請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96878
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳昭岑 | zh_TW |
dc.contributor.advisor | Chao-Tsen Chen | en |
dc.contributor.author | 賴建宇 | zh_TW |
dc.contributor.author | Chien Yu Lai | en |
dc.date.accessioned | 2025-02-24T16:22:33Z | - |
dc.date.available | 2025-02-25 | - |
dc.date.copyright | 2025-02-24 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-01-13 | - |
dc.identifier.citation | (1) 行政院衛生福利部 112年國人死因統計結果報告。
(2) Folkman, J.; Kalluri, R. Cancer without disease. Nature 2004, 427, 787-787. (3) Brown, J. M.; Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 2004, 4, 437-447. (4) Bao, M. H.-R.; Wong, C. C.-L. Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cells 2021, 10, 1715. (5) Chen, P.-S.; Chiu, W.-T.; Hsu, P.-L.; Lin, S.-C.; Peng, I.-C.; Wang, C.-Y.; Tsai, S.-J. Pathophysiological implications of hypoxia in human diseases. J. Biomed. Sci. 2020, 27, 1-19. (6) Bedard, P. L.; Hyman, D. M.; Davids, M. S.; Siu, L. L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 2020, 395, 1078-1088. (7) Lee, Y. T.; Tan, Y. J.; Oon, C. E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol. 2018, 834, 188-196. (8) Petrova, V.; Annicchiarico-Petruzzelli, M.; Melino, G.; Amelio, I. The hypoxic tumour microenvironment. Oncogenesis 2018, 7, 10. (9) Janczy-Cempa, E.; Mazuryk, O.; Kania, A.; Brindell, M. Significance of specific oxidoreductases in the design of hypoxia-activated prodrugs and fluorescent turn off–on probes for hypoxia imaging. Cancers 2022, 14, 2686. (10) Masoud, G. N.; Li, W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B. 2015, 5, 378-389. (11) Baran, N.; Konopleva, M. Molecular pathways: hypoxia-activated prodrugs in cancer therapy. Clin. Cancer Res. 2017, 23, 2382-2390. (12) Guainazzi, A.; Schärer, O. D. Using synthetic DNA interstrand crosslinks to elucidate repair pathways and identify new therapeutic targets for cancer chemotherapy. Cell. Mol. Life Sci. 2010, 67, 3683-3697. (13) Rycenga, H. B.; Long, D. T. The evolving role of DNA inter-strand crosslinks in chemotherapy. Curr. Opin. Pharmacol. 2018, 41, 20-26. (14) Carlsen, L.; El-Deiry, W. S. Anti-cancer immune responses to DNA damage response inhibitors: molecular mechanisms and progress toward clinical translation. Front. Oncol. 2022, 5225. (15) Deans, A. J.; West, S. C. DNA interstrand crosslink repair and cancer. Nat. Rev. Cancer 2011, 11, 467-480. (16) Goodman, L. S.; Wintrobe, M. M.; Dameshek, W.; Goodman, M. J.; Gilman, A.; McLennan, M. T. Nitrogen Mustard Therapy: Use of Methyl-Bis(Beta-Chloroethyl)amine Hydrochloride and Tris(Beta-Chloroethyl)amine Hydrochloride for Hodgkin's Disease, Lymphosarcoma, Leukemia and Certain Allied and Miscellaneous Disorders. J. Am. Med. Assoc. 1984, 251, 2255-2261. (17) Ciuleanu, T. E.; Pavlovsky, A. V.; Bodoky, G.; Garin, A. M.; Langmuir, V. K.; Kroll, S.; Tidmarsh, G. T. A randomised Phase III trial of glufosfamide compared with best supportive care in metastatic pancreatic adenocarcinoma previously treated with gemcitabine. Eur. J. Cancer 2009, 45, 1589-1596. (18) Laubach, J. P.; Liu, C.-J.; Raje, N. S.; Yee, A. J.; Armand, P.; Schlossman, R. L.; Rosenblatt, J.; Hedlund, J.; Martin, M.; Reynolds, C.; et al. A Phase I/II Study of Evofosfamide, A Hypoxia-activated Prodrug with or without Bortezomib in Subjects with Relapsed/Refractory Multiple Myeloma. Clin. Cancer Res. 2019, 25, 478-486. (19) Di Giacomo, A. M.; Ascierto, P. A.; Pilla, L.; Santinami, M.; Ferrucci, P. F.; Giannarelli, D.; Marasco, A.; Rivoltini, L.; Simeone, E.; Nicoletti, S. V. Ipilimumab and fotemustine in patients with advanced melanoma (NIBIT-M1): an open-label, single-arm phase 2 trial. Lancet Oncol. 2012, 13, 879-886. (20) Yan, V. C.; Butterfield, H. E.; Poral, A. H.; Yan, M. J.; Yang, K. L.; Pham, C.-D.; Muller, F. L. Why great mitotic inhibitors make poor cancer drugs. Trends in Cancer 2020, 6, 924-941. (21) Lehmann, F.; Wennerberg, J. Evolution of nitrogen-based alkylating anticancer agents. Processes 2021, 9, 377. (22) Seo, Y. H. Dual inhibitors against topoisomerases and histone deacetylases. J. Cancer Prev. 2015, 20, 85. (23) Nitiss, J. L. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer 2009, 9, 327-337. (24) Talukdar, A.; Kundu, B.; Sarkar, D.; Goon, S.; Mondal, M. A. Topoisomerase I inhibitors: Challenges, progress and the road ahead. Eur. J. Med. Chem. 2022, 236, 114304. (25) Wall, M. E.; Wani, M. C.; Cook, C. a.; Palmer, K. H.; McPhail, A. a.; Sim, G. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata1, 2. J. Am. Chem. Soc. 1966, 88, 3888-3890. (26) Hsiang, Y.-H.; Hertzberg, R.; Hecht, S.; Liu, L. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem. 1985, 260, 14873-14878. (27) FDA approves irinotecan as first-line therapy for colorectal cancer. Oncology (Williston Park) 2000, 14, 652, 654. (28) Fukuoka, M.; Niitani, H.; Suzuki, A.; Motomiya, M.; Hasegawa, K.; Nishiwaki, Y.; Kuriyama, T.; Ariyoshi, Y.; Negoro, S.; Masuda, N. A phase II study of CPT-11, a new derivative of camptothecin, for previously untreated non-small-cell lung cancer. J. Clin. Oncol. 1992, 10, 16-20. (29) Shimada, Y.; Yoshino, M.; Wakui, A.; Nakao, I.; Futatsuki, K.; Sakata, Y.; Kambe, M.; Taguchi, T.; Ogawa, N. Phase II study of CPT-11, a new camptothecin derivative, in metastatic colorectal cancer. CPT-11 Gastrointestinal Cancer Study Group. J. Clin. Oncol. 1993, 11, 909-913. (30) Skok, Z. i.; Zidar, N.; Kikelj, D.; Ilaš, J. Dual inhibitors of human DNA topoisomerase II and other cancer-related targets. J. Med. Chem. 2019, 63, 884-904. (31) Bailly, C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem. Rev. 2012, 112, 3611-3640. (32) Buckley, M. M.-T.; Brogden, R. N. Ketorolac: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs 1990, 39, 86-109. (33) Belani, C. P.; Doyle, L. A.; Aisner, J. Etoposide: current status and future perspectives in the management of malignant neoplasms. Cancer Chemother. Pharmacol. 1994, 34, S118-S126. (34) Meresse, P.; Dechaux, E.; Monneret, C.; Bertounesque, E. Etoposide: discovery and medicinal chemistry. Curr. Med. Chem. 2004, 11, 2443-2466. (35) Atwell, G. J.; Rewcastle, G. W.; Baguley, B. C.; Denny, W. A. Potential antitumor agents. 50. In vivo solid-tumor activity of derivatives of N-[2-(dimethylamino) ethyl] acridine-4-carboxamide. J. Med. Chem. 1987, 30, 664-669. (36) Gong, F.; Yang, N.; Wang, X.; Zhao, Q.; Chen, Q.; Liu, Z.; Cheng, L. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. Nano Today 2020, 32, 100851. (37) Imberti, C.; Zhang, P.; Huang, H.; Sadler, P. J. New designs for phototherapeutic transition metal complexes. Angew. Chem. Int. Ed. 2020, 59, 61-73. (38) Ding, C.; Chen, C.; Zeng, X.; Chen, H.; Zhao, Y. Emerging strategies in stimuli-responsive prodrug nanosystems for cancer therapy. ACS Nano 2022, 16, 13513-13553. (39) Xue, Y.; Bai, H.; Peng, B.; Fang, B.; Baell, J.; Li, L.; Huang, W.; Voelcker, N. H. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem. Soc. Rev. 2021, 50, 4872-4931. (40) Rautio, J.; Meanwell, N. A.; Di, L.; Hageman, M. J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 2018, 17, 559-587. (41) Wang, P.; Gong, Q.; Hu, J.; Li, X.; Zhang, X. Reactive oxygen species (ROS)-responsive prodrugs, probes, and theranostic prodrugs: applications in the ROS-related diseases. J. Med. Chem. 2020, 64, 298-325. (42) Wang, Q.; Guan, J.; Wan, J.; Li, Z. Disulfide based prodrugs for cancer therapy. RSC Adv. 2020, 10, 24397-24409. (43) Li, X.; Huo, F.; Zhang, Y.; Cheng, F.; Yin, C. Enzyme-activated prodrugs and their release mechanisms for the treatment of cancer. J. Mater. Chem. B 2022, 10, 5504-5519. (44) Li, Y.; Zhao, L.; Li, X.-F. Targeting hypoxia: hypoxia-activated prodrugs in cancer therapy. Front. Oncol. 2021, 11, 700407. (45) Spiegelberg, L.; Houben, R.; Niemans, R.; de Ruysscher, D.; Yaromina, A.; Theys, J.; Guise, C. P.; Smaill, J. B.; Patterson, A. V.; Lambin, P.; et al. Hypoxia-activated prodrugs and (lack of) clinical progress: The need for hypoxia-based biomarker patient selection in phase III clinical trials. Clin. Transl. Radiat. Oncol. 2019, 15, 62-69. (46) Zeman, E. M.; Brown, J. M.; Lemmon, M. J.; Hirst, V. K.; Lee, W. W. SR-4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int. J. Radiat. Oncol. Biol. Phys. 1986, 12, 1239-1242. (47) Phillips, R. M. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother. Pharmacol. 2016, 77, 441-457. (48) Kotandeniya, D.; Ganley, B.; Gates, K. S. Oxidative DNA base damage by the antitumor agent 3-amino-1, 2, 4-benzotriazine 1, 4-dioxide (tirapazamine). Bioorg. Med. Chem. Lett. 2002, 12, 2325-2329. (49) Le, Q.-T. X.; Moon, J.; Redman, M.; Williamson, S. K.; Lara Jr, P. N.; Goldberg, Z.; Gaspar, L. E.; Crowley, J. J.; Moore Jr, D. F.; Gandara, D. R. Phase II study of tirapazamine, cisplatin, and etoposide and concurrent thoracic radiotherapy for limited-stage small-cell lung cancer: SWOG 0222. J. Clin. Oncol. 2009, 27, 3014. (50) Rischin, D.; Peters, L. J.; O'Sullivan, B.; Giralt, J.; Fisher, R.; Yuen, K.; Trotti, A.; Bernier, J.; Bourhis, J.; Ringash, J. Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. 2008. (51) DiSilvestro, P. A.; Ali, S.; Craighead, P. S.; Lucci, J. A.; Lee, Y.-C.; Cohn, D. E.; Spirtos, N. M.; Tewari, K. S.; Muller, C.; Gajewski, W. H. Phase III randomized trial of weekly cisplatin and irradiation versus cisplatin and tirapazamine and irradiation in stages IB2, IIA, IIB, IIIB, and IVA cervical carcinoma limited to the pelvis: a Gynecologic Oncology Group study. J. Clin. Oncol. 2014, 32, 458. (52) Le, Q.-T.; Fisher, R.; Oliner, K. S.; Young, R. J.; Cao, H.; Kong, C.; Graves, E.; Hicks, R. J.; McArthur, G. A.; Peters, L. Prognostic and predictive significance of plasma HGF and IL-8 in a phase III trial of chemoradiation with or without tirapazamine in locoregionally advanced head and neck cancer. Clin. Cancer Res. 2012, 18, 1798-1807. (53) Lim, A. M.; Rischin, D.; Fisher, R.; Cao, H.; Kwok, K.; Truong, D.; McArthur, G. A.; Young, R. J.; Giaccia, A.; Peters, L. Prognostic significance of plasma osteopontin in patients with locoregionally advanced head and neck squamous cell carcinoma treated on TROG 02.02 phase III trial. Clin. Cancer Res. 2012, 18, 301-307. (54) Hunter, F. W.; Wang, J.; Patel, R.; Hsu, H.-L.; Hickey, A. J.; Hay, M. P.; Wilson, W. R. Homologous recombination repair-dependent cytotoxicity of the benzotriazine di-N-oxide CEN-209: comparison with other hypoxia-activated prodrugs. Biochem. Pharmacol. 2012, 83, 574-585. (55) Hicks, K. O.; Siim, B. G.; Jaiswal, J. K.; Pruijn, F. B.; Fraser, A. M.; Patel, R.; Hogg, A.; Liyanage, H. S.; Dorie, M. J.; Brown, J. M. Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors. Clin. Cancer Res. 2010, 16, 4946-4957. (56) Mao, X.; McManaway, S.; Jaiswal, J. K.; Patel, P. B.; Wilson, W. R.; Hicks, K. O.; Bogle, G. An agent-based model for drug-radiation interactions in the tumour microenvironment: Hypoxia-activated prodrug SN30000 in multicellular tumour spheroids. PLoS Comput. Biol. 2018, 14, e1006469. (57) Mao, X.; McManaway, S.; Jaiswal, J. K.; Hong, C. R.; Wilson, W. R.; Hicks, K. O. Schedule-dependent potentiation of chemotherapy drugs by the hypoxia-activated prodrug SN30000. Cancer Biol. Ther. 2019, 20, 1258-1269. (58) Gu, Y.; Jaiswal, J. K.; Wang, J.; Hicks, K. O.; Hay, M. P.; Wilson, W. R. Photodegradation of the benzotriazine 1, 4-Di-N-oxide hypoxia-activated prodrug SN30000 in aqueous solution. J. Pharm. Sci. 2014, 103, 3464-3472. (59) Patterson, L. H. Rationale for the use of aliphatic N-oxides of cytotoxic anthraquinones as prodrug DNA binding agents: a new class of bioreductive agent. Cancer Metastasis Rev. 1993, 12, 119-134. (60) Patterson, L.; McKeown, S. AQ4N: a new approach to hypoxia-activated cancer chemotherapy. Br. J. Cancer 2000, 83, 1589-1593. (61) Gallagher, R.; Hughes, C.; Murray, M.; Friery, O.; Patterson, L.; Hirst, D.; McKeown, S. The chemopotentiation of cisplatin by the novel bioreductive drug AQ4N. Br. J. Cancer 2001, 85, 625-629. (62) Ming, L.; Byrne, N. M.; Camac, S. N.; Mitchell, C. A.; Ward, C.; Waugh, D. J.; McKeown, S. R.; Worthington, J. Androgen deprivation results in time‐dependent hypoxia in LNCaP prostate tumours: informed scheduling of the bioreductive drug AQ4N improves treatment response. Int. J. Cancer 2013, 132, 1323-1332. (63) Manley, E.; Waxman, D. J. Impact of tumor blood flow modulation on tumor sensitivity to the bioreductive drug banoxantrone. J. Pharmacol. Exp. Ther. 2013, 344, 368-377. (64) Sharma, A.; Arambula, J. F.; Koo, S.; Kumar, R.; Singh, H.; Sessler, J. L.; Kim, J. S. Hypoxia-targeted drug delivery. Chem. Soc. Rev. 2019, 48, 771-813. (65) Cummings, J.; Spanswick, V. J.; Tomasz, M.; Smyth, J. F. Enzymology of mitomycin C metabolic activation in tumour tissue: implications for enzyme-directed bioreductive drug development. Biochem. Pharmacol. 1998, 56, 405-414. (66) Danson, S.; Ward, T. H.; Butler, J.; Ranson, M. DT-diaphorase: a target for new anticancer drugs. Cancer Treat. Rev. 2004, 30, 437-449. (67) Okoh, O. A.; Klahn, P. Trimethyl Lock: A Multifunctional Molecular Tool for Drug Delivery, Cellular Imaging, and Stimuli-Responsive Materials. ChemBioChem 2018, 19, 1668-1694. (68) Sharma, K.; Iyer, A.; Sengupta, K.; Chakrapani, H. INDQ/NO, a Bioreductively Activated Nitric Oxide Prodrug. Org. Lett. 2013, 15, 2636-2639. (69) Xu, S.; Yao, H.; Pei, L.; Hu, M.; Li, D.; Qiu, Y.; Wang, G.; Wu, L.; Yao, H.; Zhu, Z. Design, synthesis, and biological evaluation of NAD (P) H: Quinone oxidoreductase (NQO1)-targeted oridonin prodrugs possessing indolequinone moiety for hypoxia-selective activation. Eur. J. Med. Chem. 2017, 132, 310-321. (70) Huang, B.; Desai, A.; Tang, S.; Thomas, T. P.; Baker Jr, J. R. The synthesis of ac (RGDyK) targeted SN38 prodrug with an indolequinone structure for bioreductive drug release. Org. Lett. 2010, 12, 1384-1387. (71) Maskell, L.; Blanche, E. A.; Colucci, M. A.; Whatmore, J. L.; Moody, C. J. Synthesis and evaluation of prodrugs for anti-angiogenic pyrrolylmethylidenyl oxindoles. Bioorg. Med. Chem. Lett. 2007, 17, 1575-1578. (72) Liu, P.; Xu, J.; Yan, D.; Zhang, P.; Zeng, F.; Li, B.; Wu, S. A DT-diaphorase responsive theranostic prodrug for diagnosis, drug release monitoring and therapy. Chem. Commun. 2015, 51, 9567-9570. (73) Shin, W. S.; Han, J.; Verwilst, P.; Kumar, R.; Kim, J.-H.; Kim, J. S. Cancer targeted enzymatic theranostic prodrug: precise diagnosis and chemotherapy. Bioconjugate Chem. 2016, 27, 1419-1426. (74) Ito, K.; Nakanishi, M.; Lee, W.-C.; Zhi, Y.; Sasaki, H.; Zenno, S.; Saigo, K.; Kitade, Y.; Tanokura, M. Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis. J. Biol. Chem. 2008, 283, 13889-13896. (75) Zhu, R.; Baumann, R. P.; Penketh, P. G.; Shyam, K.; Sartorelli, A. C. Hypoxia-Selective O 6-Alkylguanine-DNA Alkyltransferase Inhibitors: Design, Synthesis, and Evaluation of 6-(Benzyloxy)-2-(aryldiazenyl)-9 H-purines as Prodrugs of O 6-Benzylguanine. J. Med. Chem. 2013, 56, 1355-1359. (76) Zhou, Y.; Maiti, M.; Sharma, A.; Won, M.; Yu, L.; Miao, L. X.; Shin, J.; Podder, A.; Bobba, K. N.; Han, J.; et al. Azo-based small molecular hypoxia responsive theranostic for tumor-specific imaging and therapy. J. Control. Release. 2018, 288, 14-22. (77) Piao, W.; Hanaoka, K.; Fujisawa, T.; Takeuchi, S.; Komatsu, T.; Ueno, T.; Terai, T.; Tahara, T.; Nagano, T.; Urano, Y. Development of an Azo-Based Photosensitizer Activated under Mild Hypoxia for Photodynamic Therapy. J. Am. Chem. Soc. 2017, 139, 13713-13719. (78) Verwilst, P.; Han, J.; Lee, J.; Mun, S.; Kang, H.-G.; Kim, J. S. Reconsidering azobenzene as a component of small-molecule hypoxia-mediated cancer drugs: A theranostic case study. Biomaterials 2017, 115, 104-114. (79) Li, S.; Jiang, X.; Zheng, R.; Zuo, S.; Zhao, L.; Fan, G.; Fan, J.; Liao, Y.; Yu, X.; Cheng, H. An azobenzene-based heteromeric prodrug for hypoxia-activated chemotherapy by regulating subcellular localization. Chem. Commun. 2018, 54, 7983-7986. (80) Boddu, R. S.; Perumal, O.; K, D. Microbial nitroreductases: A versatile tool for biomedical and environmental applications. Biotechnol. Appl. Biochem. 2021, 68, 1518-1530. (81) Williams, E. M.; Little, R. F.; Mowday, A. M.; Rich, M. H.; Chan-Hyams, J. V.; Copp, J. N.; Smaill, J. B.; Patterson, A. V.; Ackerley, D. F. Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem J. 2015, 471, 131-153. (82) Whiteway, J.; Koziarz, P.; Veall, J.; Sandhu, N.; Kumar, P.; Hoecher, B.; Lambert, I. Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli. J. Bacteriol. 1998, 180, 5529-5539. (83) Patel, P.; Young, J. G.; Mautner, V.; Ashdown, D.; Bonney, S.; Pineda, R. G.; Collins, S. I.; Searle, P. F.; Hull, D.; Peers, E. A phase I/II clinical trial in localized prostate cancer of an adenovirus expressing nitroreductase with CB1984. Mol. Ther. 2009, 17, 1292-1299. (84) Guise, C. P.; Abbattista, M. R.; Singleton, R. S.; Holford, S. D.; Connolly, J.; Dachs, G. U.; Fox, S. B.; Pollock, R.; Harvey, J.; Guilford, P. The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res. 2010, 70, 1573-1584. (85) Abbattista, M. R.; Ashoorzadeh, A.; Guise, C. P.; Mowday, A. M.; Mittra, R.; Silva, S.; Hicks, K. O.; Bull, M. R.; Jackson-Patel, V.; Lin, X. Restoring Tumour Selectivity of the Bioreductive Prodrug PR-104 by Developing an Analogue Resistant to Aerobic Metabolism by Human Aldo-Keto Reductase 1C3. Pharmaceuticals 2021, 14, 1231. (86) Solivio, M. J.; Stornetta, A.; Gilissen, J.; Villalta, P. W.; Deschoemaeker, S.; Heyerick, A.; Dubois, L.; Balbo, S. In vivo identification of adducts from the new hypoxia-activated prodrug CP-506 using DNA adductomics. Chem. Res. Toxicol. 2022, 35, 275-282. (87) Hong, C. R.; Dickson, B. D.; Jaiswal, J. K.; Pruijn, F. B.; Hunter, F. W.; Hay, M. P.; Hicks, K. O.; Wilson, W. R. Cellular pharmacology of evofosfamide (TH-302): A critical re-evaluation of its bystander effects. Biochem. Pharmacol. 2018, 156, 265-280. (88) McLean, L. S.; Morris, T. A.; Gramza, A.; Liu, S.; Khan, S. A.; Colevas, A. D.; Pearce, T.; Rischin, D. A phase II study of tarloxotinib (a hypoxia activated prodrug of a pan-erb tyrosine kinase inhibitor) in patients with recurrent or metastatic squamous cell carcinoma of the head and neck or skin. Invest. New Drugs 2022, 40, 782-788. (89) Liu, J.; Ren, H.; Tang, T.; Wang, J.; Fang, J.; Huang, C.; Zheng, Z.; Qin, B. The Biocatalysis in Cancer Therapy. ACS Catal. 2023, 13, 7730-7755. (90) Alouane, A.; Labruère, R.; Le Saux, T.; Aujard, I.; Dubruille, S.; Schmidt, F.; Jullien, L. Light Activation for the Versatile and Accurate Kinetic Analysis of Disassembly of Self-Immolative Spacers. Chem. Eur. J. 2013, 19, 11717-11724. (91) de Groot, F. M. H.; Albrecht, C.; Koekkoek, R.; Beusker, P. H.; Scheeren, H. W. “Cascade-Release Dendrimers” Liberate All End Groups upon a Single Triggering Event in the Dendritic Core. Angew. Chem. Int. Ed. 2003, 42, 4490-4494. (92) Senter, P. D.; Pearce, W. E.; Greenfield, R. S. Development of a drug-release strategy based on the reductive fragmentation of benzyl carbamate disulfides. J. Org. Chem. 1990, 55, 2975-2978. (93) Alouane, A.; Labruère, R.; Le Saux, T.; Schmidt, F.; Jullien, L. Self‐immolative spacers: kinetic aspects, structure–property relationships, and applications. Angew. Chem. Int. Ed. 2015, 54, 7492-7509. (94) Weinstain, R.; Segal, E.; Satchi-Fainaro, R.; Shabat, D. Real-time monitoring of drug release. Chem. Commun. 2010, 46, 553-555. (95) de Groot, F. M. H.; Loos, W. J.; Koekkoek, R.; van Berkom, L. W. A.; Busscher, G. F.; Seelen, A. E.; Albrecht, C.; de Bruijn, P.; Scheeren, H. W. Elongated Multiple Electronic Cascade and Cyclization Spacer Systems in Activatible Anticancer Prodrugs for Enhanced Drug Release. J. Org. Chem. 2001, 66, 8815-8830. (96) Kim, H. S.; Sharma, A.; Ren, W. X.; Han, J.; Kim, J. S. COX-2 Inhibition mediated anti-angiogenic activatable prodrug potentiates cancer therapy in preclinical models. Biomaterials 2018, 185, 63-72. (97) Roy, B.; Mengji, R.; Roy, S.; Pal, B.; Jana, A.; Singh, N. P. NIR-Responsive Lysosomotropic Phototrigger: An “AIE+ ESIPT” Active Naphthalene-Based Single-Component Photoresponsive Nanocarrier with Two-Photon Uncaging and Real-Time Monitoring Ability. ACS Appl. Mater. Interfaces. 2022, 14, 4862-4870. (98) Han, H.-H.; Wang, H.-M.; Jangili, P.; Li, M.; Wu, L.; Zang, Y.; Sedgwick, A. C.; Li, J.; He, X.-P.; James, T. D. The design of small-molecule prodrugs and activatable phototherapeutics for cancer therapy. Chem. Soc. Rev. 2023, 52, 879-920. (99) 黃竑惟, 國立台灣大學理學院化學所碩士論文, 2020。 (100) Zhao, C.-X.; Liu, T.; Xu, M.; Lin, H.; Zhang, C.-J. A fundamental study on the fluorescence-quenching effect of nitro groups in tetraphenylethene AIE dyes with electron-withdrawing groups. Chinese Chem. Lett. 2021, 32, 1925-1928. (101) Liu, L.; Liu, F.; Liu, D.; Yuan, W.; Zhang, M.; Wei, P.; Yi, T. A smart theranostic prodrug system activated by reactive oxygen species for regional chemotherapy of metastatic cancer. Angew. Chem. 2022, 134, e202116807. (102) Yang, K.; Qi, S.; Yu, X.; Bai, B.; Zhang, X.; Mao, Z.; Huang, F.; Yu, G. A hybrid supramolecular polymeric nanomedicine for cascade‐amplified synergetic cancer therapy. Angew. Chem. 2022, 134, e202203786. (103) Zhang, H.-X.; Lin, H.-H.; Su, D.; Yang, D.-C.; Liu, J.-Y. Enzyme-Activated Multifunctional Prodrug Combining Site-Specific Chemotherapy with Light-Triggered Photodynamic Therapy. Mol. Pharm. 2022, 19, 630-641. (104) Walden, D. M.; Jaworski, A. A.; Johnston, R. C.; Hovey, M. T.; Baker, H. V.; Meyer, M. P.; Scheidt, K. A.; Cheong, P. H.-Y. Formation of Aza-ortho-quinone Methides Under Room Temperature Conditions: Cs2CO3 Effect. J. Org. Chem. 2017, 82, 7183-7189. (105) Pardeshi, K. A.; Kumar, T. A.; Ravikumar, G.; Shukla, M.; Kaul, G.; Chopra, S.; Chakrapani, H. Targeted antibacterial activity guided by bacteria-specific nitroreductase catalytic activation to produce ciprofloxacin. Bioconjugate Chem. 2019, 30, 751-759. (106) Li, B.; Liu, P.; Yan, D.; Zeng, F.; Wu, S. A self-immolative and DT-diaphorase-activatable prodrug for drug-release tracking and therapy. J. Mater. Chem. B 2017, 5, 2635-2643. (107) Vetelino, M. G.; Coe, J. W. A mild method for the conversion of activated aryl methyl groups to carboxaldehydes via the uncatalyzed periodate cleavage of enamines. Tetrahedron Lett. 1994, 35, 219-222. (108) Soai, K.; Ookawa, A. Mixed solvents containing methanol as useful reaction media for unique chemoselective reductions within lithium borohydride. J. Org. Chem. 1986, 51, 4000-4005. (109) Khanam, A.; Kumar Mandal, P. Influence of remote picolinyl and picoloyl stereodirecting groups for the stereoselective glycosylation. Asian J. Org. Chem. 2021, 10, 296-314. (110) Geringer, S. A.; Mannino, M. P.; Bandara, M. D.; Demchenko, A. V. Picoloyl protecting group in synthesis: focus on a highly chemoselective catalytic removal. Org. Biomol. Chem. 2020, 18, 4863-4871. (111) Close, A. J.; Jones, R. N.; Ocasio, C. A.; Kemmitt, P.; Roe, S. M.; Spencer, J. Elaboration of tetra-orthogonally-substituted aromatic scaffolds towards novel EGFR-kinase inhibitors. Org. Biomol. Chem. 2016, 14, 8246-8252. (112) Erez, R.; Shabat, D. The azaquinone-methide elimination: comparison study of 1, 6-and 1, 4-eliminations under physiological conditions. Org. Biomol. Chem. 2008, 6, 2669-2672. (113) Chen, W.; Balakrishnan, K.; Kuang, Y.; Han, Y.; Fu, M.; Gandhi, V.; Peng, X. Reactive oxygen species (ROS) inducible DNA cross-linking agents and their effect on cancer cells and normal lymphocytes. J. Med. Chem. 2014, 57, 4498-4510. (114) Zhou, R.; Zhang, M.; He, J.; Liu, J.; Sun, X.; Ni, P. Functional cRGD-Conjugated Polymer Prodrug for Targeted Drug Delivery to Liver Cancer Cells. ACS Omega 2022, 7, 21325-21336. (115) Hou, M.; Ye, M.; Liu, L.; Xu, M.; Liu, H.; Zhang, H.; Li, Y.; Xu, Z.; Li, B. Azide-locked prodrug Co-assembly into nanoparticles with indocyanine green for chemophotothermal therapy. Mol. Pharm. 2022, 19, 3279-3287. (116) Shao, W.; Liu, X.; Sun, G.; Hu, X.-Y.; Zhu, J.-J.; Wang, L. Construction of drug–drug conjugate supramolecular nanocarriers based on water-soluble pillar [6] arene for combination chemotherapy. Chem. Commun. 2018, 54, 9462-9465. (117) Tsuchihashi, Y.; Abe, S.; Miyamoto, L.; Tsunematsu, H.; Izumi, T.; Hatano, A.; Okuno, H.; Yamane, M.; Yasuoka, T.; Ikeda, Y. Novel hydrophilic camptothecin derivatives conjugated to branched glycerol trimer suppress tumor growth without causing diarrhea in murine xenograft models of human lung cancer. Mol. Pharm. 2020, 17, 1049-1058. (118) Ku, X.; Heinzlmeir, S.; Liu, X.; Médard, G.; Kuster, B. A new chemical probe for quantitative proteomic profiling of fibroblast growth factor receptor and its inhibitors. J. Proteomics 2014, 96, 44-55. (119) Lamie, P. F.; Philoppes, J. N. Design and synthesis of three series of novel antitumor–azo derivatives. Med. Chem. Res. 2017, 26, 1228-1240. (120) Yuan, J.; Zhou, Q. H.; Xu, S.; Zuo, Q. P.; Li, W.; Zhang, X. X.; Ren, T. B.; Yuan, L.; Zhang, X. B. Enhancing the release efficiency of a molecular chemotherapeutic prodrug by photodynamic therapy. Angew. Chem. 2022, 134, e202206169. (121) Li, X.; Yang, M.; Cao, J.; Gu, H.; Liu, W.; Xia, T.; Sun, W.; Fan, J.; Peng, X. H-Aggregates of prodrug-hemicyanine conjugate for enhanced photothermal therapy and sequential hypoxia-activated chemotherapy. ACS Mater. Lett. 2022, 4, 724-732. (122) Zhao, Y.-Q.; Biswas, S.; Chen, Q.; Jia, M.; Zhou, Y.; Bhuniya, S. Direct Readout Hypoxia Tumor Suppression In Vivo through NIR-Theranostic Activation. ACS Appl. Bio Mater. 2021, 4, 5686-5694. (123) Tominaga, K.; Sugaya, T.; Tanaka, T.; Kanazawa, M.; Iijima, M.; Irisawa, A. Thiopurines: recent topics and their role in the treatment of inflammatory bowel diseases. Front. Pharmacol. 2021, 11, 582291. (124) Franca, R.; Zudeh, G.; Pagarin, S.; Rabusin, M.; Lucafò, M.; Stocco, G.; Decorti, G. Pharmacogenetics of thiopurines. Cancer Drug Resistance 2019, 2, 256. (125) Verma, H.; Narendra, G.; Raju, B.; Singh, P. K.; Silakari, O. Dihydropyrimidine dehydrogenase-mediated resistance to 5-fluorouracil: Mechanistic investigation and solution. ACS Pharmacol. Transl. Sci. 2022, 5, 1017-1033. (126) Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther. 2020, 206, 107447. (127) Li, D.; Tian, X.; Wang, A.; Guan, L.; Zheng, J.; Li, F.; Li, S.; Zhou, H.; Wu, J.; Tian, Y. Nucleic acid-selective light-up fluorescent biosensors for ratiometric two-photon imaging of the viscosity of live cells and tissues. Chem. Sci. 2016, 7, 2257-2263. (128) Wang, K.-N.; Chao, X.-J.; Liu, B.; Zhou, D.-J.; He, L.; Zheng, X.-H.; Cao, Q.; Tan, C.-P.; Zhang, C.; Mao, Z.-W. Red fluorescent probes for real-time imaging of the cell cycle by dynamic monitoring of the nucleolus and chromosome. Chem. Commun. 2018, 54, 2635-2638. (129) Li, Z.; Sun, S.; Yang, Z.; Zhang, S.; Zhang, H.; Hu, M.; Cao, J.; Wang, J.; Liu, F.; Song, F. The use of a near-infrared RNA fluorescent probe with a large Stokes shift for imaging living cells assisted by the macrocyclic molecule CB7. Biomaterials 2013, 34, 6473-6481. (130) Gaur, P.; Kumar, A.; Dalal, R.; Bhattacharyya, S.; Ghosh, S. Emergence through delicate balance between the steric factor and molecular orientation: a highly bright and photostable DNA marker for real-time monitoring of cell growth dynamics. Chem. Commun. 2017, 53, 2571-2574. (131) Xuan, T.-F.; Wang, Z.-Q.; Liu, J.; Yu, H.-T.; Lin, Q.-W.; Chen, W.-M.; Lin, J. Design and synthesis of novel c-di-GMP G-quadruplex inducers as bacterial biofilm inhibitors. J. Med. Chem. 2021, 64, 11074-11089. (132) Schaffer, K.; Taylor, C. T. The impact of hypoxia on bacterial infection. FEBS J. 2015, 282, 2260-2266. (133) Devraj, G.; Beerlage, C.; Brüne, B.; Kempf, V. A. Hypoxia and HIF-1 activation in bacterial infections. Microbes Infect. 2017, 19, 144-156. (134) Bojtár, M.; Kormos, A.; Kis-Petik, K.; Kellermayer, M.; Kele, P. Green-light activatable, water-soluble red-shifted coumarin photocages. Org. Lett. 2019, 21, 9410-9414. (135) Han, J. H.; Kwon, Y. E.; Sohn, J.-H. A facile method for the rapid and selective deprotection of methoxymethyl (MOM) ethers. Tetrahedron 2010, 66, 1673-1677. (136) Lee, H. M.; Nieto-Oberhuber, C.; Shair, M. D. Enantioselective synthesis of (+)-cortistatin A, a potent and selective inhibitor of endothelial cell proliferation. J. Am. Chem. Soc. 2008, 130, 16864-16866. (137) Corey, E.; Danheiser, R. L.; Chandrasekaran, S.; Siret, P.; Keck, G. E.; Gras, J. L. Stereospecific total synthesis of gibberellic acid. A key tricyclic intermediate. J. Am. Chem. Soc. 1978, 100, 8031-8034. (138) Sabitha, G.; Babu, R. S.; Rajkumar, M.; Srividya, R.; Yadav, J. A highly efficient, mild, and selective cleavage of β-methoxyethoxymethyl (MEM) ethers by cerium (III) chloride in acetonitrile. Org. Lett. 2001, 3, 1149-1151. (139) Feng, W.; Liu, X.-J.; Xue, M.-J.; Song, Q.-H. Bifunctional fluorescent probes for the detection of mustard gas and phosgene. Anal. Chem. 2023, 95, 1755-1763. (140) Ramesh, C.; Mahender, G.; Ravindranath, N.; Das, B. A mild, highly selective and remarkably easy procedure for deprotection of aromatic acetates using ammonium acetate as a neutral catalyst in aqueous medium. Tetrahedron 2003, 59, 1049-1054. (141) Chang, C.-K.; Chiu, P.-F.; Yang, H.-Y.; Juang, Y.-P.; Lai, Y.-H.; Lin, T.-S.; Hsu, L.-C.; Yu, L. C.-H.; Liang, P.-H. Targeting colorectal cancer with conjugates of a glucose transporter inhibitor and 5-fluorouracil. J. Med. Chem. 2021, 64, 4450-4461. (142) Jangili, P.; Kong, N.; Kim, J. H.; Zhou, J.; Liu, H.; Zhang, X.; Tao, W.; Kim, J. S. DNA‐damage‐response‐targeting mitochondria‐activated multifunctional prodrug strategy for self‐defensive tumor therapy. Angew. Chem. Int. Ed. 2022, 61, e202117075. (143) Liu, W.; Liu, H.; Peng, X.; Zhou, G.; Liu, D.; Li, S.; Zhang, J.; Wang, S. Hypoxia-activated anticancer prodrug for bioimaging, tracking drug release, and anticancer application. Bioconjugate Chem. 2018, 29, 3332-3343. (144) Zhou, Y.; Zhang, L.; Zhang, X.; Zhu, Z.-J. Development of a near-infrared ratiometric fluorescent probe for glutathione using an intramolecular charge transfer signaling mechanism and its bioimaging application in living cells. J. Mater. Chem. B 2019, 7, 809-814. (145) Ma, X.; Sun, R.; Cheng, J.; Liu, J.; Gou, F.; Xiang, H.; Zhou, X. Fluorescence Aggregation-Caused Quenching versus Aggregation-Induced Emission: A Visual Teaching Technology for Undergraduate Chemistry Students. J. Chem. Educ. 2016, 93, 345-350. (146) Zhu, C.-Q.; Zhuo, S.-J.; Zheng, H.; Chen, J.-L.; Li, D.-H.; Li, S.-H.; Xu, J.-G. Fluorescence enhancement method for the determination of nucleic acids using cationic cyanine as a fluorescence probe. Anlst 2004, 129, 254-258. (147) Berndl, S.; Wagenknecht, H. A. Fluorescent color readout of DNA hybridization with thiazole orange as an artificial DNA base. Angew. Chem. Int. Ed. 2009, 48, 2418-2421. (148) Ganguly, S.; Ghosh, D.; Narayanaswamy, N.; Govindaraju, T.; Basu, G. Dual DNA binding mode of a turn-on red fluorescent probe thiazole coumarin. Plos one 2020, 15, e0239145. (149) Ryan, G. J.; Elmes, R. B.; Quinn, S. J.; Gunnlaugsson, T. Synthesis and photophysical evaluations of fluorescent quaternary bipyridyl-1, 8-naphthalimide conjugates as nucleic acid targeting agents. Supramol. Chem. 2012, 24, 175-188. (150) Zhao, X.-b.; Gao, K.; Shi, Y.-p. Noncovalent theranostic prodrug for hypoxia-activated drug delivery and real-time tracking. Anal. Chem. 2021, 93, 15080-15087. (151) Lima, C. B. C.; Santos, S. A. d.; Andrade Junior, D. R. d. Hypoxic stress, hepatocytes and CACO-2 viability and susceptibility to Shigella flexneri invasion. Rev. Inst. Med. Trop. Sao Paulo 2013, 55, 341-346. (152) Alimoradi, H.; S Matikonda, S.; B Gamble, A.; I Giles, G.; Greish, K. Hypoxia responsive drug delivery systems in tumor therapy. Curr. Pharm. Des. 2016, 22, 2808-2820. (153) Wang, X.; Li, P.; Ding, Q.; Wu, C.; Zhang, W.; Tang, B. Observation of acetylcholinesterase in stress-induced depression phenotypes by two-photon fluorescence imaging in the mouse brain. J. Am. Chem. Soc. 2019, 141, 2061-2068. (154) Sapsford, K. E.; Berti, L.; Medintz, I. L. Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor–Acceptor Combinations. Angew. Chem. Int. Ed. 2006, 45, 4562-4589. (155) Cao, C.; Zeng, Z.; Cao, C. A new insight into the push‐pull effect of substituents via the stilbene‐like model compounds. J. Phys. Org. Chem. 2022, 35, e4319. (156) PC, P.; Joseph, E. A. A, ND S, I. Ibnusaud, J. Raskatov, B. Singaram, Stabilization of NaBH4 in Methanol Using a Catalytic Amount of NaOMe. Reduction of Esters and Lactones at Room Temperature without Solvent-Induced Loss of Hydride. J. Org. Chem. 2018, 83, 1431-1440. (157) Karimi, B.; Golshani, B. Iodine-catalyzed, efficient and mild procedure for highly chemoselective acetalization of carbonyl compounds under neutral aprotic conditions. Synthesis 2002, 2002, 0784-0788. (158) Sen, S. E.; Roach, S. L.; Boggs, J. K.; Ewing, G. J.; Magrath, J. Ferric Chloride Hexahydrate: A Mild Hydrolytic Agent for the Deprotection of Acetals. J. Org. Chem. 1997, 62, 6684-6686. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96878 | - |
dc.description.abstract | 本論文主要聚焦於設計並合成能透過腫瘤缺氧環境過度表達的硝基還原酶 (NTR) 作用之缺氧活化前藥。前藥p-CbmNM-CPT或o-CbmNM-CPT (圖1) 因水溶性極差,將其溶於70%二甲基亞碸/去離子水後,使用化學還原劑Na2S2O4進行釋放實驗,而其前驅物p-CbmNM則可溶於2%二甲基亞碸/PBS緩衝液中以酵素NTR反應。利用液相層析質譜儀 (LC-MS) 分析顯示p-CbmNM-CPT和o-CbmNM-CPT皆能釋放喜樹鹼和氮芥,但觀察到的是推論結構為兩分子AniDBOH加成到一分子氮芥上之NMDBOH荷質比訊號。而NTR作用p-CbmNM後觀測到的是氮芥水解的NMOH,以及推論結構為兩分子NMOH加成至一分子氮芥之TriNMOH荷質比訊號。並進一步量測氮芥之穩定性,證實其分子活性過高,會迅速水解或被親核基加成,而失去烷化去氧核醣核酸的預期效果,無法和喜樹鹼達到協同效應。
為了改善氮芥活性過高的問題,因此將氮芥修飾在強拉電子之硝基苯的對位來降低其烷化能力,鄰位則以酸脂基團連接抗腫瘤藥物5-氟尿嘧啶 (5-FU) 或能和去氧核醣小溝結合之螢光團VBTZAMe (圖2)。當前藥被NTR還原後成為推電子之苯胺才會呈現氮芥之烷化能力,同時可以進行1,4-脫去釋放活性藥物5-FU,或釋放VBTZAMe顯現螢光,達到雙藥協同性或具治療和顯影多功能的藥物分子,見圖2。實驗結果顯示,在沒有加入NTR前,PNM-FU在水溶液中就會自行水解釋放5-FU,無法達到期望前藥之治療偕同效果。反之,PNM-VBTZAMe則確實能經NTR作用後釋放VBTZAMe螢光分子,並與去氧核醣產生結合,使螢光增強1.6倍。並透過LC-MS分析釋放的產物,結果顯示苯胺氮芥仍有被水解的現象,同時也觀察到苯胺氮芥與輔酶NADH上之鹼基腺嘌呤所形成的加成產物訊號,間接證實苯胺氮芥能夠與去氧核醣之鹼基產生烷化,造成損傷。細胞存活度實驗顯示PNM-VBTZAMe確實能在具有NTR的HepG2癌細胞中轉變為活性烷化結構APNM達到毒殺細胞的效果;細胞顯影結果也指出在相同HepG2環境中,可觀測到原本不具螢光性質之前藥,只有在與NTR作用後經1,4-脫去反應之後能釋放出螢光發色團VBTZAMe,證實PNM-VBTZAMe是具有潛力的治療癌細胞與具有顯影功效之前藥有機小分子。 | zh_TW |
dc.description.abstract | The thesis primarily focuses on the design and synthesis of hypoxia-activated prodrugs that can be activated by the overexpression of nitroreductase (NTR) in the hypoxic tumor microenvironment. The prodrugs p-CbmNM-CPT and o-CbmNM-CPT (Figure 1), due to their poor water solubility, were dissolved in a solution of 70% dimethyl sulfoxide (DMSO) and deionized water for release experiments utilizing the chemical reductant sodium disulfide (Na2S2O4). Meanwhile, the precursor p-CbmNM was soluble in a 2% DMSO/PBS buffer for enzymatic reactions with NTR.
Liquid chromatography-mass spectrometry (LC-MS) analysis demonstrated that p-CbmNM-CPT and o-CbmNM-CPT could release camptothecin (CPT) and nitrogen mustard (NM). The observed signals were consistent with a proposed structure in which two molecules of AniDBOH were added to one molecule of NM, as indicated by a specific mass-to-charge ratio (m/z) signal. Following the action of NTR on p-CbmNM, NM hydrolysis produced NMOH, along with a proposed structure, TriNMOH, suggesting the addition of two molecules of NMOH to one molecule of NM, which was also represented by a specific m/z signal. Further measurements of NM stability confirmed that its molecular activity was excessively high, resulting in rapid hydrolysis or nucleophilic addition. This process diminished its intended alkylating effect on deoxyribonucleic acid (DNA) and hindered the achievement of a synergistic effect with CPT. To address the issue of the high reactivity of nitrogen mustard, modifications are made at the para position of a strongly electron-withdrawing nitrobenzene to reduce its alkylating ability. At the ortho position, a carbonate group is attached to the anticancer drug 5-fluorouracil (5-FU) or to a fluorescent moiety, VBTZAMe, which can bind to the minor groove of DNA (Figure 2). When prodrugs are reduced by NTR to form an electron-donating aniline, they exhibit the alkylating properties of nitrogen mustard. Concurrently, they can undergo 1,4-elimination to release either 5-FU or VBTZAMe, the latter of which exhibits fluorescence. This process achieves dual-drug synergy or results in a multifunctional drug molecule with both therapeutic and imaging capabilities. Experimental results demonstrated that, in the absence of NTR, PNM-FU would spontaneously hydrolyze in an aqueous solution, releasing 5-FU and failing to achieve the intended prodrug effect. In contrast, PNM-VBTZAMe successfully reacts with NTR to release the fluorescent molecule VBTZAMe, which binds to DNA and results in a 1.6-fold increase in fluorescence. Analysis of the released products using LC-MS confirmed that aniline mustard underwent hydrolysis. Furthermore, signals corresponding to the adduct formed between aniline nitrogen mustard and the adenine base of the NADH coenzyme were also detected, indirectly confirming that aniline nitrogen mustard has the potential to alkylate DNA bases, leading to damage. The results of the cell viability assay demonstrate that PNM-VBTZAMe can effectively release the active alkylating species APNM in HepG2 cells expressing NTR, leading to cell death. Additionally, the cell imaging results indicate that, in the same environment, PNM-VBTZAMe is initially non-fluorescent; however, a fluorescent dye (VBTZAMe) becomes observable after the prodrug interacts with NTR and undergoes a 1,4-elimination reaction. These findings confirm that PNM-VBTZAMe is a promising prodrug with both therapeutic potential against cancer cells and fluorescence imaging capabilities as an organic small molecule. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:22:33Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-24T16:22:33Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝誌 i
摘要 ii Abstract v 目次 ix 圖次 xii 表次 xvii 簡稱用語對照表 xviii 第一章 抗癌之有機小分子在治療歷程上的發展與種類 1 1.1 腫瘤缺氧環境與其治療上的課題 (Tumor hypoxia and therapeutics) 1 1.2 DNA烷化或拓撲異構酶抑制劑抗癌藥物 (Antitumor Agents) 4 1.2.1 DNA交聯烷化劑 (DNA interstrand alkylators) 5 1.2.2 拓撲異構酶抑制劑 (Topoisomerase inhibitors) 6 1.3 前藥分子設計與應用 (Molecular design and applications of prodrugs) 9 1.3.1 氮-氧化物作為缺氧啟動之前藥 (N-oxide based hypoxia-activated prodrugs) 12 1.3.2 以DT黃遞酶啟動前藥 (Prodrugs targeting DT-diaphorase) 15 1.3.3 以偶氮還原酶啟動前藥 (Prodrugs targeting Azoreductase) 17 1.3.4 以硝基還原酶啟動前藥 (Prodrugs targeting Nitroreductase) 18 1.3.5 結合硝基還原酶與自我分解級聯反應之前藥分子 (Self-immolative prodrugs nitroreductases) 21 1.4 結合螢光顯影和DNA烷化能力之雙功能分子 (Bifunctional molecules with fluorescent imaging and DNA alkylation capability) 24 第二章 與硝基還原酶作用之缺氧啟動前藥的分子設計、合成與結果討論 30 2.1 前藥p-CbmNM-CPT和o-CbmNM-CPT研究動機與分子設計概念 30 2.2 p-CbmNM-CPT、o-CbmNM-CPT、AniDBOH和NMH之逆合成分析與合成方法 30 2.3 p-CbmNM-CPT和o-CbmNM-CPT結果與討論 39 2.3.1 以化學還原方法分析p-CbmNM-CPT和o-CbmNM-CPT的釋放 39 2.3.2 使用酵素NTR分析p-CbmNM的釋放和DNA交聯結果以及NMH在不同緩衝溶液中的水解速率 43 2.3.3 p-CbmNM-CPT和o-CbmNM-CPT之結論與未來展望 47 2.4 前藥PNM-MP、PNM-FU與PNM-VBTZAMe研究動機與分子設計概念 52 2.5 PNM-MP、PNM-FU、PNM-VBTZAMe、VBTZAMe 與 APNM 之逆合成分析與合成方法 57 2.6 PNM -FU使用酵素NTR作用的釋放結果與討論 67 2.6.1 分析PNM -FU在不同緩衝水溶液當中的水解速率 69 2.6.2 PNM-FU之結論與未來展望 70 2.7 螢光分子VBTZAMe與PNM-VBTZAMe之光物理性質 72 2.8 PNM-VBTZAMe使用酵素NTR作用的釋放結果與討論 77 2.8.1 分析APNM的水解速率 81 2.8.2 PNM-VBTZAMe之細胞存活度與細胞顯影實驗 83 2.8.3 PNM-VBTZAMe之結論與未來展望 86 實驗部分 88 一、 一般敘述 88 二、 溶劑與試劑之前處理 90 三、 實驗分析方法 90 四、 合成步驟與光譜數據 97 參考文獻 130 附錄 143 1H NMR和13C NMR光譜 143 | - |
dc.language.iso | zh_TW | - |
dc.title | 開發具有治療和螢光特性的硝基還原酶響應性去氧核醣靶向和氮芥烷基化前藥 | zh_TW |
dc.title | Development of Nitroreductase-Responsive Deoxyribose-Targeting and Nitrogen Mustard Alkylating Prodrugs with Therapeutic and Fluorescent Features | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 劉維民;王正中;侯明宏 | zh_TW |
dc.contributor.oralexamcommittee | Wei-Min Liu;Cheng-Chung Wang;Ming-Hon Hou | en |
dc.subject.keyword | 腫瘤微環境,硝基還原酶,缺氧活化前藥,氮芥,喜樹鹼,水解,5-氟尿嘧啶,去氧核醣小溝結合,螢光團,細胞存活度,共軛焦顯微成像技術, | zh_TW |
dc.subject.keyword | tumor microenvironment (TME),nitroreductase (NTR),hypoxia-activated prodrugs (HAPs),nitrogen mustard,camptothecin (CPT),hydrolysis,5-fluorouracil (5-FU),DNA minor groove binding,fluorophore,cell viability,confocal microscopy, | en |
dc.relation.page | 176 | - |
dc.identifier.doi | 10.6342/NTU202404774 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-01-14 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 化學系 | - |
dc.date.embargo-lift | 2025-02-25 | - |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。