Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96872
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林坤佑zh_TW
dc.contributor.advisorKun-You Linen
dc.contributor.author傅資皓zh_TW
dc.contributor.authorZi-Hao Fuen
dc.date.accessioned2025-02-24T16:20:58Z-
dc.date.available2025-02-25-
dc.date.copyright2025-02-24-
dc.date.issued2024-
dc.date.submitted2025-01-13-
dc.identifier.citation[1]. Qualcomm, “Global update on 5G spectrum,” Dec. 2020. [Online]. Available: https://www.qualcomm.com/content/dam/qcommmartech/dmassets/documents/20200625_mipi_-_5g_spectrum_-_dean_brenner_4.pdf
[2]. W.M.C. Sansen, Analog Design Essentials, vol. 859 (Springer Science and Business Media, Berlin, 2007)
[3]. T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. Cambridge: Cambridge University Press, 2003.
[4]. A. Mazzanti and A. Bevilacqua, "On the Phase Noise Performance of Transformer-Based CMOS Differential-Pair Harmonic Oscillators," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 9, pp. 2334-2341, Sept. 2015.
[5]. A. Bevilacqua and A. M. Niknejad, "An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers," IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2259-2268, Dec. 2004.
[6]. M. Vigilante and P. Reynaert, "20.10 A 68.1-to-96.4GHz variable-gain low-noise amplifier in 28nm CMOS," in 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2016, pp. 360-362.
[7]. P. -C. Huang, Z. -M. Tsai, K. -Y. Lin and H. Wang, "A 17–35 GHz Broadband, High-Efficiency PHEMT Power Amplifier Using Synthesized Transformer Matching Technique," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, pp. 112-119, Jan. 2012.
[8]. J. R. Long, "Monolithic transformers for silicon RF IC design," IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[9]. N. M. Nguyen and R. G. Meyer, "Si IC-compatible inductors and LC passive filters," IEEE Journal of Solid-State Circuits, vol. 25, no. 4, pp. 1028-1031, Aug. 1990.
[10]. J. Zhao, M. Bassi, A. Bevilacqua, A. Ghilioni, A. Mazzanti and F. Svelto, "A 40–67GHz power amplifier with 13dBm PSAT and 16% PAE in 28 nm CMOS LP," in ESSCIRC 2014 - 40th European Solid-State Circuits Conference (ESSCIRC), Venice Lido, Italy, 2014, pp. 179-182.
[11]. J. S. Park and H. Wang, "A Transformer-Based Poly-Phase Network for Ultra-Broadband Quadrature Signal Generation," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 12, pp. 4444-4457, Dec. 2015.
[12]. T. Guillod, F. Krismer, and J. W. Kolar, "Magnetic equivalent circuit of MF transformers: modeling and parameter uncertainties," Electrical Engineering, vol. 100, pp. 2261-2275, May 2018.
[13]. Z. -H. Fu, M. -X. Li, T. -G. Ma, C. -S. Wu and K. -Y. Lin, "Millimeter-Wave GaAs Ultra-Wideband Medium Power Amplifier and Broadband High-Power Power Amplifier for 5G/6G Applications," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 14, no. 1, pp. 111-121, March 2024.
[14]. User Equipment (UE) Radio Transmission and Reception; Part 2: Range 2 Standalone, document 3GPP TS 38.101-2, Version 15.12.0, Release 15, European Telecommunications Standards Institute, Jan. 2021. [Online]. Available: https://www.etsi.org/deliver/etsits/138100_138199/13810102/15.12.00_60/ts_13810102v151200p.pdf
[15]. D. P. Nguyen, T. Pham, B. L. Pham, and A. -V. Pham, "A High-Efficiency High Power Density Harmonic-Tuned Ka Band Stacked-FET GaAs Power Amplifier," in 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Austin, TX, USA, 2016, pp. 1-4.
[16]. N. Hosseinzadeh and A. Medi, "Wideband 5 W Ka-Band GaAs Power Amplifier," IEEE Microwave and Wireless Components Letters, vol. 26, no. 8, pp. 622-624, Aug. 2016.
[17]. A. Alizadeh, M. Frounchi and A. Medi, "On Design of Wideband Compact-Size Ka/Q-Band High-Power Amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 6, pp. 1831-1842, June 2016.
[18]. G. Lv, W. Chen and Z. Feng, "A Compact and Broadband Ka-band Asymmetrical GaAs Doherty Power Amplifier MMIC for 5G Communications," in 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, USA, 2018, pp. 808-811.
[19]. D. P. Nguyen, J. Curtis and A. -V. Pham, "A Doherty Amplifier with Modified Load Modulation Scheme Based on Load–Pull Data," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 1, pp. 227-236, Jan. 2018.
[20]. P. Neininger, L. John, P. Brückner, C. Friesicke, R. Quay, and T. Zwick, "Design, Analysis and Evaluation of a Broadband High-Power Amplifier for Ka-Band Frequencies," in 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2019, pp. 564-567.
[21]. J. Zhang, T. Wu, L. Nie, D. Wei, S. Ma, and J. Ren, "A 20-30 GHz Compact PHEMT Power Amplifier Using Coupled-Line Based MCCR Matching Technique," in 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 956-959.
[22]. C. Ramella, V. Camarchia, A. Piacibello, M. Pirola, and R. Quaglia, "Watt-Level 21–25-GHz Integrated Doherty Power Amplifier in GaAs Technology," IEEE Microwave and Wireless Components Letters, vol. 31, no. 5, pp. 505-508, May 2021.
[23]. Y.-F. Tsao, H.-S. Hsu, J. Würfl, and H.-T. Hsu, "Dual-Band Power Amplifier Design at 28/38 GHz for 5G New Radio Applications," IEEE Access, vol. 10, pp. 77826-77836, 2022.
[24]. Z. Sun, Z. Liu, T. Wu, H. Yu, Y. Chen, and S. Ma, "A 33-37GHz Two-Path Power Amplifier with>18-dB Gain and 26.7-dBm Psat in 150nm GaAs Process," in 2022 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), Shenzhen, China, 2022, pp. 64-67.
[25]. H. W. Bode, Network Analysis and Feedback Amplifier Design., Princeton, 1945, [Online]. Available: https://ia601702.us.archive.org/30/items/dli.ernet.15701/15701Network%20Analysis%20And%20%20Feedback%20Amplifier%20Design_text.pdf
[26]. G. Lv, W. Chen, X. Chen, and Z. Feng, "An Energy-Efficient Ka / Q Dual-Band Power Amplifier MMIC in 0.1-μm GaAs Process," IEEE Microwave and Wireless Components Letters, vol. 28, no. 6, pp. 530-532, June 2018.
[27]. C. R. Chappidi and K. Sengupta, "Globally Optimal Matching Networks with Lossy Passives and Efficiency Bounds," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 1, pp. 257-269, Jan. 2018.
[28]. B.-W. Huang, Z.-H. Fu, and K.-Y. Lin, "A 28/39 GHz Dual-Band Power Amplifier Using Optimal Matching Contour in GaAs pHEMT," in 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 2021, pp. 1-3.
[29]. B.-W. Huang, Z.-H. Fu, and K.-Y. Lin, "A Millimeter-Wave Ultra-Wide Band Power Amplifier in 0.15-μm GaAs pHEMT for 5G Communication," in 2022 Asia-Pacific Microwave Conference (APMC), Yokohama, Japan, 2022, pp. 97-99.
[30]. I. Huang et al., "A 29.6 dBm 29-GHz Power Amplifier for Satellite and 5G Communications Using 0.15-μm GaAs p-HEMT Technology," in 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 2018, pp. 986-988.
[31]. H. Jia, C. C. Prawoto, B. Chi, Z. Wang, and C. P. Yue, "A Full Ka-Band Power Amplifier With 32.9% PAE and 15.3-dBm Power in 65-nm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 9, pp. 2657-2668, Sept. 2018.
[32]. G. Cho and S. Hong, "Ka-Band CMOS Power Amplifier Based on Transmission Line Transformers with Single-Ended Doherty Network," IEEE Microwave and Wireless Components Letters, vol. 31, no. 11, pp. 1223-1226, Nov. 2021.
[33]. S. Srivastava and P. P. Dash, "Non-Orthogonal Multiple Access: Procession towards B5G and 6G," in 2021 IEEE 2nd International Conference on Applied Electromagnetics, Signal Processing, & Communication (AESPC), Bhubaneswar, India, 2021, pp.
[34]. S. D. L, R. Dilli and K. M, "Statistical Modelling of Massive MIMO Channel at FR2 Frequency Bands for B5G Networks," in 2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS), Kochi, India, 2023, pp. 1-5
[35]. N. Hasegawa, Y. Nakamoto, T. Hirakawa, and Y. Ohta, "Function Expansion of B5G/6G Mobile Base Stations for Wireless Power Transfer," in 2022 Asia-Pacific Microwave Conference (APMC), Yokohama, Japan, 2022, pp. 348-349.
[36]. D. Wang, W. Chen, X. Chen, X. Liu, F. M. Ghannouchi, and Z. Feng, "A 24-29.5 GHz Voltage-Combined Doherty Power Amplifier Based on Compact Low-Loss Combiner," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 7, pp. 2342-2346, July 2021.
[37]. J. Lee and S. Hong, "A 24–30 GHz 31.7% Fractional Bandwidth Power Amplifier with an Adaptive Capacitance Linearizer," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp. 1163-1167, April 2021.
[38]. C. Yu, J. Feng, and D. Zhao, "A 28-GHz Doherty Power Amplifier with a Compact Transformer-Based Quadrature Hybrid in 65-nm CMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 8, pp. 2790-2794, Aug. 2021.
[39]. L. Chen, L. Chen, Z. Ge, Y. Sun, and X. Zhu, "A 40-GHz Load Modulated Balanced Power Amplifier Using Unequal Power Splitter and Phase Compensation Network in 45-nm SOI CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 8, pp. 3178-3186, Aug. 2023, doi: 10.1109/TCSI.2023.3282731.
[40]. L. Chen, L. Chen, H. Zhu, R. Gómez-García, and X. Zhu, "A Wideband Balanced Amplifier Using Edge-Coupled Quadrature Couplers in 0.13-μm SiGe HBT Technology," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 2, pp. 631-641, Feb. 2023.
[41]. L. Chen, H. Liu, J. Hora, J. A. Zhang, K. S. Yeo, and X. Zhu, "A Monolithically Integrated Single-Input Load-Modulated Balanced Amplifier with Enhanced Efficiency at Power Back-Off," IEEE Journal of Solid-State Circuits, vol. 56, no. 5, pp. 1553-1564, May 2021.
[42]. SpaceX [Online]. Available: https://www.spacex.com/
[43]. Amazon [Online]. Available: https://www.amazon.com/
[44]. Federal Communications Commission, “FCC Empowers Short-Range Radars in the 60 GHz Band,” Aug. 2023. [Online]. Available:https://www.federalregister.gov/documents/2023/07/24/202315367/fcc-empowers-short-range-radars-in-the-60-ghz-band.
[45]. Y. -H. Hsiao, Z. -M. Tsai, H. -C. Liao, J. -C. Kao and H. Wang, "Millimeter-Wave CMOS Power Amplifiers with High Output Power and Wideband Performances," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4520-4533, Dec. 2013.
[46]. F. Shirinfar, M. Nariman, T. Sowlati, M. Rofougaran, R. Rofougaran, and S. Pamarti, "A fully integrated 22.6dBm mm-Wave PA in 40nm CMOS," in 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Seattle, WA, USA, 2013, pp. 279-282.
[47]. C. Y. Law and A. -V. Pham, "A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS," in 2010 IEEE International Solid-State Circuits Conference -(ISSCC), San Francisco, CA, USA, 2010, pp. 426-427.
[48]. J. -A. Han, Z. -H. Kong, K. Ma, and K. S. Yeo, "A 26.8 dB Gain 19.7 dBm CMOS Power Amplifier Using 4-way Hybrid Coupling Combiner," IEEE Microwave and Wireless Components Letters, vol. 25, no. 1, pp. 43-45, Jan. 2015.
[49]. C. -F. Chou, Y. -H. Hsiao, Y. -C. Wu, Y. -H. Lin, C. -W. Wu and H. Wang, "Design of a V-Band 20-dBm Wideband Power Amplifier Using Transformer-Based Radial Power Combining in 90-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4545-4560, Dec. 2016.
[50]. W. -C. Sun and C. -N. Kuo, "A 19.1% PAE, 22.4-dBm 53-GHz Parallel Power Combining Power Amplifier with Stacked-FET Techniques in 90-nm CMOS," in 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2019, pp. 327-330.
[51]. L. Zhang, K. Ma, and H. Fu, "A 60-GHz 32-Way Hybrid Power Combination Power Amplifier in 55-nm Bulk CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 2, pp. 613-627, Feb. 2023.
[52]. D. Pan et al., "A 77-GHz Power Amplifier with Digital Power Control for Multi-Mode Automotive Radar in 28-nm Bulk CMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 3, pp. 875-879, March 2023.
[53]. Y. Chang, Y. Wang, C. -N. Chen, Y. -C. Wu and H. Wang, "A V-Band Power Amplifier With 23.7-dBm Output Power, 22.1% PAE, and 29.7-dB Gain in 65-nm CMOS Technology," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, pp. 4418-4426, Nov. 2019.
[54]. H. T. Nguyen, D. Jung and H. Wang, "4.9 A 60GHz CMOS Power Amplifier with Cascaded Asymmetric Distributed-Active-Transformer Achieving Watt-Level Peak Output Power with 20.8% PAE and Supporting 2Gsym/s 64-QAM Modulation," in 2019 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2019, pp. 90-92.
[55]. S. V. Thyagarajan, A. M. Niknejad and C. D. Hull, "A 60 GHz Drain-Source Neutralized Wideband Linear Power Amplifier in 28 nm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 8, pp. 2253-2262, Aug. 2014.
[56]. D. Zhao and P. Reynaert, "A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 48, no. 10, pp. 2323-2337, Oct. 2013.
[57]. V. -S. Trinh and J. -D. Park, "An 85-GHz Power Amplifier Utilizing a Transformer-Based Power Combiner Operating Beyond the Self-Resonance Frequency," IEEE Journal of Solid-State Circuits, vol. 57, no. 3, pp. 882-891, March 2022.
[58]. J. Ho and H. -W. Tsao, "CMOS Power Amplifier with Novel Transformer Power Combiner," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 7, pp. 2365-2369, July 2023.
[59]. I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Distributed active transformer-a new power-combining and impedance-transformation technique," IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 316-331, Jan. 2002.
[60]. W. Zeng, L. Gao, N. Sun, H. Xu, Q. Xue and X. Zhang, "25.2 A 19.7-to-43.8GHz Power Amplifier with Broadband Linearization Technique in 28nm Bulk CMOS," in 2023 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2023, pp. 372-374.
[61]. M. Vigilante and P. Reynaert, "A Wideband Class-AB Power Amplifier With 29–57-GHz AM–PM Compensation in 0.9-V 28-nm Bulk CMOS," IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1288-1301, May 2018.
[62]. H. Jia, C. C. Prawoto, B. Chi, Z. Wang, and C. P. Yue, "A Full Ka-Band Power Amplifier With 32.9% PAE and 15.3-dBm Power in 65-nm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 9, pp. 2657-2668, Sept. 2018.
[63]. A. Bevilacqua and A. Mazzanti, "Doubly-Tuned Transformer Networks: A Tutorial," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 2, pp. 550-555, Feb. 2021.
[64]. C. Xing et al., "Analysis and Design of Broadband, Transformer Based Matching Network," in 2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), Kunming, China, 2020, pp. 1-4.
[65]. H. Asada, K. Matsushita, K. Bunsen, K. Okada, and A. Matsuzawa, "A 60GHz CMOS power amplifier using capacitive cross-coupling neutralization with 16 % PAE," in 2011 6th European Microwave Integrated Circuit Conference, Manchester, UK, 2011, pp. 554-557.
[66]. M. Cui, J. Wagner, and F. Ellinger, "A Class-J/F 60 GHz Power Amplifier with 42.3% Power Added Efficiency in FDSOI CMOS," in 2024 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Washington, DC, USA, 2024, pp. 123-126.
[67]. Y. Zhao and J. R. Long, "A Wideband, Dual-Path, Millimeter-Wave Power Amplifier With 20 dBm Output Power and PAE Above 15% in 130 nm SiGe-BiCMOS," IEEE Journal of Solid-State Circuits, vol. 47, no. 9, pp. 1981-1997, Sept. 2012.
[68]. W. Zeng et al., "A Compact 19.7- to 43.8-GHz Power Amplifier With 20.3-dBm Psat and 35.5% PAE in 28-nm Bulk CMOS," IEEE Journal of Solid-State Circuits, vol. 59, no. 8, pp. 2455-2468, Aug. 2024.
[69]. F. Wang and H. Wang, "24.6 An Instantaneously Broadband Ultra-Compact Highly Linear PA with Compensated Distributed-Balun Output Network Achieving >17.8dBm P1dB and >36.6% PAEP1dB over 24 to 40GHz and Continuously Supporting 64-/256-QAM 5G NR Signals over 24 to 42GHz," in 2020 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2020, pp. 372-374.
[70]. L. Zhang et al., "A Compact 140-GHz Power Amplifier With 15.4-dBm Psat and 14.25% Peaking PAE in 28-nm Bulk CMOS Process," IEEE Transactions on Microwave Theory and Techniques, vol. 72, no. 5, pp. 3016-3030, May 2024.
[71]. W. Zhang, Z. Lin, H. Tao and H. Meng, "A 2–18 GHz Dual-Mode GaN Power Amplifier Based on Distributed Structure," IEEE Microwave and Wireless Technology Letters, vol. 34, no. 6, pp. 651-654, June 2024, doi: 10.1109/LMWT.2024.3392153.
[72]. Y. Zhang and K. Ma, "A 2–22 GHz CMOS Distributed Power Amplifier With Combined Artificial Transmission Lines," IEEE Microwave and Wireless Components Letters, vol. 27, no. 12, pp. 1122-1124, Dec. 2017, doi: 10.1109/LMWC.2017.2750416.
[73]. C. -C. Lin, C. -H. Yu, H. -C. Kuo and H. -R. Chuang, "Design of 60-GHz 90-nm CMOS balanced power amplifier with miniaturized quadrature hybrids," in 2014 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR), Newport Beach, CA, USA, 2014, pp. 52-54, doi: 10.1109/PAWR.2014.6825723.
[74]. G. Diverrez, E. Kerhervé and A. Cathelin, "A 24-31GHz 28nm FD-SOI CMOS Balanced Power Amplifier Robust to 3:1 VSWR for 5G Application," in 2022 52nd European Microwave Conference (EuMC), Milan, Italy, 2022, pp. 496-499, doi: 10.23919/EuMC54642.2022.9924331.
[75]. G. Lee, J. Lee, J. Park and S. Hong, "A 24-30GHz Wideband Power Amplifier with High-Coupling-Coefficient Transmission Line Transformer and Staggered Tuning," in 2022 14th Global Symposium on Millimeter-Waves & Terahertz (GSMM), Seoul, Korea, Republic of, 2022, pp. 12-14, doi: 10.1109/GSMM53818.2022.9792329.
[76]. B. Razavi, RF Microelectronics, 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall, 2011.
[77]. Z. -H. Fu, J. -W. Ye, H. Liang, and K. -Y. Lin, "Millimeter-Wave Wideband CMOS Power Amplifier Using Inductive-Compensation Distributed Active Transformer," IEEE Transactions on Microwave Theory and Techniques, doi:10.1109/TMTT.2024.3520211.
[78]. M. Vigilante and P. Reynaert, *5G and E-Band Communication Circuits in Deep-Scaled CMOS*. Cham, Switzerland: Springer, 2018. doi: 10.1007/978-3-319-72646-5.
[79]. H. S. Ruiz and R. B. Pérez, *Linear CMOS RF Power Amplifiers: A Complete Design Workflow*. New York, NY, USA: Springer, 2014. doi: 10.1007/978-1-4614-8657-2.
[80]. A. Mazzanti, A. Bevilacqua, “On the phase noise performance of transformer-based CMOS differential-pair harmonic oscillators,” IEEE Trans. Circuits Syst I: Regular Pap, 62(9), 2334–2341.
[81]. A. Mazzanti and A. Bevilacqua, "Second-Order Equivalent Circuits for the Design of Doubly-Tuned Transformer Matching Networks," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 12, pp. 4157-4168, Dec. 2018, doi: 10.1109/TCSI.2018.2846029.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96872-
dc.description.abstract本論文針對第五代行動通訊 (5G) 中的毫米波寬頻功率放大器進行創新設計與深入分析,提出了多項創新架構與方法,以提升頻寬、輸出效率及輸出功率。在頻寬提升方面,本研究深入探討了博德法諾頻寬限制理論,並結合磁耦合諧振器與基於變壓器的雙調諧匹配網絡,深入分析不同網路的頻寬提升與轉阻比例限制。針對 GaAs pHEMT 功率放大器,本研究提出一種創新的多諧振匹配網絡架構,該架構結合了雙頻匹配的概念,能同時提升頻寬與轉阻比率。在設計實現上,成功達成 24 至 32 GHz 的寬頻操作,並在量測中實現 29.6 dBm 的峰值輸出功率及平均 30% 的功率附加效率 (PAE)。此外,針對 CMOS 功率放大器,提出一種新型的電感性補償分布式主動變壓器 (Distributed Active Transformer, DAT) 架構,能有效應用於超寬頻操作,涵蓋 31 至 65 GHz 的頻率範圍,同時解決阻抗匹配與寄生效應的設計挑戰。量測結果驗證了本研究所提出設計的有效性,成功達成 31 至 65 GHz 的寬頻操作,並在量測中實現 20.6 dBm 的峰值輸出功率及平均 15% 的功率附加效率。展現其在高效能毫米波功率放大器中的卓越表現。本研究不僅為毫米波功率放大器設計提供了關鍵技術突破,也為未來 5G 與 6G 無線通信技術的發展奠定了堅實的基石,展現出極具潛力的應用價值。zh_TW
dc.description.abstractThis thesis explores innovative designs of millimeter-wave broadband power amplifiers (PAs) for 5G communications, enhancing bandwidth, efficiency, and output power. It investigates the Bode-Fano limitation for bandwidth improvement and combines magnetic-coupled resonators with transformer-based dual-tuned matching networks. A novel multi-resonant matching network for GaAs pHEMT PAs achieves 24–32 GHz bandwidth, 29.6 dBm peak output power, and 30% power-added efficiency (PAE). For CMOS PAs, an inductive-compensated distributed active transformer (DAT) supports 31–65 GHz ultra-broadband operation, resolving impedance matching and parasitic challenges. Measurement results validate the proposed designs' performance, offering significant advancements for high-efficiency millimeter-wave PAs. This research establishes a solid foundation for future 5G and 6G wireless communication systems.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:20:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-24T16:20:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 iii
中文摘要 v
ABSTRACT vi
CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xvii
Chapter 1 Introduction 1
1.1 Background and Motivation [1] 1
1.2 System Level Requirements and Challenges [78]-[79] 2
1.3 Contribution [13],[77] 8
1.4 Thesis Organization 9
Chapter 2 Bandwidth Enhancement Techniques for mm-Wave Power Amplifiers 11
2.1 Introduction 11
2.2 Gm-stage analysis [2],[77] 12
2.2.1 Weak Inversion (WI) [2] 13
2.2.2 Strong Inversion (SI) [2] 14
2.2.3 Velocity Saturation (VS) [2] 15
2.2.4 Performance and Frequency Response [2] 16
2.2.5 Maximum Oscillation Frequency [77] 16
2.3 Bandwidth Enhancement Techniques [78] 17
2.3.1 RLC Tank and Bode-Fano Limit [80] 18
2.3.2 Magnetically Coupled Resonators [6]-[7] 20
2.4 Transformer-Based Doubly-Tuned Matching Network [63],[81] 22
2.5 Extended Matching Network [12]-[13] 28
2.6 Summary 33
Chapter 3 Millimeter-wave Wideband High-power GaAs pHEMT Power Amplifier 35
3.1 Introduction 35
3.2 Circuit Design 37
3.2.1 Power-stage and proposed multi-resonance matching network 37
3.2.2 Driver-Stage and Matching Network 46
3.2.3 Circuit Schematic and Simulation Results 51
3.3 Measurement Results 64
3.4 Summary 71
Chapter 4 Millimeter-wave Wideband CMOS Power Amplifier Using Inductive-Compensation Distributed Active Transformer 74
4.1 Introduction 74
4.2 Transformer-Base Power Combining Structure 76
4.2.1 Transformer-Base Parallel/Series Combining Architecture 77
4.2.2 Transformer-Base Parallel/Series Combining Architecture 79
4.2.3 Proposed Novel DAT Series Combining Architecture 83
4.3 Circuit Design 88
4.3.1 Power Stage and Output Power Combiner Design 89
4.3.2 Driver Stage and ISMN2 97
4.3.3 Buffer Stage and ISMN1 99
4.3.4 IMN 101
4.3.5 Stability Check 103
4.4 Measurement Results 112
4.4.1 Small-Signal S-Parameter Measurement 113
4.4.2 Large-Signal Measurement 114
4.5 Summary 120
Chapter 5 Conclusion 124
Appendix 127
REFERENCE 131
PUBLICATIONS LIST 139
-
dc.language.isoen-
dc.subjectGaAszh_TW
dc.subject多階匹配網路zh_TW
dc.subject分佈式主動變壓器zh_TW
dc.subject功率放大器zh_TW
dc.subject寬頻zh_TW
dc.subjectCMOSzh_TW
dc.subjectPAen
dc.subjectwide-banden
dc.subjectGaAsen
dc.subjectCMOSen
dc.subjectmulti-resonance matching networken
dc.subjectDATen
dc.title設計與分析應用於毫米波寬頻高功率GaAs功率放大器與補償電感之分布式主動變壓器CMOS功率放大器zh_TW
dc.titleDesign and Analysis of Millimeter-wave Wideband High-Power GaAs Power Amplifier and Distributed Active Transformer CMOS Power Amplifier with Inductive Compensationen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee王暉;王君弘;李俊興;黃天偉;邱煥凱;張鴻埜;蔡政翰;蔡作敏zh_TW
dc.contributor.oralexamcommitteeHuei Wang;Mike Wang;Chun-Hsing Li;Tian-Wei Huang;Hwann-Kaeo Chiou;Hong-Yeh Chang;Jeng-Han Tsai;Tsai Zuo-Minen
dc.subject.keywordCMOS,GaAs,寬頻,功率放大器,分佈式主動變壓器,多階匹配網路,zh_TW
dc.subject.keywordCMOS,GaAs,wide-band,PA,DAT,multi-resonance matching network,en
dc.relation.page140-
dc.identifier.doi10.6342/NTU202500084-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-01-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-02-25-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf5.35 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved