Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96874Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 卿建業 | zh_TW |
| dc.contributor.advisor | Jianye Ching | en |
| dc.contributor.author | 張威方 | zh_TW |
| dc.contributor.author | Wei-Fang Chang | en |
| dc.date.accessioned | 2025-02-24T16:21:31Z | - |
| dc.date.available | 2025-02-25 | - |
| dc.date.copyright | 2025-02-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-01-13 | - |
| dc.identifier.citation | Abdelhamid, M. S., & Krizek, R. J. (1976). At-rest lateral earth pressure of consolidating clay. Journal of the Geotechnical Engineering Division, 102(7), 721-738.
Angelim, R. R., Cunha, R. P., & Sales, M. M. (2016). Determining the elastic deformation modulus from a compacted earth embankment via laboratory and Ménard pressuremeter tests. Soils and Rocks, 39(3), 285-300. Briaud, J. L. (2013). Ménard lecture: The pressuremeter test: Expanding its use. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, 107-126. Briaud, J. L. (2019). The pressuremeter. Routledge. Briaud, J. L., Lytton, R. L., & Hung, J. T. (1983). Obtaining moduli from cyclic pressuremeter tests. Journal of Geotechnical Engineering, 109(5), 657-665. Briaud, J. L., Makarim, C. A., & Tucker, L. M. (1985). Pressuremeter standard and pressuremeter parameters. ASTM International. Cai, G., Liu, S., Puppala, A. J., & Tong, L. (2011). Assessment of the coefficient of lateral earth pressure at rest (K0) from in situ seismic tests. Geotechnical Testing Journal, 34(4), 310-320. Cheshomi, A., & Ghodrati, M. (2015). Estimating Menard pressuremeter modulus and limit pressure from SPT in silty sand and silty clay soils. A case study in Mashhad, Iran. Geomechanics and Geoengineering, 10(3), 194-202. Ching, J., & Phoon, K. K. (2012). Establishment of generic transformations for geotechnical design parameters. Structural Safety, 35, 52-62. Ching, J., & Phoon, K. K. (2014a). Transformations and correlations among some clay parameters—the global database. Canadian Geotechnical Journal, 51(6), 663-685. Ching, J., and Phoon, K. K. (2014b). Correlations among some clay parameters — the Multivariate Distribution. Canadian Geotechnical Journal, 51(6), 686–704. Ching, J., & Phoon, K. K. (2015). Constructing multivariate distributions for soil parameters. Risk and Reliability in Geotechnical Engineering, 3-76. Ching, J., Wu, S., & Phoon, K. K. (2021). Constructing quasi-site-specific multivariate probability distribution using hierarchical Bayesian model. Journal of Engineering Mechanics, 147(10), 04021069. Cunha, R. P. D. (1994). Interpretation of selfboring pressuremeter tests in sand (Doctoral dissertation, University of British Columbia). Goh, K. H., Jeyatharan, K., & Wen, D. (2012). Understanding the stiffness of soils in Singapore from pressuremeter testing. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 43(4), 21-29. Higgins, C. M. (1968). Pressuremeter correlation study (No. Research Report No. 31). Louisiana. Department of Highways. Research and Development Section. Houlsby, G. T., & Withers, N. J. (1988). Analysis of the cone pressuremeter test in clay. Géotechnique, 38(4), 575-587. Jewell, R. J., Fahey, M., & Wroth, C. P. (1980). Laboratory studies of the pressuremeter test in sand. Geotechnique, 30(4), 507-531. Kalman, E. (2008). Determination of the coefficient of earth pressure at rest in situ in overconsolidated clay. In World Tunnel Congress 2008-Underground Facilities for Better Environment and Safety–India, 391-396. Kulhawy, F. H., & Mayne, P. W. (1990). Manual on estimating soil properties for foundation design (No. EPRI-EL-6800). Electric Power Research Inst., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group. Lukas, R. G. (2010). Pressuremeter testing for foundation design. In Art of Foundation Engineering Practice, 371-379. Mair, R. J., & Wood, D. M. (2013). Pressuremeter testing: methods and interpretation. Elsevier. Marsland, A., & Randolph, M. F. (1977). Comparisons of the results from pressuremeter tests and large in situ plate tests in London Clay. Géotechnique, 27(2), 217-243. Massarsch, K. R., & Broms, B. B. (1976). Lateral earth pressure at rest in soft clay. Journal of the Geotechnical Engineering Division, 102(10), 1041-1047. Mayne, P. W., & Kulhawy, F. H. (1994). The coefficient of earth pressure at rest: discussion. Canadian Geotechnical Journal, 31(5), 788-790. Mesri, G., & Hayat, T. M. (1993). The coefficient of earth pressure at rest. Canadian Geotechnical Journal, 30(4), 647-666. Michalowski, R. L. (2005). Coefficient of earth pressure at rest. Journal of Geotechnical and Geoenvironmental Engineering, 131(11), 1429-1433. Schnaid, F., & Schnaid, F. (1990). A study of the cone-pressuremeter test in sand (Doctoral dissertation, University of Oxford). Tarawneh, B., Sbitnev, A., & Hakam, Y. (2018). Estimation of pressuremeter modulus and limit pressure from cone penetration test for desert sands. Construction and Building Materials, 169, 299-305. Withers, N. J., Howie, J., Hughes, J. M. O., & Robinson, P. K. (1989). Performance and analysis of cone pressuremeter tests in sands. Géotechnique, 39(3), 433-454. Yagiz, S., Akyol, E., & Sen, G. (2008). Relationship between the standard penetration test and the pressuremeter test on sandy silty clays: a case study from Denizli. Bulletin of Engineering Geology and the Environment, 67, 405-410. 郭明杰(2020)。土壤參數的大數據分析-著重於模數和靜止土壓力係數。碩士論文。國立臺灣大學。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96874 | - |
| dc.description.abstract | 過去,大地工程設計參數往往會使用簡單且便宜的試驗搭配轉換模型來來取得,而這些轉換模型常常具有較大的不確定性。近年來,隨著大數據的應用的發展,在各個領域皆能帶來更精確的分析與預測,因此,本研究希望藉由孔內壓力儀試驗的大數據分析來預測土壤模數(EM)及土壤的靜止土壓力係數(K0),藉此降低推估中的不確定性。
首先,先藉由過去的文獻來蒐集由孔內壓力儀試驗所得的土壤模數(EM)及靜止土壓力係數(K0),並同時一併蒐集其他土壤參數,以建立分析所需要之資料庫。建立資料庫完成之後,依前述的幾個經驗公式進行初步的檢核,藉此觀察資料的趨勢,再來篩選出我們想要探討相關性的參數。對於凝聚性土壤,我們關心的有: (1)液性限度(LL);(2)塑性指數(PI);(3)液性指數(LI);(4)垂直有效應力(σv’);(5)預壓密應力(σP’);(6)標準化SPTN值(N60);(7)PMT所得之靜止土壓力係數(K0);(8) PMT所得之變形模數(EM);(9)孔隙水壓常數(Bq);(10)錐尖阻抗應力(qc)。對於非凝聚性土壤,我們關心的有: (1)孔隙比(void ratio, e0);(2)相對密度(Dr);(3)正規化垂直有效應力(σv’/Pa);(4)靜止土壓力係數(K0);(5)PMT所得之變形模數(EM);(6)孔隙水壓常數(Bq);(7)錐尖阻抗(qC);(8)標準化SPTN值(N60)等。 接下來的分析將運用層級貝氏模型(HBM)來探索參數之間的相關性,並有效地捕捉資料庫中不同場址的特性。藉由結合目標場址有限的調查數據,模型可以推測出尚未掌握的資訊分佈。整個過程將使用Johnson分布系統、吉布斯取樣法以及貝氏分析中的共軛條件進行推估。結果顯示,層級貝氏模型能夠準確預測出目標場址的變形模數(EM)與靜止土壓力係數(K0)。透過可靠度觀念,這種方法能提升設計大地結構物的精準度,從而減少材料成本並提高工程的經濟效益。 | zh_TW |
| dc.description.abstract | In the past, geotechnical engineering design parameters were often obtained using simple and inexpensive tests combined with empirical models, which frequently involved high uncertainty. Recently, with the development of big data applications, more precise analysis and predictions have been achieved across various fields. This study aims to leverage big data analysis from pressuremeter tests to predict the soil modulus (EM) and the coefficient of earth pressure at rest (K₀), thereby reducing estimation uncertainties.
First, data on soil modulus (EM) and the coefficient of earth pressure at rest (K₀) obtained from pressuremeter tests were collected from previous studies, along with other soil parameters, to establish a comprehensive database for analysis. Once the database was completed, initial checks were conducted using several empirical formulas to observe data trends and select parameters relevant to the study. The subsequent analysis employs a hierarchical Bayesian model (HBM) to explore correlations among parameters and capture the distinct characteristics of different sites within the database. By combining limited survey data from the target site, the model can infer the distribution of unknown information. This process utilizes the Johnson distribution system, Gibbs sampling, and conjugate priors in Bayesian analysis. The results demonstrate that the hierarchical Bayesian model can accurately predict the deformation modulus (EM) and the coefficient of earth pressure at rest (K₀) for the target site.By integrating reliability concepts, this method enhances the precision of geotechnical structure design, reducing material costs and increasing the economic efficiency of engineering projects. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:21:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-24T16:21:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 iv 圖次 vi 表次 ix 第一章 前言 1.1研究背景與動機 1 1.2研究方法 2 1.3研究流程 3 1.4本文內容 4 第二章 文獻回顧 5 2.1 孔內壓力儀試驗(Pressuremeter Test)介紹 5 2.2 土壤的變形模數(Deformation Modulus) 7 2.2.1基本定義 7 2.2.2凝聚性土壤之變形模數 8 2.2.3非凝聚性土壤之變形模數 9 2.3 土壤的靜止土壓力係數介紹(K0) 11 2.3.1基本定義 11 2.3.2凝聚性土壤的靜止土壓力係數 12 2.3.3非凝聚性土壤的靜止土壓力係數 15 2.4 變形模數及靜止土壓力係數之實務應用 16 2.4.1 變形模數之實務應用 16 2.4.2 靜止土壓力係數之實務應用 17 第三章 資料庫 18 3.1前言 18 3.2本研究資料庫介紹 19 3.3蒐集資料點方法 24 3.4檢驗資料庫的正確性 24 3.5本研究資料庫資料與前人轉換模型之對比 25 第四章 層級貝氏模型(HBM) 29 4.1前言 29 4.2 HBM模型架構 29 4.2.1HBM簡介 29 4.3 資料庫資料處理 31 4.3.1取自然對數 31 4.3.2 Johnson分布系統 31 4.4 HBM中變數的條件機率 45 4.3.1貝氏分析(Bayesian analysis) 45 4.3.2吉普斯取樣法(Gibbs sampler) 49 4.4 模擬結果 52 第五章 現地案例參數預測與驗證 65 5.1 HBM的推論階段-預測目標場址的未知資訊 65 5.2 案例驗證 66 5.2.1預測步驟 66 5.2.2案例一(非大資料庫資料) 67 5.2.3案例二(非大資料庫資料) 76 5.2.4案例三(非大資料庫資料) 81 第六章 結論與未來建議 84 6.1 結論 84 6.2 未來建議 85 參考文獻 86 附錄Ⅰ 無凝聚性土壤資料庫資訊 89 附錄Ⅱ 凝聚性土壤資料庫資訊 104 資料庫參考文獻 121 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 層級貝氏模型 | zh_TW |
| dc.subject | 大地工程可靠度 | zh_TW |
| dc.subject | 靜止土壓力係數 | zh_TW |
| dc.subject | 模數 | zh_TW |
| dc.subject | 孔內壓力儀試驗 | zh_TW |
| dc.subject | 大數據分析 | zh_TW |
| dc.subject | pressuremeter test | en |
| dc.subject | big data | en |
| dc.subject | hierarchical Bayesian model | en |
| dc.subject | geotechnical reliability analysis | en |
| dc.subject | soil modulus | en |
| dc.title | 基於孔內壓力儀的土壤參數大數據分析 | zh_TW |
| dc.title | Big Data Analytics of Soil Parameters Based on Pressuremeter Test | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃郁惟;鄧福宸 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Wei Huang;Fu-Chen Teng | en |
| dc.subject.keyword | 層級貝氏模型,大數據分析,孔內壓力儀試驗,模數,靜止土壓力係數,大地工程可靠度, | zh_TW |
| dc.subject.keyword | hierarchical Bayesian model,big data,pressuremeter test,soil modulus,geotechnical reliability analysis, | en |
| dc.relation.page | 153 | - |
| dc.identifier.doi | 10.6342/NTU202500039 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-01-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-1.pdf Restricted Access | 4.86 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
