Hu, S. H.; Liu, R. S. Super Broadband Near-Infrared Phosphors with High Radiant Flux as Future Light Sources for Spectroscopy Applications. ACS Energy Lett. 2018, 3, 2679–2684.
(69) Gulzar, A.; Xu, J.; Yang, P.; He, F.; Xu, L. Upconversion Processes: Versatile Biological Applications and Biosafety. Nanoscale 2017, 9, 12248–12282.
(70) Chen, Z.; Zhu, H.; Qian, J.; Li, Z.; Hu, X.; Guo, Y.; Fu, Y.; Zhu, H.; Nai, W.; Yang, Z.; Li, D.; Zhou, L. Rare Earth Ion Doped Luminescent Materials: A Review of Up/Down Conversion Luminescent Mechanism, Synthesis, and Anti-Counterfeiting Application. Photonics 2023, 10, 1014.
(71) Grover, V. P.; Tognarelli, J. M.; Crossey, M. M.; Cox, I. J.; Taylor-Robinson, S. D.; McPhail, M. J. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. J Clin Exp Hepatol. 2015, 5, 246–255.
(72) McGowan, J. C. Basic Principles of Magnetic Resonance Imaging. Neuroimaging Clin. N. Am. 2008, 18, 623–636.
(73) Wilson, H.; Natale, E. R. d.; Politis, M. Advances in Magnetic Resonance Imaging. Neuroimaging in Parkinsons Disease and Related Disorders, Academic Press, 2023; 21–52.
(74) Currie, S.; Hoggard, N.; Craven, I. J.; Hadjivassiliou, M.; Wilkinson, I. D. Understanding MRI: Basic MR Physics for Physicians. Postgrad. Med. J. 2013, 89, 209-223.
(75) Fullerton, G. D. Basic Concepts for Nuclear Magnetic Resonance Imaging. Magn. Reson. Imaging 1982, 1, 39–55.
(76) Fullerton, G. D. Magnetic Resonance Imaging Signal Concepts. Radiographics 1987, 7, 579–596.
(77) Shinn, J.; Lee, S.; Lee, H. K.; Ahn, J.; Lee, S. A.; Lee, S.; Lee, Y. Recent Progress in Development and Applications of Second Near-Infrared (NIR-II) Nanoprobes. Arch. Pharm. Res. 2021, 44, 165–181.
(78) Zhang, N. N.; Lu, C. Y.; Chen, M. J.; Xu, X. L.; Shu, G. F.; Du, Y. Z.; Ji, J. S. Recent Advances in Near-Infrared II Imaging Technology for Biological Detection. J. Nanobiotechnology 2021, 19, 132.
(79) Chen, Y.; Xue, L.; Zhu, Q.; Feng, Y.; Wu, M. Recent Advances in Second Near-Infrared Region (NIR-II) Fluorophores and Biomedical Applications. Front. Chem. 2021, 9, 750404.
(80) Li, W.; Zhang, G.; Liu, L. Near-Infrared Inorganic Nanomaterials for Precise Diagnosis and Therapy. Front. Bioeng. Biotechnol. 2021, 9, 768927.
(81) Satpathy, A.; Su, T. Y.; Huang, W. T.; Liu, R. S. NIR‐II Fluorescent Nanophosphors for Bio‐Imaging. J. Chin. Chem. Soc. 2023, 70, 992–1001.
(82) Zhao, J.; Zhong, D.; Zhou, S. NIR-I-to-NIR-II Fluorescent Nanomaterials for Biomedical Imaging and Cancer Therapy. J. Mater. Chem. B 2018, 6, 349–365.
(83) Yu, S. H.; Tu, D. T.; Lian, W.; Xu, J.; Chen, X. Y. Lanthanide-Doped Near-Infrared II Luminescent Nanoprobes for Bio Applications. Sci. China Mater. 2019, 62, 1071–1086.
(84) Li, Z. H.; Ding, X.; Cong, H. L.; Wang, S.; Yu, B.; Shen, Y. Q. Recent Advances on Inorganic Lanthanide-Doped NIR-II Fluorescence Nanoprobes for Bioapplication. J. Lumin. 2020, 228, 117627.
(85) Liu, Z.; Davis, C.; Cai, W.; He, L.; Chen, X.; Dai, H. Circulation and Long-Term Fate of Functionalized, Biocompatible Single-Walled Carbon Nanotubes in Mice Probed by Raman Spectroscopy. Proc. Natl. Acad. Sci. U S A 2008, 105, 1410–1415.
(86) Zhang, Y.; Zhang, Y.; Hong, G.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G.; Liu, Z.; Dai, H.; Wang, Q. Biodistribution, Pharmacokinetics and Toxicology of Ag2S Near-Infrared Quantum Dots in Mice. Biomater. 2013, 34, 3639–3646.
(87) Bricks, J. L.; Kachkovskii, A. D.; Slominskii, Y. L.; Gerasov, A. O.; Popov, S. V. Molecular Design of Near Infrared Polymethine Dyes: A Review. Dyes Pigments 2015, 121, 238–255.
(88) Goswami, P. P.; Syed, A.; Beck, C. L.; Albright, T. R.; Mahoney, K. M.; Unash, R.; Smith, E. A.; Winter, A. H. BODIPY-Derived Photoremovable Protecting Groups Unmasked with Green Light. J. Am. Chem. Soc. 2015, 137, 3783–3786.
(89) Zhu, S.; Hu, Z.; Tian, R.; Yung, B. C.; Yang, Q.; Zhao, S.; Kiesewetter, D. O.; Niu, G.; Sun, H.; Antaris, A. L.; Chen, X. Repurposing Cyanine NIR-I Dyes Accelerates Clinical Translation of Near-Infrared-II (NIR-II) Bioimaging. Adv. Mater. 2018, 30, e1802546.
(90) Carr, J. A.; Franke, D.; Caram, J. R.; Perkinson, C. F.; Saif, M.; Askoxylakis, V.; Datta, M.; Fukumura, D.; Jain, R. K.; Bawendi, M. G.; Bruns, O. T. Shortwave Infrared Fluorescence Imaging with the Clinically Approved Near-Infrared Dye Indocyanine Green. Proc. Natl. Acad. Sci. U S A 2018, 115, 4465–4470.
(91) Han, W.; Tian, H.; Qiang, T.; Wang, H.; Wang, P. Fluorescence Color Change of Supramolecular Polymer Networks Controlled by Crown Ether-Cation Recognition. Chemistry 2024, 30, e202303569.
(92) Ren, F.; Liu, H. H.; Zhang, H.; Jiang, Z. L.; Xia, B.; Genevois, C.; He, T.; Allix, M.; Sun, Q.; Li, Z.; Gao, M. Y. Engineering NIR-IIb Fluorescence of Er-Based Lanthanide Nanoparticles for Through-Skull Targeted Imaging and Imaging-Guided Surgery of Orthotopic Glioma. Nano Today 2020, 34, 100905.
(93) Greco, A.; Mancini, M.; Gargiulo, S.; Gramanzini, M.; Claudio, P. P.; Brunetti, A.; Salvatore, M. Ultrasound Biomicroscopy in Small Animal Research: Applications in Molecular and Preclinical Imaging. J. Biomed. Biotechnol. 2012, 2012, 519238.
(94) Saba, L.; Sanfilippo, R.; Montisci, R.; Mallarini, G. Carotid Artery Wall Thickness: Comparison Between Sonography and Multi-Detector Row CT Angiography. Neuroradiol. 2010, 52, 75–82.
(95) Hong, G.; Diao, S.; Chang, J.; Antaris, A. L.; Chen, C.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I.; Kuo, C. J.; Dai, H. Through-Skull Fluorescence Imaging of the Brain in a New Near-Infrared Window. Nat. Photonics 2014, 8, 723–730.
(96) Wang, Q.; Xia, G.; Li, J.; Yuan, L.; Yu, S.; Li, D.; Yang, N.; Fan, Z.; Li, J. Multifunctional Nanoplatform for NIR-II Imaging-Guided Synergistic Oncotherapy. Int. J. Mol. Sci. 2023, 24, 16949.
(97) Han, H. S.; Choi, K. Y. Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications. Biomedicines 2021, 9, 305.
(98) Meng, X. Y.; Zhang, X. Z.; Liu, M.; Cai, B.; He, N. Y.; Wang, Z. F. Fenton Reaction-Based Nanomedicine in Cancer Chemodynamic and Synergistic Therapy. Appl. Mater. Today 2020, 21, 100864.
(99) Wang, Q.; Qu, B.; Li, J.; Liu, Y.; Dong, J.; Peng, X.; Zhang, R. Multifunctional MnO2/Ag3SbS3 Nanotheranostic Agent for Single-Laser-Triggered Tumor Synergistic Therapy in the NIR-II Biowindow. ACS Appl. Mater. Interfaces 2022, 14, 4980–4994.
(100) Banks, W. A. From Blood-Brain Barrier to Blood-Brain Interface: New Opportunities for CNS Drug Delivery. Nat. Rev. Drug Discov. 2016, 15, 275–292.
(101) Pardridge, W. M. Drug and Gene Delivery to the Brain: The Vascular Route. Neuron 2002, 36, 555–558.
(102) Qin, C.; Yang, S.; Chu, Y. H.; Zhang, H.; Pang, X. W.; Chen, L.; Zhou, L. Q.; Chen, M.; Tian, D. S.; Wang, W. Signaling Pathways Involved in Ischemic Stroke: Molecular Mechanisms and Therapeutic Interventions. Signal Transduct. Target Ther. 2022, 7, 215.
(103) Yang, A. C.; Stevens, M. Y.; Chen, M. B.; Lee, D. P.; Stahli, D.; Gate, D.; Contrepois, K.; Chen, W.; Iram, T.; Zhang, L.; Vest, R. T.; Chaney, A.; Lehallier, B.; Olsson, N.; du Bois, H.; Hsieh, R.; Cropper, H. C.; Berdnik, D.; Li, L.; Wang, E. Y.; Traber, G. M.; Bertozzi, C. R.; Luo, J.; Snyder, M. P.; Elias, J. E.; Quake, S. R.; James, M. L.; Wyss-Coray, T. Physiological Blood-Brain Transport is Impaired with Age by a Shift in Transcytosis. Nature 2020, 583, 425–430.
(104) Huang, D.; Wang, Q.; Cao, Y.; Yang, H.; Li, M.; Wu, F.; Zhang, Y.; Chen, G.; Wang, Q. Multiscale NIR-II Imaging-Guided Brain-Targeted Drug Delivery Using Engineered Cell Membrane Nanoformulation for Alzheimer's Disease Therapy. ACS Nano 2023, 17, 5033–5046.
(105) Zhou, C.; Zeng, F.; Yang, H.; Liang, Z.; Xu, G.; Li, X.; Liu, X.; Yang, J. Near-Infrared II Theranostic Agents for the Diagnosis and Treatment of Alzheimer's Disease. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1–17.
(106) Blennow, K.; Brody, D. L.; Kochanek, P. M.; Levin, H.; McKee, A.; Ribbers, G. M.; Yaffe, K.; Zetterberg, H. Traumatic Brain Injuries. Nat. Rev. Dis. Primers 2016, 2, 16084.
(107) Liu, F.; Huang, B.; Tang, T.; Wang, F. J.; Cui, R.; Zhang, M. X.; Sun, T. L. Near-Infrared-IIb Fluorescent Nanozymes for Imaging-Guided Treatment of Traumatic Brain Injury. J. Chem. Eng. 2023, 471, 144697.
(108) Yao, K.; Mu, Q. C.; Zhang, Y. F.; Cheng, Q.; Cheng, X. Z.; Liu, X. J.; Luo, C. M.; Li, C. M.; Cai, S. X.; Luo, Z. C.; Zhu, X. L.; Zhang, X. T.; Cui, L.; Huang, C. M.; Tang, L. G. Hesperetin Nanoparticle Targeting Neutrophils for Enhanced TBI Therapy. Adv. Funct. Mater. 2022, 32, 2205787.
(109) Huang, B.; Tang, T.; Chen, S. H.; Li, H.; Sun, Z. J.; Zhang, Z. L.; Zhang, M.; Cui, R. Near-Infrared-IIb Emitting Single-Atom Catalyst for Imaging-Guided Therapy of Blood-Brain Barrier Breakdown after Traumatic Brain Injury. Nat. Commun. 2023, 14, 197.
(110) Liu, Z.; Yun, B.; Han, Y.; Jiang, Z.; Zhu, H.; Ren, F.; Li, Z. Dye-Sensitized Rare Earth Nanoparticles with Up/Down Conversion Luminescence for On-Demand Gas Therapy of Glioblastoma Guided by NIR-II Fluorescence Imaging. Adv. Healthc. Mater. 2022, 11, e2102042.
(111) Liu, Z.; Ren, F.; Zhang, H.; Yuan, Q.; Jiang, Z.; Liu, H.; Sun, Q.; Li, Z. Boosting Often Overlooked Long Wavelength Emissions of Rare-Earth Nanoparticles for NIR-II Fluorescence Imaging of Orthotopic Glioblastoma. Biomater. 2019, 219, 119364.
(112) Yin, N.; Wang, Y.; Cao, Y.; Huang, Y.; Jin, L.; Zhang, S.; Liu, J.; Zhang, T.; Lv, Z.; Liu, Y.; Song, S.; Wang, D.; Zhang, H. A Biodegradable Nanocapsule for Through-Skull NIR-II Fluorescence Imaging/Magnetic Resonance Imaging and Selectively Enhanced Radio-Chemotherapy for Orthotopic Glioma. Nano Today 2022, 46, 101619.
(113) Su, L.; Zhu, K.; Ge, X.; Wu, Y.; Zhang, J.; Wang, G.; Liu, D.; Chen, L.; Li, Q.; Chen, J.; Song, J. X-ray Activated Nanoprodrug for Visualization of Cortical Microvascular Alterations and NIR-II Image-Guided Chemo-Radiotherapy of Glioblastoma. Nano Lett. 2024, 24, 3727–3736.
(114) Park, W.; Chawla, A.; O'Reilly, E. M. Pancreatic Cancer: A Review. JAMA 2021, 326, 851–862.
(115) Bown, S. G.; Rogowska, A. Z.; Whitelaw, D. E.; Lees, W. R.; Lovat, L. B.; Ripley, P.; Jones, L.; Wyld, P.; Gillams, A.; Hatfield, A. W. Photodynamic Therapy for Cancer of the Pancreas. Gut 2002, 50, 549–557.
(116) DeWitt, J. M.; Sandrasegaran, K.; O'Neil, B.; House, M. G.; Zyromski, N. J.; Sehdev, A.; Perkins, S. M.; Flynn, J.; McCranor, L.; Shahda, S. Phase 1 Study of EUS-Guided Photodynamic Therapy for Locally Advanced Pancreatic Cancer. Gastrointest. Endosc. 2019, 89, 390–398.
(117) Chen, K.; Yin, B.; Luo, Q.; Liu, Y.; Wang, Y.; Liao, Y.; Li, Y.; Chen, X.; Sun, B.; Zhou, N.; Liu, H.; Peng, C.; Liu, S.; Cheng, W.; Song, G. Endoscopically Guided Interventional Photodynamic Therapy for Orthotopic Pancreatic Ductal Adenocarcinoma Based on NIR-II Fluorescent Nanoparticles. Theranostics 2023, 13, 4469–4481.
(118) Li, D.; Chen, X.; Wang, D.; Wu, H.; Wen, H.; Wang, L.; Jin, Q.; Wang, D.; Ji, J.; Tang, B. Z. Synchronously Boosting Type-I Photodynamic and Photothermal Efficacies via Molecular Manipulation for Pancreatic Cancer Theranostics in the NIR-II Window. Biomater. 2022, 283, 121476.
(119) Kudo, H.; Ishizawa, T.; Tani, K.; Harada, N.; Ichida, A.; Shimizu, A.; Kaneko, J.; Aoki, T.; Sakamoto, Y.; Sugawara, Y.; Hasegawa, K.; Kokudo, N. Visualization of Subcapsular Hepatic Malignancy by Indocyanine-Green Fluorescence Imaging During Laparoscopic Hepatectomy. Surg. Endosc. 2014, 28, 2504–2508.
(120) Liu, Z. H.; Yan, L. F.; Hu, Q. S.; Yin, D. L. NIR-II fluorescence Imaging in Liver Tumor Surgery: A Narrative Review. J. Innov. Opt. Health Sci. 2024, 17, 2330010.
(121) Wang, B.; Tang, C.; Lin, E.; Jia, X.; Xie, G.; Li, P.; Li, D.; Yang, Q.; Guo, X.; Cao, C.; Shi, X.; Zou, B.; Cai, C.; Tian, J.; Hu, Z.; Li, J. NIR-II Fluorescence-Guided Liver Cancer Surgery by a Small Molecular HDAC6 Targeting Probe. EBioMedicine 2023, 98, 104880.
(122) Vijay, S.; Ch, S. R. A Comparative Investigation of Hardness and Compression Strength of Nickel Coated B4C Reinforced 601AC/201AC selective Layered Functionally Graded Materials. Mater. Res. Express 2020, 7, 016527.
(123) Alam, M. S.; Das, A. K. Study on Microstructure and Cyclic Oxidation Behaviour of WC–CoCr Cermet-Based Plasma-Sprayed Coatings Developed on the Austenite Steel. HTCM 2023, 99, 151–161.
(124) Gao, Y. F.; Zou, R.; Chen, G. F.; Liu, B. M.; Zhang, Y.; Jiao, J.; Wong, K. L.; Wang, J. Large Pore Mesoporous Silica Assisted Synthesis of High-Performance ZnGa2O4:Cr3+/Sn4+@MSNs Multifunctional Nanoplatform with Optimized Optical Probe Mass Ratio and Superior Residual Pore Volume for Improved Bioimaging and Drug Delivery. J. Chem. Eng. 2021, 420, 130021.
(125) Tang, J.; Zhang, Y.; Gou, J.; Ma, Z.; Li, G.; Man, Y.; Cheng, N. Sol-Gel Prepared Yb3+/Er3+ Co-Doped RE2O3 (RE = La, Gd, Lu) Nanocrystals: Structural Characterization and Temperature-Dependent Upconversion Behavior. J. Alloys Compd. 2018, 740, 229–236.
(126) Bunaciu, A. A.; Udristioiu, E. G.; Aboul-Enein, H. Y. X-Ray Diffraction: Instrumentation and Applications. Crit. Rev. Anal. Chem. 2015, 45, 289–299.
(127) Roque, R. X-ray imaging using 100 μm thick Gas Electron Multipliers operating in Kr-CO2 mixtures. 2018.
(128) Mohammed, A.; Abdullah, A. Scanning Electron Microscopy (SEM): A Review, 2019.
(129) Kanakamedala, K. Characterization of Tin-Oxide (SnO2 -Ni) Based Sensors. IJETAE 2019, 9, 91–100.
(130) Buseck, P. R. Chapter 1. Principles of Transmission Electron Microscopy. Minerals and Reactions at the Atomic Scale, Peter, R. B. Ed.; De Gruyter, 1992, 27, 1–36.
(131) Huang, J.; Gunther, B.; Achterhold, K.; Cui, Y. T.; Gleich, B.; Dierolf, M.; Pfeiffer, F. Energy-Dispersive X-ray Absorption Spectroscopy with an Inverse Compton Source. Sci. Rep. 2020, 10, 8772.
(132) Adams, F. C. Elemental Speciation: Where Do We Come From? Where Do We Go? J. Anal. At. Spectrom. 2004, 19, 1090–1097.
(133) Buchner, M.; Höfler, K.; Henne, B.; Ney, V.; Ney, A. Tutorial: Basic Principles, Limits of Detection, and Pitfalls of Highly Sensitive SQUID Magnetometry for Nanomagnetism and Spintronics. J. Appl. Phys. 2018, 124, 161101.
(134) Xu, J. Experimental Investigation of Nano-Fluid Characteristics and Behavior of Aluminum Oxide Nano-Particles Dispersed in Ethylene Glycol-Water Mixture. Int. J. Heat Mass Transf. 2016, 94, 262–268.
(135) Nikolova, M.; Bayryamov, S. A Review of Methods and Techniques for Characterization of Structure, Morphology and Dispersion Stability of Microcapsules. Conference: Proceedings of University of Ruse 2019, 58, 1–7.
(136) Bae, Y. S.; Yazaydin, A. O.; Snurr, R. Q. Evaluation of the BET Method for Determining Surface Areas of MOFs and Zeolites that Contain Ultra-Micropores. Langmuir 2010, 26, 5475–5483.
(137) Wang, Z.; Jiang, X.; Pan, M.; Shi, Y. Nano-Scale Pore Structure and Its Multi-Fractal Characteristics of Tight Sandstone by N2 Adsorption/Desorption Analyses: A Case Study of Shihezi Formation from the Sulige Gas Filed, Ordos Basin, China. Minerals, 2020, 10, 377.
(138) Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069.
(139) Satpathy, A.; Huang, W. T.; Chan, M. H.; Su, T. Y.; Kamiński, M.; Majewska, N.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Hsiao, M.; Liu, R. S. Near‐Infrared I/II Nanophosphors with Cr3+/Ni2+ Energy Transfer for Bioimaging. Adv. Opt. Mater. 2023, 11, 2300321.
(140) Gaur, M.; Misra, C.; Yadav, A. B.; Swaroop, S.; Maolmhuaidh, F. O.; Bechelany, M.; Barhoum, A. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. Mater. 2021, 14, 5978.
(141) Harish, V.; Tewari, D.; Gaur, M.; Yadav, A. B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials 2022, 12, 457.
(142) Hussen, M. K.; Dejene, F. B.; Gonfa, G. G. Effect of Citric Acid on Material Properties of ZnGa2O4:Cr3+ Nanopowder Prepared by Sol-Gel Method. Applied Physics A 2018, 124, 390.
(143) Yu, G.; Wang, W.; Jiang, C. A New Direction for Transition Metal Ion Doped Cubic Spinel-Type Oxides with Broadband NIR Emission. J. Lumin. 2021, 235, 118061.
(144) Zhu, S.; Yung, B. C.; Chandra, S.; Niu, G.; Antaris, A. L.; Chen, X. Near-Infrared-II (NIR-II) Bioimaging via Off-Peak NIR-I Fluorescence Emission. Theranostics 2018, 8, 4141–4151.
(145) Samson, B. N.; Pinckney, L. R.; Wang, J.; Beall, G. H.; Borrelli, N. F. Nickel-doped Nanocrystalline Glass-Ceramic Fiber. Opt. Lett. 2002, 27, 1309–1311.
(146) Cha, J. H.; Kim, K. H.; Park, Y. S.; Kwon, S. J.; Choi, H. W. Luminescence Characteristics of ZnGa2O4 Thick Film Doped with Mn2+ and Cr3+ at Various Sintering Temperatures. Jpn. J. Appl. Phys. 2007, 46, 6702.
(147) Karazhanov, S. Z.; Ravindran, P. Ab Initio Study of Double Oxides ZnX2O4 (X = Al, Ga, In) Having Spinel Structure. J. Am. Ceram. Soc. 2010, 93, 3335–3341.
(148) Wang, C.; Zhang, Y.; Han, X.; Hu, D.; He, D.; Wang, X.; Jiao, H. Energy Transfer Enhanced Broadband Near-Infrared Phosphors: Cr3+/Ni2+ Activated ZnGa2O4–Zn2SnO4 Solid Solutions For the Second NIR Window Imaging. J. Mater. Chem. C 2021, 9, 4583–4590.
(149) Liu, F.; Liang, Y.; Chen, Y.; Pan, Z. Divalent Nickel‐Activated Gallate‐Based Persistent Phosphors in the Short‐Wave Infrared. Adv. Opt. Mater. 2016, 4, 562–566.
(150) Fontinha, I. R.; Salta, M. M.; Zheludkevich, M. L.; Ferreira, M. G. S. EIS Study of Amine Cured Epoxy-silica-zirconia Sol-gel Coatings for Corrosion Protection of the Aluminium Alloy EN AW 6063. Port. Electrochim. Acta. 2013, 31, 307–319.
(151) Sodipo, B. K.; Aziz, A. A. A Sonochemical Approach to the Direct Surface Functionalization of Superparamagnetic Iron Oxide Nanoparticles with (3-Aminopropyl) Triethoxysilane. Beilstein J. Nanotechnol. 2014, 5, 1472–1476.
(152) Özkahraman, B.; Özbaş, Z. Removal of Al (III) Ions using Gellan Gum-Acrylic Acid Double Network Hydrogel. J. Environ. Polym. Degrad. 2019, 28, 689–698.
(153) Liu, S.; Chen, C.; Li, Y.; Zhang, H.; Liu, J.; Wang, R.; Wong, S. T. H.; Lam, J. W. Y.; Ding, D.; Tang, B. Z. Constitutional Isomerization Enables Bright NIR‐II AIEgen for Brain‐Inflammation Imaging. Adv. Funct. Mater. 2019, 30, 1908125.
(154) Yi, Z. G.; Wen, B. Y.; Qian, C.; Wang, H. B.; Rao, L.; Liu, H. R.; Zeng, S. J. Intense Red Upconversion Emission and Shape Controlled Synthesis of GdO:Yb/Er Nanocrystals. Adv. Cond. Matter. Phys. 2013, 13, 1–5.
(155) Zhou, S.; Jiang, N.; Miura, K.; Tanabe, S.; Shimizu, M.; Sakakura, M.; Shimotsuma, Y.; Nishi, M.; Qiu, J.; Hirao, K. Simultaneous Tailoring of Phase Evolution and Dopant Distribution in the Glassy Phase for Controllable Luminescence. J Am. Chem. Soc. 2010, 132, 17945–17952.
(156) Barrera, E. W.; Pujol, M. C.; Diaz, F.; Choi, S. B.; Rotermund, F.; Park, K. H.; Jeong, M. S.; Cascales, C. Emission Properties of Hydrothermal Yb3+, Er3+ and Yb3+, Tm3+-Codoped Lu2O3 Nanorods: Upconversion, Cathodoluminescence and Assessment of Waveguide Behavior. Nanotechnol. 2011, 22, 075205.
(157) Wei, Y. R.; Yang, X. D.; Ma, Y. R.; Wang, S. F.; Yuan, Q. Lanthanide-Doped Nanoparticles with Near-Infrared-to-Near-Infrared Luminescence for Bioimaging. Chin. J. Chem. 2016, 34, 558–569.
(158) Gomez, L.; de Weerd, C.; Hueso, J. L.; Gregorkiewicz, T. Color-Stable Water-Dispersed Cesium Lead Halide Perovskite Nanocrystals. Nanoscale 2017, 9, 631–636.
(159) Huang, W. T.; Chan, M. H.; Chen, X.; Hsiao, M.; Liu, R. S. Theranostic Nanobubble Encapsulating a Plasmon-Enhanced Upconversion Hybrid Nanosystem for Cancer Therapy. Theranostics 2020, 10, 782–796.
(160) Hai, N. T. Q.; Anh, T. K.; Chau, P. T. M.; Ha, V. T. T.; Tuyen, H. V.; Huong, T. T.; Phuong, H. T.; Minh, Q. L. Multistep Synthesis and Upconversion Luminescence of Spherical GdO:Er and GdO:Er@silica. J. Mater. Sci. Mater. El. 2020, 31, 3354–3360.
(161) Kumar, A.; Sarkar, T.; Solanki, P. R. Amine Functionalized Gadolinium Oxide Nanoparticles-Based Electrochemical Immunosensor for Cholera. Biosensors (Basel) 2023, 13, 177.
(162) Anishur Rahman, A. T.; Majewski, P.; Vasilev, K. Gd2O3 Nanoparticles: Size-Dependent Nuclear Magnetic Resonance. Contrast Media Mol. Imaging 2013, 8, 92–95.
(163) Park, J. Y.; Baek, M. J.; Choi, E. S.; Woo, S.; Kim, J. H.; Kim, T. J.; Jung, J. C.; Chae, K. S.; Chang, Y.; Lee, G. H. Paramagnetic Ultrasmall Gadolinium Oxide Nanoparticles as Advanced T1 MRI Contrast Agent: Account for Large Longitudinal Relaxivity, Optimal Particle Diameter, and In Vivo T1 MR Images. ACS Nano 2009, 3, 3663–3669.
(164) Satpathy, A.; Huang, W. T.; Liu, T. H.; Su, T. Y.; Zhang, W.; Kaminski, M.; Grzegorczyk, M.; Chen, J. H.; Cherng, D. H.; Lu, K. M.; Chen, X.; Mahlik, S.; Liu, R. S. Mini Light-Emitting Diode Technology with High Quantum Efficient NIR-II Partially Inverse Spinel MgGa2O4:Cr3+,Ni2+ Nanophosphors. Adv. Opt. Mater. 2024, 12, 2400130.
(165) Miao, S.; Liang, Y.; Zhang, Y.; Chen, D.; Wang, X. J. Broadband Short-Wave Infrared Light-Emitting Diodes Based on Cr3+-Doped LiScGeO4 Phosphor. ACS Appl. Mater. Interfaces 2021, 13, 36011–36019.
(166) Yanes, R. E.; Tamanoi, F. Development of Mesoporous Silica Nanomaterials as a Vehicle for Anticancer Drug Delivery. Ther. Deliv. 2012, 3, 389–404.
(167) Chiang, Y. D.; Lian, H. Y.; Leo, S. Y.; Wang, S. G.; Yamauchi, Y.; Wu, K. C. W. Controlling Particle Size and Structural Properties of Mesoporous Silica Nanoparticles Using the Taguchi Method. J. Phys. Chem. C 2011, 115, 13158–13165.
(168) Zhang, A. R.; Liu, Y.; Liu, G. C.; Xia, Z. G. Dopant and Compositional Modulation Triggered Broadband and Tunable Near-Infrared Emission in Cs Ag Na InCl:Cr Nanocrystals. Chem. Mater. 2022, 34, 3006–3012.
(169) Bai, G.; Tsang, M. K.; Hao, J. Phosphors: Tuning the Luminescence of Phosphors: Beyond Conventional Chemical Method. Adv. Opt. Mater. 2015, 3, 416–416.
(170) Liu, B. M.; Guo, X. X.; Cao, L. Y.; Huang, L.; Zou, R.; Zhou, Z.; Wang, J. A High-efficiency Blue-LED-Excitable NIR-II-Emitting MgO:Cr3+,Ni2+ Phosphor for Future Broadband Light Source Toward Multifunctional NIR Spectroscopy Applications. J. Chem. Eng. 2023, 452, 139313.
(171) Miao, S. H.; Liang, Y. J.; Zhang, Y.; Chen, D. X.; Wang, X. J. Blue LED-Pumped Broadband Short-Wave Infrared Emitter Based on LiMgPO:Cr,Ni Phosphor. Adv. Mater. Technol. 2022, 7, 2200320.
(172) Wang, C. P.; Zhang, Y. X.; Han, X.; Hu, D. F.; He, D. P.; Wang, X. M.; Jiao, H. Energy Transfer Enhanced Broadband Near-Infrared Phosphors: Cr/Ni Activated ZnGaO-ZnSnO Solid Solutions for the Second NIR Window Imaging. J. Mater. Chem. C 2021, 9, 4583–4590.
(173) Koetke, J.; Huber, G.; Petermann, K. Spectroscopy of Ni2+-Doped Garnets and Perovskites for Solid State Lasers. J. Lumin. 1991, 48–49, 564–568.
(174) Suzuki, T.; Murugan, G. S.; Ohishi, Y. Spectroscopic Properties of a Novel Near-Infrared Tunable Laser Material Ni:MgGaO. J. Lumin. 2005, 113, 265–270.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96918-
dc.description.abstract近年來,近紅外光(near-infrared; NIR)區域備受矚目,因其高穿透深度、低散射、低生物自體螢光等優勢,於光學成像領域樹立一里程碑。針對高解析度影像進行深入之可視化與研究,此將有助於準確診斷與治療疾病。經螢光粉轉化近紅外光可進而應用於次毫米發光二極體(mini light-emitting diode; mini-LED)。若此近紅外光螢光材料經適當之表面修飾,則可應用於生物醫學領域之生物成像與治療。本研究闡明NIR-I/II區於生物成像與mini-LED中之相互依存性與其重要性。
近紅外光二區(second near-infrared; NIR-II)之波段具高穿透深度多用於生物影像,本研究以中孔洞二氧化矽奈米粒子作為一高生物相容性之模板,其可裝載尖晶石ZnGa2O4,並經不同濃度之Cr3+與Ni2+進行共掺雜,藉能量轉移之形式將能量由Cr3+轉移至Ni2+,獲得1285 nm之最高放光強度與5 mm深度之小鼠體內成像。
為提高影像之空間解析度,現今多以稀土元素材料作為奈米探針開發NIR-IIb區域(1500–1700 nm),因其具豐富能階,可產生多種紅外線發射。本研究乃以氧化釓(Gd2O3)作為主體晶格材料,藉掺雜Yb3+ 與Er3+於808 nm激發下可獲得1530 nm之放光與41%之量子效率。此外,系統中之Gd具磁效應,不僅可提供核磁共振影像(magnetic resonance imaging; MRI),Yb與Er則可提供NIR-IIb影像,達雙重生物顯影,以改善生物影像之解析度,使此系統成為生物醫學研究之理想選擇。
除生物影像與治療外,奈米螢光材料於mini-LED之應用亦具發展潛力。本研究亦研究將反尖晶石結構之MgGa2O4掺雜Cr3+ 與Ni2+過渡元素之系統嵌入中孔洞二氧化矽奈米粒子中,藉此將材料尺寸縮小至奈米尺度。因Cr3+−Ni2+具能量轉移,於1270 nm處具79.2%之優異量子效率,並成功封裝於mini-LED,使奈米螢光材料於LED產業中具實際應用價值。
zh_TW
dc.description.abstractThe near-infrared (NIR) region has garnered much interest in recent years. Multifarious advantages of high penetration depth, lower scattering, and autofluorescence have created a trademark for this region in the optical imaging domain. In-depth visualization and study of physiological changes in higher resolution can help in the accurate diagnosis and treatment of diseases. NIR light can be emitted by phosphors by the fluorescence process, which, in turn, can be utilized in mini-light emitting diodes (mini-LEDs). If appropriately functionalized and coated, they can be used in biomedical avenues of bioimaging and therapy. In this doctoral thesis, the interdependence of the NIR-I and NIR-II regions in bioimaging and mini-LED is promoted, evoking the importance of this region.
The high penetration depth of the second near-infrared region (NIR-II) was used for bioimaging. To create a biocompatible template, mesoporous silica nanoparticles were fabricated and integrated by the spinel ZnGa2O4 system, followed by doping with different concentrations of Cr3+ and Ni2+ to procure the highest emission intensity at 1285 nm via energy transfer mechanism from Cr3+ to Ni2+. As the nanophosphor field has yet to be explored to a great length, this material was developed and used to obtain in vivo images at a significant depth of 5 mm for brain vessel imaging.
The NIR-IIb region (1500–1700 nm) was investigated to improve the images’ spatiotemporal resolution. Lanthanides as nanoprobes are bestowed with generous energy levels, enabling several emissions. Oxide host (Gd2O3) was engaged in the lanthanide study due to their easier fabrication and wide band gap, doped with Yb3+ and Er3+, offering a high (percentage %) quantum yield of 41.1% and emission at 1530 nm. Moreover, Gd3+ possesses magnetic properties, which validate this lanthanide system for magnetic resonance imaging (MRI). The dual-modal imaging of NIR-IIb fluorescence and MRI imaging improve the images’ clarity with utmost precision and make this lanthanide system a great candidate for biomedical diagnosis.
In addition to the field of bioimaging and therapy, nanophosphor materials have the potential to be packaged in mini-LEDs to enhance the convenience of the system. Incorporating the inverse spinel structure of MgGa2O4 doped with Cr3+ and Ni2+ transition elements, this system is embedded in mesoporous silica nanoparticles to reduce the size to nanoscale. The nanophosphor showed emission at 1270 nm with an excellent quantum yield of 79.2% due to energy transfer from Cr3+ to Ni2+. The mini-LED package revealed emission in the NIR-II region, qualifying this nanophosphor for pragmatic applications in the LED industry.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:33:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-24T16:33:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 V
Abstract VII
Figure Contents XV
Table Contents XXVIII
Abbreviations List XXIX
Chapter 1. Introduction 1
1.1 Electromagnetic Spectrum 1
1.1.1 Near-infrared light 2
1.1.2 Path of light and its interaction with living tissue 5
1.1.3 Diverse applications of NIR technology 11
1.2 Near-Infrared Light and LED Technology 14
1.2.1 Full-color display with color conversion 16
1.2.2 Mini-LED and micro-LED 18
1.2.3 Near-infrared materials for LED technology 20
1.2.4 Upconversion and downconversion pathways 23
1.3 Magnetic Resonance Imaging (MRI) 27
1.4 Near-Infrared Light and Bioimaging 31
1.4.1 NIR-II camera principle 32
1.4.2 NIR-II nanoprobes 33
1.4.3 Imaging applications for precise diagnosis 40
1.5 Near-Infrared Light Application in the Biomedical Sector 43
1.5.1 Photothermal and photodynamic therapy 44
1.5.2 Photothermal and chemodynamic therapy 45
1.5.3 Brain diseases 47
1.5.4 Cancer-based imaging and therapy 50
1.6 Research Motivation 57
1.7 Novelty of the Research 58
Chapter 2. Experimental Approaches and Techniques 60
2.1 Near-Infrared Nanophophosphor Synthesis 61
2.1.1 Muffle furnace sintering method 61
2.1.2 Experimental steps 62
2.2 Lanthanide Nanoparticle Synthesis 66
2.2.1 Experimental steps 67
2.3 Instruments for Material Characterization 69
2.3.1 X-ray Diffractometer 70
2.3.2 Electron Microscopy 75
2.3.3 X-Ray Absorption Spectroscopy 79
2.3.4 X-Ray Photoelectron Spectroscopy 81
2.3.5 Local Structure Analysis 83
2.3.6 Nanoscale and Molecular Analysis 86
2.3.7 Optical Spectroscopy 96
2.4 Biological Analysis Instruments 103
2.4.1 Multimode Microplate Readers 105
2.4.2 Confocal Microscopy 106
2.4.3 NIR-II Imaging System 108
2.4.4 MRI Imaging System 110
Chapter 3. Near-Infrared I/II Nanophosphors with Cr3+/Ni2+ Energy Transfer for Bioimaging 111
3.1 Introduction 111
3.2 Experimental Section 112
3.2.1 Synthesis of MSN and Nanophosphors 113
3.2.2 PEG coating on nanophosphors 114
3.2.3 Cytotoxicity analysis 115
3.2.4 Confocal examination 115
3.2.5 In vivo test 116
3.2.6 Fluorescence penetration depth in the NIR-II region 116
3.2.7 NIR-II imaging 117
3.3 Results and Discussion 117
3.3.1 Structural and morphological analysis 117
3.3.2 Optical analysis 120
3.3.3 Local structure analysis 125
3.3.4 PEG coating analysis for nanophosphors 131
3.3.5 In vitro and in vivo analysis of ZGO-PEG 133
3.4 Summary 137
Chapter 4. Gd2O3-Yb3+/Er3+ Lanthanide System as a Potential NIR-II Bioimaging Agent 138
4.1 Introduction 138
4.2 Experimental Section 139
4.2.1 Sol-gel synthesis of Gd2O3:Yb3+, Er3+ nanoparticles 140
4.2.2 NIR-II imaging 141
4.3 Results and Discussion 141
4.3.1 Structural and morphological analysis 141
4.3.2 Optical property analysis 145
4.3.3 Local structure analysis 158
4.3.4 NIR-II imaging of the lanthanides 161
4.4 Summary 163
Chapter 5. Optimization of the Coating Strategies and Making Gd2O3-Yb3+/Er3+ Lanthanide System Suitable for NIR-II Bioimaging and MRI Applications 165
5.1 Introduction 165
5.2 Experimental Section 166
5.2.1 PEG coating on GOYE material 166
5.2.2 PEG@SiO2 coating on GOYE material 167
5.2.3 Stearic acid coating on GOYE material 168
5.2.4 APTES coating on GOYE material 168
5.2.5 Protamine coating on GOYE material 169
5.2.6 Cytotoxicity analysis 169
5.2.7 Hemolysis assay 169
5.2.8 Animal studies 170
5.2.9 NIR-II imaging 170
5.2.10 IVIS imaging 171
5.2.11 MRI imaging 171
5.3 Results and Discussion 172
5.3.1 Morphological analysis after different coating procedures 172
5.3.2 NIR-II imaging of different coated samples 175
5.3.3 APTES coating analysis for GOYE system 179
5.3.4 Biocompatibility analysis of GOYE and APTES@GOYE 181
5.3.5 Fluorescence penetration depth in the NIR-II region of GOYE and APTES@GOYE using chicken breast tissues 185
5.3.6 IVIS imaging of NOD-SCID mice after injection of SK-Hep1 cells 186
5.3.7 MRI measurement of GOYE and APTES@GOYE powder in vitro and in vivo in mice model 188
5.3.8 In vivo NIR-II imaging in mice model of APTES@GOYE lanthanide system 191
5.3.9 Hematoxylin & Eosin staining (H&E) of tissues in mice model before and after treatment with APTES@GOYE lanthanide system 194
5.4 Summary 195
Chapter 6. Mini Light‐Emitting Diode Technology with High Quantum Efficient NIR‐II Partially Inverse Spinel MgGa2O4:Cr3+,Ni2+ Nanophosphors 197
6.1 Introduction 197
6.2 Experimental Section 199
6.2.1 Synthesis of MGOCN@MSN nanophosphor 199
6.2.2 Mini-LED packaging 200
6.3 Results and Discussion 200
6.3.1 Analysis of structure and morphology 200
6.3.2 Optical property analysis 204
6.3.3 Mini-LED packaging 216
6.4 Summary 217
Chapter 7. Conclusions 219
References 222
-
dc.language.isoen-
dc.subject中孔洞二氧化矽奈米粒子zh_TW
dc.subject次毫米發光二極體zh_TW
dc.subject生物影像zh_TW
dc.subject稀土元素zh_TW
dc.subject奈米螢光粉zh_TW
dc.subject近紅外光一/二區zh_TW
dc.subjectlanthanidesen
dc.subjectnanophosphorsen
dc.subjectmesoporous silica nanoparticleen
dc.subjectNIR-IIen
dc.subjectmini-light emitting diode (mini-LED)en
dc.subjectbioimagingen
dc.title用於生物成像與次毫米發光二極體之 近紅外一/二區奈米粒子zh_TW
dc.titleNear-Infrared-I/II Light and Nanotechnology for Bio-Imaging and Mini-LED Applicationsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee朱忠瀚;詹明賢;鍾仁傑;周禮君;林淑宜;陳稷康zh_TW
dc.contributor.oralexamcommitteeJohn Chu;Ming-Hsien Chan;Ren-Jei Chung;Lai-Kwan Chau;Shu-Yi Lin;Nelson Chenen
dc.subject.keyword近紅外光一/二區,中孔洞二氧化矽奈米粒子,奈米螢光粉,稀土元素,生物影像,次毫米發光二極體,zh_TW
dc.subject.keywordNIR-II,mesoporous silica nanoparticle,nanophosphors,lanthanides,bioimaging,mini-light emitting diode (mini-LED),en
dc.relation.page245-
dc.identifier.doi10.6342/NTU202500517-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-02-10-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2030-02-07-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
9.25 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved