請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96864完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳文章 | zh_TW |
| dc.contributor.advisor | Wen-Chang Chen | en |
| dc.contributor.author | 陳威丞 | zh_TW |
| dc.contributor.author | Wei-Cheng Chen | en |
| dc.date.accessioned | 2025-02-24T16:18:52Z | - |
| dc.date.available | 2025-02-25 | - |
| dc.date.copyright | 2025-02-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-01-06 | - |
| dc.identifier.citation | 1. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). Journal of the Chemical Society, Chemical Communications 1977, (16), 578-580.
2. Pankow, R. M.; Thompson, B. C., The development of conjugated polymers as the cornerstone of organic electronics. Polymer 2020, 207, 122874. 3. Qiu, Z.; Hammer, B. A. G.; Müllen, K., Conjugated polymers – Problems and promises. Progress in Polymer Science 2020, 100, 101179. 4. Randell, N. M.; Kelly, T. L., Recent Advances in Isoindigo-Inspired Organic Semiconductors. The Chemical Record 2019, 19 (6), 973-988. 5. Sui, Y.; Deng, Y.; Du, T.; Shi, Y.; Geng, Y., Design strategies of n-type conjugated polymers for organic thin-film transistors. Materials Chemistry Frontiers 2019, 3 (10), 1932-1951. 6. Kim, M.; Ryu, S. U.; Park, S. A.; Choi, K.; Kim, T.; Chung, D.; Park, T., Donor–Acceptor-Conjugated Polymer for High-Performance Organic Field-Effect Transistors: A Progress Report. Advanced Functional Materials 2020, 30 (20), 1904545. 7. Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z.; Park, S., Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Advanced Materials 2019, 31 (48), 1904765. 8. Chortos, A.; Lim, J.; To, J. W. F.; Vosgueritchian, M.; Dusseault, T. J.; Kim, T.-H.; Hwang, S.; Bao, Z., Highly Stretchable Transistors Using a Microcracked Organic Semiconductor. Advanced Materials 2014, 26 (25), 4253-4259. 9. Fan, X.; Nie, W.; Tsai, H.; Wang, N.; Huang, H.; Cheng, Y.; Wen, R.; Ma, L.; Yan, F.; Xia, Y., PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. Advanced Science 2019, 6 (19), 1900813. 10. Kayser, L. V.; Lipomi, D. J., Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS. Advanced Materials 2019, 31 (10), 1806133. 11. Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S. M.; Tao, H.; Islam, A.; Yu, K. J.; Kim, T.-i.; Chowdhury, R.; Ying, M.; Xu, L.; Li, M.; Chung, H.-J.; Keum, H.; McCormick, M.; Liu, P.; Zhang, Y.-W.; Omenetto, F. G.; Huang, Y.; Coleman, T.; Rogers, J. A., Epidermal Electronics. Science 2011, 333 (6044), 838-843. 12. Park, S.; Vosguerichian, M.; Bao, Z., A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 2013, 5 (5), 1727-1752. 13. Rogers, J. A.; Someya, T.; Huang, Y., Materials and Mechanics for Stretchable Electronics. Science 2010, 327 (5973), 1603-1607. 14. Wang, S.; Oh, J. Y.; Xu, J.; Tran, H.; Bao, Z., Skin-Inspired Electronics: An Emerging Paradigm. Accounts of Chemical Research 2018, 51 (5), 1033-1045. 15. Wang, Y.; Zhu, C.; Pfattner, R.; Yan, H.; Jin, L.; Chen, S.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I.; Chen, Z.; Chung, J. W.; Linder, C.; Toney, M. F.; Murmann, B.; Bao, Z., A highly stretchable, transparent, and conductive polymer. Science Advances 2017, 3 (3), e1602076. 16. Sekitani, T.; Yokota, T.; Zschieschang, U.; Klauk, H.; Bauer, S.; Takeuchi, K.; Takamiya, M.; Sakurai, T.; Someya, T., Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays. Science 2009, 326 (5959), 1516-1519. 17. Shin, M.; Oh, J. Y.; Byun, K.-E.; Lee, Y.-J.; Kim, B.; Baik, H.-K.; Park, J.-J.; Jeong, U., Polythiophene Nanofibril Bundles Surface-Embedded in Elastomer: A Route to a Highly Stretchable Active Channel Layer. Advanced Materials 2015, 27 (7), 1255-1261. 18. Song, E.; Kang, B.; Choi, H. H.; Sin, D. H.; Lee, H.; Lee, W. H.; Cho, K., Stretchable and Transparent Organic Semiconducting Thin Film with Conjugated Polymer Nanowires Embedded in an Elastomeric Matrix. Advanced Electronic Materials 2016, 2 (1), 1500250. 19. Yu, Z.; Niu, X.; Liu, Z.; Pei, Q., Intrinsically Stretchable Polymer Light-Emitting Devices Using Carbon Nanotube-Polymer Composite Electrodes. Advanced Materials 2011, 23 (34), 3989-3994. 20. Zhang, Z.; Wang, W.; Jiang, Y.; Wang, Y.-X.; Wu, Y.; Lai, J.-C.; Niu, S.; Xu, C.; Shih, C.-C.; Wang, C.; Yan, H.; Galuska, L.; Prine, N.; Wu, H.-C.; Zhong, D.; Chen, G.; Matsuhisa, N.; Zheng, Y.; Yu, Z.; Wang, Y.; Dauskardt, R.; Gu, X.; Tok, J. B. H.; Bao, Z., High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 2022, 603 (7902), 624-630. 21. Xu, J.; Wang, S.; Wang, G.-J. N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V. R.; To, J. W. F.; Rondeau-Gagné, S.; Park, J.; Schroeder, B. C.; Lu, C.; Oh, J. Y.; Wang, Y.; Kim, Y.-H.; Yan, H.; Sinclair, R.; Zhou, D.; Xue, G.; Murmann, B.; Linder, C.; Cai, W.; Tok, J. B. H.; Chung, J. W.; Bao, Z., Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017, 355 (6320), 59-64. 22. Higashihara, T., Strategic design and synthesis of π-conjugated polymers suitable as intrinsically stretchable semiconducting materials. Polymer Journal 2021, 53 (10), 1061-1071. 23. Chen, P.-H.; Shimizu, H.; Matsuda, M.; Higashihara, T.; Lin, Y.-C., Improved Mobility–Stretchability Properties of Diketopyrrolopyrrole-Based Conjugated Polymers with Diastereomeric Conjugation Break Spacers. Macromolecular Rapid Communications 2024, 45 (16), 2400331. 24. Lin, Y.-C.; Matsuda, M.; Chen, C.-K.; Yang, W.-C.; Chueh, C.-C.; Higashihara, T.; Chen, W.-C., Investigation of the Mobility–Stretchability Properties of Naphthalenediimide-Based Conjugated Random Terpolymers with a Functionalized Conjugation Break Spacer. Macromolecules 2021, 54 (16), 7388-7399. 25. Melenbrink, E. L.; Hilby, K. M.; Alkhadra, M. A.; Samal, S.; Lipomi, D. J.; Thompson, B. C., Influence of Systematic Incorporation of Conjugation-Break Spacers into Semi-Random Polymers on Mechanical and Electronic Properties. ACS Applied Materials & Interfaces 2018, 10 (38), 32426-32434. 26. Mun, J.; Wang, G.-J. N.; Oh, J. Y.; Katsumata, T.; Lee, F. L.; Kang, J.; Wu, H.-C.; Lissel, F.; Rondeau-Gagné, S.; Tok, J. B. H.; Bao, Z., Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistors. Advanced Functional Materials 2018, 28 (43), 1804222. 27. Matsuda, M.; Lin, C.-Y.; Enomoto, K.; Lin, Y.-C.; Chen, W.-C.; Higashihara, T., Impact of the Heteroatoms on Mobility–Stretchability Properties of n-Type Semiconducting Polymers with Conjugation Break Spacers. Macromolecules 2023, 56 (6), 2348-2361. 28. Matsuda, M.; Lin, C.-Y.; Sung, C.-Y.; Lin, Y.-C.; Chen, W.-C.; Higashihara, T., Unraveling the Effect of Stereoisomerism on Mobility–Stretchability Properties of n-Type Semiconducting Polymers with Biobased Epimers as Conjugation Break Spacers. ACS Applied Materials & Interfaces 2023, 15 (44), 51492-51506. 29. Botiz, I.; Darling, S. B., Optoelectronics Using Block Copolymers. Materials Today 2010, 13 (5), 42-51. 30. Xiang, L.; Li, Q.; Li, C.; Yang, Q.; Xu, F.; Mai, Y., Block Copolymer Self-Assembly Directed Synthesis of Porous Materials with Ordered Bicontinuous Structures and Their Potential Applications. Advanced Materials 2023, 35 (5), 2207684. 31. Hsu, L.-C.; Isono, T.; Lin, Y.-C.; Kobayashi, S.; Chiang, Y.-C.; Jiang, D.-H.; Hung, C.-C.; Ercan, E.; Yang, W.-C.; Hsieh, H.-C.; Tajima, K.; Satoh, T.; Chen, W.-C., Stretchable OFET Memories: Tuning the Morphology and the Charge-Trapping Ability of Conjugated Block Copolymers through Soft Segment Branching. ACS Applied Materials & Interfaces 2021, 13 (2), 2932-2943. 32. Hsu, L.-C.; Kobayashi, S.; Isono, T.; Chiang, Y.-C.; Ree, B. J.; Satoh, T.; Chen, W.-C., Highly Stretchable Semiconducting Polymers for Field-Effect Transistors through Branched Soft–Hard–Soft Type Triblock Copolymers. Macromolecules 2020, 53 (17), 7496-7510. 33. Xiao, L.-L.; Zhou, X.; Yue, K.; Guo, Z.-H. Synthesis and Self-Assembly of Conjugated Block Copolymers. Polymers 2021, 13, 110. 34. Luo, N.; Ren, P.; Feng, Y.; Shao, X.; Zhang, H.-L.; Liu, Z., Side-Chain Engineering of Conjugated Polymers for High-Performance Organic Field-Effect Transistors. The Journal of Physical Chemistry Letters 2022, 13 (4), 1131-1146. 35. Mei, J.; Bao, Z., Side Chain Engineering in Solution-Processable Conjugated Polymers. Chemistry of Materials 2014, 26 (1), 604-615. 36. Yang, Y.; Liu, Z.; Zhang, G.; Zhang, X.; Zhang, D., The Effects of Side Chains on the Charge Mobilities and Functionalities of Semiconducting Conjugated Polymers beyond Solubilities. Advanced Materials 2019, 31 (46), 1903104. 37. Wang, Z.; Liu, Z.; Ning, L.; Xiao, M.; Yi, Y.; Cai, Z.; Sadhanala, A.; Zhang, G.; Chen, W.; Sirringhaus, H.; Zhang, D., Charge Mobility Enhancement for Conjugated DPP-Selenophene Polymer by Simply Replacing One Bulky Branching Alkyl Chain with Linear One at Each DPP Unit. Chemistry of Materials 2018, 30 (9), 3090-3100. 38. Lin, Y.-C.; Chen, C.-K.; Chiang, Y.-C.; Hung, C.-C.; Fu, M.-C.; Inagaki, S.; Chueh, C.-C.; Higashihara, T.; Chen, W.-C., Study on Intrinsic Stretchability of Diketopyrrolopyrrole-Based π-Conjugated Copolymers with Poly(acryl amide) Side Chains for Organic Field-Effect Transistors. ACS Applied Materials & Interfaces 2020, 12 (29), 33014-33027. 39. Shih, Y.-H.; Chen, G.-L.; Liu, P.-H.; Tseng, K.-W.; Lee, W.-Y.; Chen, W.-C.; Wang, L.; Chueh, C.-C., Revealing the Effect of Branched Side Chain Length on Polymer Aggregation and Paracrystallinity for Improved Mobility–Stretchability Properties. ACS Applied Electronic Materials 2024, 6 (3), 1797-1808. 40. Lin, Y.-C.; Chen, F.-H.; Chiang, Y.-C.; Chueh, C.-C.; Chen, W.-C., Asymmetric Side-Chain Engineering of Isoindigo-Based Polymers for Improved Stretchability and Applications in Field-Effect Transistors. ACS Applied Materials & Interfaces 2019, 11 (37), 34158-34170. 41. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Light-emitting diodes based on conjugated polymers. Nature 1990, 347 (6293), 539-541. 42. Lee, H.; Jiang, Z.; Yokota, T.; Fukuda, K.; Park, S.; Someya, T., Stretchable Organic Optoelectronic Devices: Design of Materials, Structures, and Applications. Materials Science and Engineering: R: Reports 2021, 146, 100631. 43. Lee, J.-W.; Lee, H.-G.; Oh, E. S.; Lee, S.-W.; Phan, T. N.-L.; Li, S.; Kim, T.-S.; Kim, B. J., Rigid- and Soft-Block-Copolymerized Conjugated Polymers Enable High-Performance Intrinsically Stretchable Organic Solar Cells. Joule 2024, 8 (1), 204-223. 44. Oh, J.-H.; Jeon, K.-H.; Park, J.-W., Intrinsically Stretchable OLEDs with a Designed Morphology-Sustainable Layer and Stretchable Metal Cathode. npj Flexible Electronics 2024, 8 (1), 43. 45. Oh, J. Y.; Rondeau-Gagné, S.; Chiu, Y.-C.; Chortos, A.; Lissel, F.; Wang, G.-J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T.; Xu, J.; Zhu, C.; Gu, X.; Bae, W.-G.; Kim, Y.; Jin, L.; Chung, J. W.; Tok, J. B. H.; Bao, Z., Intrinsically Stretchable And Healable Semiconducting Polymer For Organic Transistors. Nature 2016, 539 (7629), 411-415. 46. Yao, Z.-F.; Wang, J.-Y.; Pei, J., High-Performance Polymer Field-Effect Transistors: From The Perspective Of Multi-Level Microstructures. Chemical Science 2021, 12 (4), 1193-1205. 47. Yoo, S.-M.; Yoon, S. J.; Anta, J. A.; Lee, H. J.; Boix, P. P.; Mora-Seró, I., An Equivalent Circuit for Perovskite Solar Cell Bridging Sensitized to Thin Film Architectures. Joule 2019, 3 (10), 2535-2549. 48. Zhang, L.; Mei, L.; Wang, K.; Lv, Y.; Zhang, S.; Lian, Y.; Liu, X.; Ma, Z.; Xiao, G.; Liu, Q.; Zhai, S.; Zhang, S.; Liu, G.; Yuan, L.; Guo, B.; Chen, Z.; Wei, K.; Liu, A.; Yue, S.; Niu, G.; Pan, X.; Sun, J.; Hua, Y.; Wu, W.-Q.; Di, D.; Zhao, B.; Tian, J.; Wang, Z.; Yang, Y.; Chu, L.; Yuan, M.; Zeng, H.; Yip, H.-L.; Yan, K.; Xu, W.; Zhu, L.; Zhang, W.; Xing, G.; Gao, F.; Ding, L., Advances in the Application of Perovskite Materials. Nano-Micro Letters 2023, 15 (1), 177. 49. Li, B.; Li, S.; Gong, J.; Wu, X.; Li, Z.; Gao, D.; Zhao, D.; Zhang, C.; Wang, Y.; Zhu, Z., Fundamental Understanding Of Stability For Halide Perovskite Photovoltaics: The Importance Of Interfaces. Chem 2024, 10 (1), 35-47. 50. Qin, J.; Che, Z.; Kang, Y.; Liu, C.; Wu, D.; Yang, H.; Hu, X.; Zhan, Y., Towards Operation-Stabilizing Perovskite Solar Cells: Fundamental Materials, Device Designs, And Commercial Applications. InfoMat 2024, 6 (4), e12522. 51. Bibi, A.; Lee, I.; Nah, Y.; Allam, O.; Kim, H.; Quan, L. N.; Tang, J.; Walsh, A.; Jang, S. S.; Sargent, E. H.; Kim, D. H., Lead-Free Halide Double Perovskites: Toward Stable And Sustainable Optoelectronic Devices. Materials Today 2021, 49, 123-144. 52. Goldschmidt, V. M., Die Gesetze der Krystallochemie. Naturwissenschaften 1926, 14 (21), 477-485. 53. Zhang, X.; Turiansky, M. E.; Shen, J.-X.; Van de Walle, C. G., Defect Tolerance In Halide Perovskites: A First-Principles Perspective. Journal of Applied Physics 2022, 131 (9), 090901. 54. Byranvand, M. M.; Otero-Martínez, C.; Ye, J.; Zuo, W.; Manna, L.; Saliba, M.; Hoye, R. L. Z.; Polavarapu, L., Recent Progress in Mixed A-Site Cation Halide Perovskite Thin-Films and Nanocrystals for Solar Cells and Light-Emitting Diodes. Advanced Optical Materials 2022, 10 (14), 2200423. 55. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., Compositional Engineering Of Perovskite Materials For High-Performance Solar Cells. Nature 2015, 517 (7535), 476-480. 56. Saliba, M., Polyelemental, Multicomponent Perovskite Semiconductor Libraries through Combinatorial Screening. Advanced Energy Materials 2019, 9 (25), 1803754. 57. Jena, A. K.; Kulkarni, A.; Miyasaka, T., Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews 2019, 119 (5), 3036-3103. 58. Kumawat, N. K.; Gupta, D.; Kabra, D., Recent Advances in Metal Halide-Based Perovskite Light-Emitting Diodes. Energy Technology 2017, 5 (10), 1734-1749. 59. McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Hörantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., A Mixed-Cation Lead Mixed-Halide Perovskite Absorber For Tandem Solar Cells. Science 2016, 351 (6269), 151-155. 60. Sutherland, B. R.; Sargent, E. H., Perovskite Photonic Sources. Nature Photonics 2016, 10 (5), 295-302. 61. Quan, L. N.; García de Arquer, F. P.; Sabatini, R. P.; Sargent, E. H., Perovskites for Light Emission. Advanced Materials 2018, 30 (45), 1801996. 62. Huang, P.; Kazim, S.; Wang, M.; Ahmad, S., Toward Phase Stability: Dion–Jacobson Layered Perovskite for Solar Cells. ACS Energy Letters 2019, 4 (12), 2960-2974. 63. Lee, H. B.; Kumar, N.; Tyagi, B.; He, S.; Sahani, R.; Kang, J. W., Bulky Organic Cations Engineered Lead-Halide Perovskites: A Review On Dimensionality And Optoelectronic Applications. Materials Today Energy 2021, 21, 100759. 64. Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J., Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. Journal of the American Chemical Society 2014, 136 (3), 850-853. 65. Huang, C.-Y.; Li, H.; Wu, Y.; Lin, C.-H.; Guan, X.; Hu, L.; Kim, J.; Zhu, X.; Zeng, H.; Wu, T., Inorganic Halide Perovskite Quantum Dots: A Versatile Nanomaterial Platform for Electronic Applications. Nano-Micro Letters 2022, 15 (1), 16. 66. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters 2015, 15 (6), 3692-3696. 67. Shamsi, J.; Dang, Z.; Bianchini, P.; Canale, C.; Di Stasio, F.; Brescia, R.; Prato, M.; Manna, L., Colloidal Synthesis of Quantum Confined Single Crystal CsPbBr3 Nanosheets with Lateral Size Control up to the Micrometer Range. Journal of the American Chemical Society 2016, 138 (23), 7240-7243. 68. Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H., Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Advanced Materials 2015, 27 (44), 7162-7167. 69. Wang, S.; Yousefi Amin, A. A.; Wu, L.; Cao, M.; Zhang, Q.; Ameri, T., Perovskite Nanocrystals: Synthesis, Stability, and Optoelectronic Applications. Small Structures 2021, 2 (3), 2000124. 70. Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H., CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes. Advanced Functional Materials 2016, 26 (15), 2435-2445. 71. Song, J.; Li, J.; Xu, L.; Li, J.; Zhang, F.; Han, B.; Shan, Q.; Zeng, H., Room-Temperature Triple-Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQE-11.6% Perovskite QLEDs. Advanced Materials 2018, 30 (30), 1800764. 72. Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y.-J.; Ohisa, S.; Kido, J., Anion-Exchange Red Perovskite Quantum Dots With Ammonium Iodine Salts For Highly Efficient Light-Emitting Devices. Nature Photonics 2018, 12 (11), 681-687. 73. Imran, M.; Caligiuri, V.; Wang, M.; Goldoni, L.; Prato, M.; Krahne, R.; De Trizio, L.; Manna, L., Benzoyl Halides as Alternative Precursors for the Colloidal Synthesis of Lead-Based Halide Perovskite Nanocrystals. Journal of the American Chemical Society 2018, 140 (7), 2656-2664. 74. Hassan, Y.; Park, J. H.; Crawford, M. L.; Sadhanala, A.; Lee, J.; Sadighian, J. C.; Mosconi, E.; Shivanna, R.; Radicchi, E.; Jeong, M.; Yang, C.; Choi, H.; Park, S. H.; Song, M. H.; De Angelis, F.; Wong, C. Y.; Friend, R. H.; Lee, B. R.; Snaith, H. J., Ligand-Engineered Bandgap Stability In Mixed-Halide Perovskite Leds. Nature 2021, 591 (7848), 72-77. 75. Liu, F.; Zhang, Y.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T.; Yoshino, K.; Dai, S.; Shen, Q., Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield. ACS Nano 2017, 11 (10), 10373-10383. 76. Lu, M.; Guo, J.; Sun, S.; Lu, P.; Zhang, X.; Shi, Z.; Yu, W. W.; Zhang, Y., Surface Ligand Engineering-Assisted CsPbI3 Quantum Dots Enable Bright And Efficient Red Light-Emitting Diodes With A Top-Emitting Structure. Chemical Engineering Journal 2021, 404, 126563. 77. Park, J. H.; Lee, A.-y.; Yu, J. C.; Nam, Y. S.; Choi, Y.; Park, J.; Song, M. H., Surface Ligand Engineering for Efficient Perovskite Nanocrystal-Based Light-Emitting Diodes. ACS Applied Materials & Interfaces 2019, 11 (8), 8428-8435. 78. Chiba, T.; Hoshi, K.; Pu, Y.-J.; Takeda, Y.; Hayashi, Y.; Ohisa, S.; Kawata, S.; Kido, J., High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment. ACS Applied Materials & Interfaces 2017, 9 (21), 18054-18060. 79. Dong, X.; Wang, K.; Bu, Y.; Wang, X., Ligand Modification Enhanced Quantum Dot Leds: Principles And Methods. Journal of Materials Chemistry C 2023, 11 (35), 11755-11775. 80. Hoshi, K.; Chiba, T.; Sato, J.; Hayashi, Y.; Takahashi, Y.; Ebe, H.; Ohisa, S.; Kido, J., Purification of Perovskite Quantum Dots Using Low-Dielectric-Constant Washing Solvent “Diglyme” for Highly Efficient Light-Emitting Devices. ACS Applied Materials & Interfaces 2018, 10 (29), 24607-24612. 81. Li, J.; Xu, L.; Wang, T.; Song, J.; Chen, J.; Xue, J.; Dong, Y.; Cai, B.; Shan, Q.; Han, B.; Zeng, H., 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Advanced Materials 2017, 29 (5), 1603885. 82. Pan, J.; Quan, L. N.; Zhao, Y.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M.; Sinatra, L.; Alyami, N. M.; Liu, J.; Yassitepe, E.; Yang, Z.; Voznyy, O.; Comin, R.; Hedhili, M. N.; Mohammed, O. F.; Lu, Z. H.; Kim, D. H.; Sargent, E. H.; Bakr, O. M., Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes By Surface Engineering. Advanced Materials 2016, 28 (39), 8718-8725. 83. Chiba, T.; Sato, J.; Ishikawa, S.; Takahashi, Y.; Ebe, H.; Sumikoshi, S.; Ohisa, S.; Kido, J., Neodymium Chloride-Doped Perovskite Nanocrystals for Efficient Blue Light-Emitting Devices. ACS Applied Materials & Interfaces 2020, 12 (48), 53891-53898. 84. Euvrard, J.; Yan, Y.; Mitzi, D. B., Electrical Doping In Halide Perovskites. Nature Reviews Materials 2021, 6 (6), 531-549. 85. Lin, Y.; Shao, Y.; Dai, J.; Li, T.; Liu, Y.; Dai, X.; Xiao, X.; Deng, Y.; Gruverman, A.; Zeng, X. C.; Huang, J., Metallic Surface Doping Of Metal Halide Perovskites. Nature Communications 2021, 12 (1), 7. 86. Ma, X.; Yang, L.; Lei, K.; Zheng, S.; Chen, C.; Song, H., Doping In Inorganic Perovskite For Photovoltaic Application. Nano Energy 2020, 78, 105354. 87. Solari, S. F.; Poon, L.-N.; Wörle, M.; Krumeich, F.; Li, Y.-T.; Chiu, Y.-C.; Shih, C.-J., Stabilization of Lead-Reduced Metal Halide Perovskite Nanocrystals by High-Entropy Alloying. Journal of the American Chemical Society 2022, 144 (13), 5864-5870. 88. Chen, W.-C.; Fang, Y.-H.; Chen, L.-G.; Liang, F.-C.; Yan, Z.-L.; Ebe, H.; Takahashi, Y.; Chiba, T.; Kido, J.; Kuo, C.-C., High Luminescence And External Quantum Efficiency In Perovskite Quantum-Dots Light-Emitting Diodes Featuring Bilateral Affinity To Silver And Short Alkyl Ligands. Chemical Engineering Journal 2021, 414, 128866. 89. Wang, W.; Li, J.; Duan, G.; Zhou, H.; Lu, Y.; Yan, T.; Cao, B.; Liu, Z., Study On The Mn-Doped CsPbCl3 Perovskite Nanocrystals With Controllable Dual-Color Emission Via Energy Transfer. Journal of Alloys and Compounds 2020, 821, 153568. 90. Kim, Y.-H.; Cho, H.; Lee, T.-W., Metal Halide Perovskite Light Emitters. Proceedings of the National Academy of Sciences 2016, 113 (42), 11694-11702. 91. Zhou, H.; Park, J.; Lee, Y.; Park, J.-M.; Kim, J.-H.; Kim, J. S.; Lee, H.-D.; Jo, S. H.; Cai, X.; Li, L.; Sheng, X.; Yun, H. J.; Park, J.-W.; Sun, J.-Y.; Lee, T.-W., Water Passivation of Perovskite Nanocrystals Enables Air-Stable Intrinsically Stretchable Color-Conversion Layers for Stretchable Displays. Advanced Materials 2020, 32 (37), 2001989. 92. Wang, H.; Sun, Y.; Chen, J.; Wang, F.; Han, R.; Zhang, C.; Kong, J.; Li, L.; Yang, J. A Review of Perovskite-Based Photodetectors and Their Applications Nanomaterials, 2022, 12 (24), 4390. 93. Wu, W.; Han, X.; Li, J.; Wang, X.; Zhang, Y.; Huo, Z.; Chen, Q.; Sun, X.; Xu, Z.; Tan, Y.; Pan, C.; Pan, A., Ultrathin and Conformable Lead Halide Perovskite Photodetector Arrays for Potential Application in Retina-Like Vision Sensing. Advanced Materials 2021, 33 (9), 2006006. 94. Ghaithan, H. M.; Qaid, S. M. H.; AlHarbi, K. K.; Bin Ajaj, A. F.; Al-Asbahi, B. A.; Aldwayyan, A. S., Amplified Spontaneous Emission from Thermally Evaporated High-Quality Thin Films of CsPb(Br1–xYx)3 (Y = I, Cl) Perovskites. Langmuir 2022, 38 (28), 8607-8613. 95. Liu, Z.; Huang, S.; Du, J.; Wang, C.; Leng, Y., Advances In Inorganic And Hybrid Perovskites For Miniaturized Lasers. Nanophotonics, 2020, 9 (8), 2251-2272. 96. Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V., Low-Threshold Amplified Spontaneous Emission And Lasing From Colloidal Nanocrystals Of Caesium Lead Halide Perovskites. Nature Communications 2015, 6 (1), 8056. 97. Zhang, Q.; Ha, S. T.; Liu, X.; Sum, T. C.; Xiong, Q., Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers. Nano Letters 2014, 14 (10), 5995-6001. 98. Chen, S.; Huang, J., Recent Advances in Synaptic Devices Based on Halide Perovskite. ACS Applied Electronic Materials 2020, 2 (7), 1815-1825. 99. Kim, S.-I.; Lee, Y.; Park, M.-H.; Go, G.-T.; Kim, Y.-H.; Xu, W.; Lee, H.-D.; Kim, H.; Seo, D.-G.; Lee, W.; Lee, T.-W., Dimensionality Dependent Plasticity in Halide Perovskite Artificial Synapses for Neuromorphic Computing. Advanced Electronic Materials 2019, 5 (9), 1900008. 100. Wang, Y.; Lv, Z.; Chen, J.; Wang, Z.; Zhou, Y.; Zhou, L.; Chen, X.; Han, S.-T., Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing. Advanced Materials 2018, 30 (38), 1802883. 101. Xue, Z.; Xu, Y.; Jin, C.; Liang, Y.; Cai, Z.; Sun, J., Halide Perovskite Photoelectric Artificial Synapses: Materials, Devices, And Applications. Nanoscale 2023, 15 (10), 4653-4668. 102. Gomez-Romero, P.; Pokhriyal, A.; Rueda-García, D.; Bengoa, L. N.; González-Gil, R. M., Hybrid Materials: A Metareview. Chemistry of Materials 2024, 36 (1), 8-27. 103. Liu, Y.; Chen, T.; Jin, Z.; Li, M.; Zhang, D.; Duan, L.; Zhao, Z.; Wang, C., Tough, Stable And Self-Healing Luminescent Perovskite-Polymer Matrix Applicable To All Harsh Aquatic Environments. Nature Communications 2022, 13 (1), 1338. 104. Paul, D. R.; Robeson, L. M., Polymer Nanotechnology: Nanocomposites. Polymer 2008, 49 (15), 3187-3204. 105. Yu, H.; Wang, Y.; Zou, X.; Yin, J.; Shi, X.; Li, Y.; Zhao, H.; Wang, L.; Ng, H. M.; Zou, B.; Lu, X.; Wong, K. S.; Ma, W.; Zhu, Z.; Yan, H.; Chen, S., Improved Photovoltaic Performance And Robustness Of All-Polymer Solar Cells Enabled By A Polyfullerene Guest Acceptor. Nature Communications 2023, 14 (1), 2323. 106. Jia, L.; Chen, M.; Yang, S., Functionalization Of Fullerene Materials Toward Applications In Perovskite Solar Cells. Materials Chemistry Frontiers 2020, 4 (8), 2256-2282. 107. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., High-Efficiency Solution Processable Polymer Photovoltaic Cells By Self-Organization Of Polymer Blends. Nature Materials 2005, 4 (11), 864-868. 108. Savagatrup, S.; Makaram, A. S.; Burke, D. J.; Lipomi, D. J., Mechanical Properties of Conjugated Polymers and Polymer-Fullerene Composites as a Function of Molecular Structure. Advanced Functional Materials 2014, 24 (8), 1169-1181. 109. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270 (5243), 1789-1791. 110. Avouris, P., Graphene: Electronic and Photonic Properties and Devices. Nano Letters 2010, 10 (11), 4285-4294. 111. Gaur, M.; Misra, C.; Yadav, A. B.; Swaroop, S.; Maolmhuaidh, F. Ó.; Bechelany, M.; Barhoum, A. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene Materials 2021, 14 (20), 5978. 112. Kim, H.; Abdala, A. A.; Macosko, C. W., Graphene/Polymer Nanocomposites. Macromolecules 2010, 43 (16), 6515-6530. 113. Lee, S. J.; Yoon, S. J.; Jeon, I.-Y. Graphene/Polymer Nanocomposites: Preparation, Mechanical Properties, and Application. Polymers 2022, 14, 4733. 114. Yao, J.; Wang, H.; Chen, M.; Yang, M., Recent Advances In Graphene-Based Nanomaterials: Properties, Toxicity And Applications In Chemistry, Biology And Medicine. Microchimica Acta 2019, 186 (6), 395. 115. Sun, X.; Huang, C.; Wang, L.; Liang, L.; Cheng, Y.; Fei, W.; Li, Y., Recent Progress in Graphene/Polymer Nanocomposites. Advanced Materials 2021, 33 (6), 2001105. 116. Cui, Y.; Liu, L.; Shi, M.; Wang, Y.; Meng, X.; Chen, Y.; Huang, Q.; Liu, C. A Review of Advances in Graphene Quantum Dots: From Preparation and Modification Methods to Application C 2024, 10 (1), 7. 117. Du, C.; Ren, Y.; Qu, Z.; Gao, L.; Zhai, Y.; Han, S.-T.; Zhou, Y., Synaptic Transistors And Neuromorphic Systems Based On Carbon Nano-Materials. Nanoscale 2021, 13 (16), 7498-7522. 118. Li, M.; Chen, T.; Gooding, J. J.; Liu, J., Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sensors 2019, 4 (7), 1732-1748. 119. Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P., Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Advanced Materials 2019, 31 (21), 1808283. 120. Guo, Z.; Zhang, J.; Liu, X.; Wang, L.; Xiong, L.; Huang, J., Optoelectronic Synapses and Photodetectors Based on Organic Semiconductor/Halide Perovskite Heterojunctions: Materials, Devices, and Applications. Advanced Functional Materials 2023, 33 (46), 2305508. 121. Pandiyan, A.; Veeramuthu, L.; Yan, Z.-L.; Lin, Y.-C.; Tsai, C.-H.; Chang, S.-T.; Chiang, W.-H.; Xu, S.; Zhou, T.; Kuo, C.-C., A Comprehensive Review On Perovskite And Its Functional Composites In Smart Textiles: Progress, Challenges, Opportunities, And Future Directions. Progress in Materials Science 2023, 140, 101206. 122. Huang, M.-Y.; Veeramuthu, L.; Kuo, C.-C.; Liao, Y.-C.; Jiang, D.-H.; Liang, F.-C.; Yan, Z.-L.; Borsali, R.; Chueh, C.-C., Improving Performance Of Cs-Based Perovskite Light-Emitting Diodes By Dual Additives Consisting Of Polar Polymer And N-Type Small Molecule. Organic Electronics 2019, 67, 294-301. 123. Li, J.; Bade, S. G. R.; Shan, X.; Yu, Z., Single-Layer Light-Emitting Diodes Using Organometal Halide Perovskite/Poly(ethylene oxide) Composite Thin Films. Advanced Materials 2015, 27 (35), 5196-5202. 124. Ling, Y.; Tian, Y.; Wang, X.; Wang, J. C.; Knox, J. M.; Perez-Orive, F.; Du, Y.; Tan, L.; Hanson, K.; Ma, B.; Gao, H., Enhanced Optical and Electrical Properties of Polymer-Assisted All-Inorganic Perovskites for Light-Emitting Diodes. Advanced Materials 2016, 28 (40), 8983-8989. 125. Yan, Z.-L.; Liang, F.-C.; Yeh, C.-Y.; Kurniawan, D.; Benas, J.-S.; Chen, W.-C.; Cho, C. J.; Chiang, W.-H.; Jeng, R.-J.; Kuo, C.-C., Optimization of the carrier recombination and transmission properties in perovskite LEDs by doping poly (4-vinylpyridine) and graphene quantum dots made of chitin. Chemical Engineering Journal 2022, 444, 136518. 126. Zhang, L.; Yang, X.; Jiang, Q.; Wang, P.; Yin, Z.; Zhang, X.; Tan, H.; Yang, Y.; Wei, M.; Sutherland, B. R.; Sargent, E. H.; You, J., Ultra-Bright And Highly Efficient Inorganic Based Perovskite Light-Emitting Diodes. Nature Communications 2017, 8 (1), 15640. 127. Liang, F.-C.; Yan, Z.-L.; Busipalli, D. L.; Benas, J.-S.; Zhang, Z.-X.; Han, S.-T.; Zhou, Y.; Jiang, J.-C.; Kuo, C.-C., Enhancing The Stability Of The Polymeric Lewis-Base-Assisted Dual-Phase 3D CsPbBr3–Cs4PbBr6 Perovskite By Molecular Engineering And Self-Passivation. Journal of Materials Chemistry C 2023, 11 (1), 307-320. 128. Xue, Q.; Hu, Z.; Sun, C.; Chen, Z.; Huang, F.; Yip, H.-L.; Cao, Y., Metallohalide Perovskite–Polymer Composite Film For Hybrid Planar Heterojunction Solar Cells. RSC Advances 2015, 5 (1), 775-783. 129. Bi, D.; Yi, C.; Luo, J.; Décoppet, J.-D.; Zhang, F.; Zakeeruddin, Shaik M.; Li, X.; Hagfeldt, A.; Grätzel, M., Polymer-Templated Nucleation And Crystal Growth Of Perovskite Films For Solar Cells With Efficiency Greater Than 21%. Nature Energy 2016, 1 (10), 16142. 130. Ghaderian, A.; Heiran, R.; Kazim, S.; Ahmad, S., The Versatility Of Polymers In Perovskite Solar Cells. Journal of Materials Chemistry C 2022, 10 (45), 16983-17001. 131. Girish, K. H.; Vishnumurthy, K. A.; Roopa, T. S., Role Of Conducting Polymers In Enhancing The Stability And Performance Of Perovskite Solar Cells: A Brief Review. Materials Today Sustainability 2022, 17, 100090. 132. Han, T.-H.; Lee, J.-W.; Choi, C.; Tan, S.; Lee, C.; Zhao, Y.; Dai, Z.; De Marco, N.; Lee, S.-J.; Bae, S.-H.; Yuan, Y.; Lee, H. M.; Huang, Y.; Yang, Y., Perovskite-Polymer Composite Cross-Linker Approach For Highly-Stable And Efficient Perovskite Solar Cells. Nature Communications 2019, 10 (1), 520. 133. Park, H.; Ha, C.; Lee, J.-H., Advances In Piezoelectric Halide Perovskites For Energy Harvesting Applications. Journal of Materials Chemistry A 2020, 8 (46), 24353-24367. 134. Sultana, A.; Alam, M. M.; Sadhukhan, P.; Ghorai, U. K.; Das, S.; Middya, T. R.; Mandal, D., Organo-Lead Halide Perovskite Regulated Green Light Emitting Poly(Vinylidene Fluoride) Electrospun Nanofiber Mat And Its Potential Utility For Ambient Mechanical Energy Harvesting Application. Nano Energy 2018, 49, 380-392. 135. Yang, W.-C.; Lin, Y.-C.; Liao, M.-Y.; Hsu, L.-C.; Lam, J.-Y.; Chuang, T.-H.; Li, G.-S.; Yang, Y.-F.; Chueh, C.-C.; Chen, W.-C., Comprehensive Non-volatile Photo-programming Transistor Memory via a Dual-Functional Perovskite-Based Floating Gate. ACS Applied Materials & Interfaces 2021, 13 (17), 20417-20426. 136. Chen, J.-Y.; Chiu, Y.-C.; Li, Y.-T.; Chueh, C.-C.; Chen, W.-C., Nonvolatile Perovskite-Based Photomemory with a Multilevel Memory Behavior. Advanced Materials 2017, 29 (33), 1702217. 137. Chang, Y.-H.; Ku, C.-W.; Zhang, Y.-H.; Wang, H.-C.; Chen, J.-Y., Ultrafast Responsive Non-Volatile Flash Photomemory via Spatially Addressable Perovskite/Block Copolymer Composite Film. Advanced Functional Materials 2020, 30 (21), 2000764. 138. Venkatesan, M.; Chen, W.-C.; Cho, C.-J.; Veeramuthu, L.; Chen, L.-G.; Li, K.-Y.; Tsai, M.-L.; Lai, Y.-C.; Lee, W.-Y.; Chen, W.-C.; Kuo, C.-C., Enhanced Piezoelectric And Photocatalytic Performance Of Flexible Energy Harvester Based On CsZn0.75Pb0.25I3/CNC–PVDF Composite Nanofibers. Chemical Engineering Journal 2022, 433, 133620. 139. Han, S.-T.; Zhou, Y.; Roy, V. A. L., Towards the Development of Flexible Non-Volatile Memories. Advanced Materials 2013, 25 (38), 5425-5449. 140. Leong, W. L.; Mathews, N.; Tan, B.; Vaidyanathan, S.; Dötz, F.; Mhaisalkar, S., Towards Printable Organic Thin Film Transistor Based Flash Memory Devices. Journal of Materials Chemistry 2011, 21 (14), 5203-5214. 141. Chiu, Y.-C.; Chen, T.-Y.; Chen, Y.; Satoh, T.; Kakuchi, T.; Chen, W.-C., High-Performance Nonvolatile Organic Transistor Memory Devices Using the Electrets of Semiconducting Blends. ACS Applied Materials & Interfaces 2014, 6 (15), 12780-12788. 142. Kim, S.-J.; Lee, J.-S., Flexible Organic Transistor Memory Devices. Nano Letters 2010, 10 (8), 2884-2890. 143. Shih, C.-C.; Chiu, Y.-C.; Lee, W.-Y.; Chen, J.-Y.; Chen, W.-C., Conjugated Polymer Nanoparticles as Nano Floating Gate Electrets for High Performance Nonvolatile Organic Transistor Memory Devices. Advanced Functional Materials 2015, 25 (10), 1511-1519. 144. Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W., Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters 2010, 10 (4), 1297-1301. 145. Shi, J.; Ha, S. D.; Zhou, Y.; Schoofs, F.; Ramanathan, S., A Correlated Nickelate Synaptic Transistor. Nature Communications 2013, 4 (1), 2676. 146. Lee, W. Y., Polymer-based Transistor-type Memory and Artificial Synapses. In Advanced Memory Technology: Functional Materials and Devices, Zhou, Y., Ed. Royal Society of Chemistry: 2023, vol. 1, ch.15, pp. 409-430. 147. Lee, Y.; Oh, J. Y.; Lee, T.-W., Neuromorphic Skin Based on Emerging Artificial Synapses. Advanced Materials Technologies 2022, 7 (12), 2200193. 148. Manzhos, S.; Chen, Q. G.; Lee, W.-Y.; Heejoo, Y.; Ihara, M.; Chueh, C.-C., Computational Investigation of the Potential and Limitations of Machine Learning with Neural Network Circuits Based on Synaptic Transistors. The Journal of Physical Chemistry Letters 2024, 15 (27), 6974-6985. 149. Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M., Short-Term Plasticity And Long-Term Potentiation Mimicked In Single Inorganic Synapses. Nature Materials 2011, 10 (8), 591-595. 150. Han, H.; Xu, Z.; Guo, K.; Ni, Y.; Ma, M.; Yu, H.; Wei, H.; Gong, J.; Zhang, S.; Xu, W., Tunable Synaptic Plasticity in Crystallized Conjugated Polymer Nanowire Artificial Synapses. Advanced Intelligent Systems 2020, 2 (3), 1900176. 151. Yang, Y.-T.; Tien, H.-C.; Chueh, C.-C.; Lee, W.-Y., Polymer Synaptic Transistors From Memory To Neuromorphic Computing. Materials Chemistry and Physics 2022, 287, 126263. 152. Zang, Y.; Shen, H.; Huang, D.; Di, C.-A.; Zhu, D., A Dual-Organic-Transistor-Based Tactile-Perception System with Signal-Processing Functionality. Advanced Materials 2017, 29 (18), 1606088. 153. Yu, T.-F.; Chen, H.-Y.; Liao, M.-Y.; Tien, H.-C.; Chang, T.-T.; Chueh, C.-C.; Lee, W.-Y., Solution-Processable Anion-doped Conjugated Polymer for Nonvolatile Organic Transistor Memory with Synaptic Behaviors. ACS Applied Materials & Interfaces 2020, 12 (30), 33968-33978. 154. Lin, Y.-C.; Yang, W.-C.; Chiang, Y.-C.; Chen, W.-C., Recent Advances in Organic Phototransistors: Nonvolatile Memory, Artificial Synapses, and Photodetectors. Small Science 2022, 2 (4), 2100109. 155. Yi, M.; Xie, M.; Shao, Y.; Li, W.; Ling, H.; Xie, L.; Yang, T.; Fan, Q.; Zhu, J.; Huang, W., Light Programmable/Erasable Organic Field-Effect Transistor Ambipolar Memory Devices Based On The Pentacene/Pvk Active Layer. Journal of Materials Chemistry C 2015, 3 (20), 5220-5225. 156. Chiang, Y.-C.; Hung, C.-C.; Lin, Y.-C.; Chiu, Y.-C.; Isono, T.; Satoh, T.; Chen, W.-C., High-Performance Nonvolatile Organic Photonic Transistor Memory Devices using Conjugated Rod–Coil Materials as a Floating Gate. Advanced Materials 2020, 32 (36), 2002638. 157. Hsu, C.-W.; Yu, S.-K.; Shen, M.-Y.; Ercan, E.; Wang, Y.-J.; Lin, B.-H.; Wu, H.-C.; Lin, Y.-C.; Liu, C.-L.; Chen, W.-C., Spider Silk/Hemin Biobased Electrets for Organic Phototransistor Memory: A Comprehensive Study on Solution Process Engineering. Advanced Functional Materials 2024, 34 (26), 2314907. 158. Lan, S.; Zhong, J.; Li, E.; Yan, Y.; Wu, X.; Chen, Q.; Lin, W.; Chen, H.; Guo, T., High-performance Nonvolatile Organic Photoelectronic Transistor Memory Based on Bulk Heterojunction Structure. ACS Applied Materials & Interfaces 2020, 12 (28), 31716-31724. 159. Liao, M.-Y.; Elsayed, M. H.; Chang, C.-L.; Chiang, Y.-C.; Lee, W.-Y.; Chen, W.-C.; Chou, H.-H.; Chueh, C.-C., Realizing Nonvolatile Photomemories with Multilevel Memory Behaviors Using Water-Processable Polymer Dots-Based Hybrid Floating Gates. ACS Applied Electronic Materials 2021, 3 (4), 1708-1718. 160. Shih, C.-C.; Chiang, Y.-C.; Hsieh, H.-C.; Lin, Y.-C.; Chen, W.-C., Multilevel Photonic Transistor Memory Devices Using Conjugated/Insulated Polymer Blend Electrets. ACS Applied Materials & Interfaces 2019, 11 (45), 42429-42437. 161. Yang, Y.-F.; Chiang, Y.-C.; Lin, Y.-C.; Li, G.-S.; Hung, C.-C.; Chen, W.-C., Highly Efficient Photo-Induced Recovery Conferred Using Charge-Transfer Supramolecular Electrets in Bistable Photonic Transistor Memory. Advanced Functional Materials 2021, 31 (40), 2102174. 162. Dai, S.; Wu, X.; Liu, D.; Chu, Y.; Wang, K.; Yang, B.; Huang, J., Light-Stimulated Synaptic Devices Utilizing Interfacial Effect of Organic Field-Effect Transistors. ACS Applied Materials & Interfaces 2018, 10 (25), 21472-21480. 163. Shi, J.; Jie, J.; Deng, W.; Luo, G.; Fang, X.; Xiao, Y.; Zhang, Y.; Zhang, X.; Zhang, X., A Fully Solution-Printed Photosynaptic Transistor Array with Ultralow Energy Consumption for Artificial-Vision Neural Networks. Advanced Materials 2022, 34 (18), 2200380. 164. Zhang, J.; Dai, S.; Zhao, Y.; Zhang, J.; Huang, J., Recent Progress in Photonic Synapses for Neuromorphic Systems. Advanced Intelligent Systems 2020, 2 (3), 1900136. 165. Wang, Y.; Yin, L.; Huang, W.; Li, Y.; Huang, S.; Zhu, Y.; Yang, D.; Pi, X., Optoelectronic Synaptic Devices for Neuromorphic Computing. Advanced Intelligent Systems 2021, 3 (1), 2000099. 166. Park, H.-L.; Kim, H.; Lim, D.; Zhou, H.; Kim, Y.-H.; Lee, Y.; Park, S.; Lee, T.-W., Retina-Inspired Carbon Nitride-Based Photonic Synapses for Selective Detection of UV Light. Advanced Materials 2020, 32 (11), 1906899. 167. Hung, C.-C.; Chiang, Y.-C.; Lin, Y.-C.; Chiu, Y.-C.; Chen, W.-C., Conception of a Smart Artificial Retina Based on a Dual-Mode Organic Sensing Inverter. Advanced Science 2021, 8 (16), 2100742. 168. Lee, K.; Han, H.; Kim, Y.; Park, J.; Jang, S.; Lee, H.; Lee, S. W.; Kim, H.; Kim, Y.; Kim, T.; Kim, D.; Wang, G.; Park, C., Retina-Inspired Structurally Tunable Synaptic Perovskite Nanocones. Advanced Functional Materials 2021, 31 (52), 2105596. 169. Kuang, J.; Liu, K.; Liu, M.; Shao, M.; Zhu, M.; Liu, G.; Wen, W.; Chen, J.; Qin, M.; Pan, Z.; Zhao, Z.; Liu, Y.; Guo, Y., Interface Defects Tuning in Polymer-Perovskite Phototransistors for Visual Synapse and Adaptation Functions. Advanced Functional Materials 2023, 33 (5), 2209502. 170. Lee, Y.; Oh, J. Y.; Xu, W.; Kim, O.; Kim, T. R.; Kang, J.; Kim, Y.; Son, D.; Tok, J. B. H.; Park, M. J.; Bao, Z.; Lee, T.-W., Stretchable Organic Optoelectronic Sensorimotor Synapse. Science Advances 4 (11), eaat7387. 171. Park, H.-L.; Lee, Y.; Kim, N.; Seo, D.-G.; Go, G.-T.; Lee, T.-W., Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. Advanced Materials 2020, 32 (15), 1903558. 172. Lee, Y.; Park, H.-L.; Kim, Y.; Lee, T.-W., Organic Electronic Synapses With Low Energy Consumption. Joule 2021, 5 (4), 794-810. 173. Wang, Z.; Joshi, S.; Savel’ev, S. E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J. P.; Li, Z.; Wu, Q.; Barnell, M.; Li, G.-L.; Xin, H. L.; Williams, R. S.; Xia, Q.; Yang, J. J., Memristors With Diffusive Dynamics As Synaptic Emulators For Neuromorphic Computing. Nature Materials 2017, 16 (1), 101-108. 174. Cao, G.; Meng, P.; Chen, J.; Liu, H.; Bian, R.; Zhu, C.; Liu, F.; Liu, Z., 2D Material Based Synaptic Devices for Neuromorphic Computing. Advanced Functional Materials 2021, 31 (4), 2005443. 175. Liu, Q.; Yin, L.; Zhao, C.; Wu, Z.; Wang, J.; Yu, X.; Wang, Z.; Wei, W.; Liu, Y.; Mitrovic, I. Z.; Yang, L.; Lim, E. G.; Zhao, C. Z., All-In-One Metal-Oxide Heterojunction Artificial Synapses For Visual Sensory And Neuromorphic Computing Systems. Nano Energy 2022, 97, 107171. 176. Ho, C.-H.; Lin, Y.-C.; Yang, W.-C.; Ercan, E.; Chiang, Y.-C.; Lin, B.-H.; Kuo, C.-C.; Chen, W.-C., Fast Photoresponsive Phototransistor Memory Using Star-Shaped Conjugated Rod–Coil Molecules as a Floating Gate. ACS Applied Materials & Interfaces 2022, 14 (13), 15468-15477. 177. Kim, I.-J.; Lee, J.-S., Ferroelectric Transistors for Memory and Neuromorphic Device Applications. Advanced Materials 2023, 35, 2206864. 178. Lee, Y.; Lee, T.-W., Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics. Accounts of Chemical Research 2019, 52 (4), 964-974. 179. Shao, L.; Zhao, Y.; Liu, Y., Organic Synaptic Transistors: The Evolutionary Path from Memory Cells to the Application of Artificial Neural Networks. Advanced Functional Materials 2021, 31 (28), 2101951. 180. Hsu, H.-T.; Yang, D.-L.; Wiyanto, L. D.; Chen, J.-Y., Red-Light-Stimulated Photonic Synapses Based on Nonvolatile Perovskite-Based Photomemory. Advanced Photonics Research 2021, 2 (5), 2000185. 181. Yang, W.-C.; Lin, Y.-C.; Inagaki, S.; Shimizu, H.; Ercan, E.; Hsu, L.-C.; Chueh, C.-C.; Higashihara, T.; Chen, W.-C., Low-Energy-Consumption and Electret-Free Photosynaptic Transistor Utilizing Poly(3-hexylthiophene)-Based Conjugated Block Copolymers. Advanced Science 2022, 9 (8), 2105190. 182. Ercan, E.; Lin, Y.-C.; Yang, W.-C.; Chen, W.-C., Self-Assembled Nanostructures of Quantum Dot/Conjugated Polymer Hybrids for Photonic Synaptic Transistors with Ultralow Energy Consumption and Zero-Gate Bias. Advanced Functional Materials 2022, 32 (6), 2107925. 183. Chen, X.; Chen, B.; Jiang, B.; Gao, T.; Shang, G.; Han, S.-T.; Kuo, C.-C.; Roy, V. A. L.; Zhou, Y., Nanowires for UV–vis–IR Optoelectronic Synaptic Devices. Advanced Functional Materials 2023, 33 (1), 2208807. 184. Jiang, L.; Huang, H.; Zhang, C.; Yuan, Y.; Wang, X.; Qiu, L., One-Step Preparation of Semiconductor/Dielectric Bilayer Structures for the Simulation of Flexible Bionic Photonic Synapses. ACS Applied Materials & Interfaces 2023, 15 (5), 7227-7235. 185. Wang, L.; Zhang, T.; Shen, J.; Huang, J.; Li, W.; Shi, W.; Huang, W.; Yi, M., Flexibly Photo-Regulated Brain-Inspired Functions in Flexible Neuromorphic Transistors. ACS Applied Materials & Interfaces 2023, 15 (10), 13380-13392. 186. Shim, H.; Sim, K.; Ershad, F.; Yang, P.; Thukral, A.; Rao, Z.; Kim, H.-J.; Liu, Y.; Wang, X.; Gu, G.; Gao, L.; Wang, X.; Chai, Y.; Yu, C., Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Science Advances, 2019, 5 (10), eaax4961. 187. Liu, K.; Bian, Y.; Kuang, J.; Huang, X.; Li, Y.; Shi, W.; Zhu, Z.; Liu, G.; Qin, M.; Zhao, Z.; Li, X.; Guo, Y.; Liu, Y., Ultrahigh-Performance Optoelectronic Skin Based on Intrinsically Stretchable Perovskite-Polymer Heterojunction Transistors. Advanced Materials 2022, 34 (4), 2107304. 188. Hsu, L. C.; Kobayashi, S.; Isono, T.; Chiang, Y. C.; Ree, B. J.; Satoh, T.; Chen, W. C. J. M., Highly Stretchable Semiconducting Polymers for Field-Effect Transistors through Branched Soft–Hard–Soft Type Triblock Copolymers. Macromolecules, 2020, 53 (17), 7496-7510. 189. Tran, D. K.; Robitaille, A.; Hai, I. J.; Lin, C.-C.; Kuzuhara, D.; Koganezawa, T.; Chiu, Y.-C.; Leclerc, M.; Jenekhe, S. A., Unified Understanding of Molecular Weight Dependence of Electron Transport in Naphthalene Diimide-Based n-Type Semiconducting Polymers. Chemistry of Materials 2022, 34 (21), 9644-9655. 190. Scharsich, C.; Lohwasser, R. H.; Sommer, M.; Asawapirom, U.; Scherf, U.; Thelakkat, M.; Neher, D.; Köhler, A., Control Of Aggregate Formation In Poly(3-Hexylthiophene) By Solvent, Molecular Weight, And Synthetic Method. Journal of Polymer Science Part B: Polymer Physics 2012, 50 (6), 442-453. 191. Dai, S.-W.; Hsu, B.-W.; Chen, C.-Y.; Lee, C.-A.; Liu, H.-Y.; Wang, H.-F.; Huang, Y.-C.; Wu, T.-L.; Manikandan, A.; Ho, R.-M.; Tsao, C.-S.; Cheng, C.-H.; Chueh, Y.-L.; Lin, H.-W., Perovskite Quantum Dots with Near Unity Solution and Neat-Film Photoluminescent Quantum Yield by Novel Spray Synthesis. Advanced Materials 2018, 30 (7), 1705532. 192. Gao, L.; Quan, L. N.; García de Arquer, F. P.; Zhao, Y.; Munir, R.; Proppe, A.; Quintero-Bermudez, R.; Zou, C.; Yang, Z.; Saidaminov, M. I.; Voznyy, O.; Kinge, S.; Lu, Z.; Kelley, S. O.; Amassian, A.; Tang, J.; Sargent, E. H., Efficient Near-Infrared Light-Emitting Diodes Based On Quantum Dots In Layered Perovskite. Nature Photonics 2020, 14 (4), 227-233. 193. Diao, Y.; Zhou, Y.; Kurosawa, T.; Shaw, L.; Wang, C.; Park, S.; Guo, Y.; Reinspach, J. A.; Gu, K.; Gu, X.; Tee, B. C. K.; Pang, C.; Yan, H.; Zhao, D.; Toney, M. F.; Mannsfeld, S. C. B.; Bao, Z., Flow-Enhanced Solution Printing Of All-Polymer Solar Cells. Nature Communications 2015, 6 (1), 7955. 194. Mooney, M.; Wang, Y.; Iakovidis, E.; Gu, X.; Rondeau-Gagné, S., Carbohydrate-Containing Conjugated Polymers: Solvent-Resistant Materials for Greener Organic Electronics. ACS Applied Electronic Materials 2022, 4 (4), 1381-1390. 195. Schlipf, J.; Müller-Buschbaum, P., Structure of Organometal Halide Perovskite Films as Determined with Grazing-Incidence X-Ray Scattering Methods. Advanced Energy Materials 2017, 7 (16), 1700131. 196. Su, M.-S.; Kuo, C.-Y.; Yuan, M.-C.; Jeng, U. S.; Su, C.-J.; Wei, K.-H., Improving Device Efficiency of Polymer/Fullerene Bulk Heterojunction Solar Cells Through Enhanced Crystallinity and Reduced Grain Boundaries Induced by Solvent Additives. Advanced Materials 2011, 23 (29), 3315-3319. 197. Chang, T.; Jo, S.-H.; Lu, W., Short-Term Memory to Long-Term Memory Transition in a Nanoscale Memristor. ACS Nano 2011, 5 (9), 7669-7676. 198. Hu, S. G.; Liu, Y.; Chen, T. P.; Liu, Z.; Yu, Q.; Deng, L. J.; Yin, Y.; Hosaka, S., Emulating The Ebbinghaus Forgetting Curve Of The Human Brain With A Nio-Based Memristor. Applied Physics Letters 2013, 103 (13), 133701. 199. Tao, J.; Sarkar, D.; Kale, S.; Singh, P. K.; Kapadia, R., Engineering Complex Synaptic Behaviors in a Single Device: Emulating Consolidation of Short-term Memory to Long-term Memory in Artificial Synapses via Dielectric Band Engineering. Nano Letters 2020, 20 (10), 7793-7801. 200. Yang, W.-C.; Ercan, E.; Lin, Y.-C.; Chen, W.-C.; Watanabe, Y.; Nakabayashi, K.; Lin, B.-H.; Lo, C.-T.; Mori, H.; Chen, W.-C., High-Performance Organic Photosynaptic Transistors Using Donor−Acceptor Type and Crosslinked Core−Shell Nanoparticles as a Floating Gate Electret. Advanced Optical Materials 2023, 11 (3), 2202110. 201. Chen, J.-Y.; Yang, D.-L.; Jhuang, F.-C.; Fang, Y.-H.; Benas, J.-S.; Liang, F.-C.; Kuo, C.-C., Ultrafast Responsive And Low-Energy-Consumption Poly(3-Hexylthiophene)/Perovskite Quantum Dots Composite Film-Based Photonic Synapse. Advanced Functional Materials 2021, 31 (47), 2105911. 202. Yang, B.; Lu, Y.; Jiang, D.; Li, Z.; Zeng, Y.; Zhang, S.; Ye, Y.; Liu, Z.; Ou, Q.; Wang, Y.; Dai, S.; Yi, Y.; Huang, J., Bioinspired Multifunctional Organic Transistors Based on Natural Chlorophyll/Organic Semiconductors. Advanced Materials 2020, 32 (28), 2001227. 203. Burlingham, S. R.; Wong, N. F.; Peterkin, L.; Lubow, L.; Dos Santos Passos, C.; Benner, O.; Ghebrial, M.; Cast, T. P.; Xu-Friedman, M. A.; Südhof, T. C.; Chanda, S., Induction Of Synapse Formation By De Novo Neurotransmitter Synthesis. Nature Communications 2022, 13 (1), 3060. 204. Han, S.; Ma, T.; Li, H.; Wu, J.; Liu, R.; Cao, R.; Li, F.; Li, H.; Chen, C., Photoferroelectric Perovskite Synapses for Neuromorphic Computing. Advanced Functional Materials 2023, 2024, 34, 2309910. 205. Wang, W.; Jiang, Y.; Zhong, D.; Zhang, Z.; Choudhury, S.; Lai, J.-C.; Gong, H.; Niu, S.; Yan, X.; Zheng, Y.; Shih, C.-C.; Ning, R.; Lin, Q.; Li, D.; Kim, Y.-H.; Kim, J.; Wang, Y.-X.; Zhao, C.; Xu, C.; Ji, X.; Nishio, Y.; Lyu, H.; Tok, J. B. H.; Bao, Z., Neuromorphic Sensorimotor Loop Embodied By Monolithically Integrated, Low-Voltage, Soft E-Skin. Science 2023, 380 (6646), 735-742. 206. Wu, Y.-S.; Chang, A.-C.; Chen, W.-C.; Ercan, E.; Weng, Y.-H.; Lin, B.-H.; Liu, C.-L.; Lin, Y.-C.; Chen, W.-C., High-Performance Synaptic Phototransistor Using A Photoactive Self-Assembled Layer toward Ultralow Energy Consumption. Advanced Optical Materials 2024, 12, 2302040 207. Wang, K.; Dai, S.; Zhao, Y.; Wang, Y.; Liu, C.; Huang, J., Light-Stimulated Synaptic Transistors Fabricated by a Facile Solution Process Based on Inorganic Perovskite Quantum Dots and Organic Semiconductors. Small 2019, 15 (11), 1900010. 208. Zhang, J.; Sun, T.; Zeng, S.; Hao, D.; Yang, B.; Dai, S.; Liu, D.; Xiong, L.; Zhao, C.; Huang, J., Tailoring Neuroplasticity In Flexible Perovskite Qds-Based Optoelectronic Synaptic Transistors By Dual Modes Modulation. Nano Energy 2022, 95, 106987. 209. Chen, W.-C.; Lin, Y.-C.; Hung, C.-C.; Hsu, L.-C.; Wu, Y.-S.; Liu, C.-L.; Kuo, C.-C.; Chen, W.-C., Stretchable Photosynaptic Transistor With An Ultralow Energy Consumption Conferred Using Conjugated Block Copolymers/Perovskite Quantum Dots Nanocomposites. Materials Today 2023, 70, 57-70. 210. Liang, S.; Zhang, M.; Biesold, G. M.; Choi, W.; He, Y.; Li, Z.; Shen, D.; Lin, Z., Recent Advances in Synthesis, Properties, and Applications of Metal Halide Perovskite Nanocrystals/Polymer Nanocomposites. Advanced Materials 2021, 33 (50), 2005888. 211. Awni, R. A.; Song, Z.; Chen, C.; Li, C.; Wang, C.; Razooqi, M. A.; Chen, L.; Wang, X.; Ellingson, R. J.; Li, J. V.; Yan, Y., Influence of Charge Transport Layers on Capacitance Measured in Halide Perovskite Solar Cells. Joule 2020, 4 (3), 644-657. 212. Chen, W.-C.; Hung, C.-W.; Chang, C.-H.; Liang, F.-C.; Benas, J.-S.; Yan, Z.-L.; Lin, B.-H.; Lin, J.-H.; Kuo, C.-C., Crystal Orientation And Insulating Ligand Of Quasi-Two Dimensional Perovskite Optimized Through Silver Ion Doping For Realizing Efficient Light Emitting Diodes. Chemical Engineering Journal 2022, 443, 136496. 213. Chang, A.-C.; Wu, Y.-S.; Chen, W.-C.; Weng, Y.-H.; Lin, B.-H.; Chueh, C.-C.; Lin, Y.-C.; Chen, W.-C., Modulating the Photoresponsivity of Perovskite Photodetectors through Interfacial Engineering of Self-Assembled Monolayers. Advanced Optical Materials 2024, 12, 2301789. 214. Chen, Y.; Zhou, Q.; He, D.; Zhang, C.; Zhuang, Q.; Gong, C.; Wang, K.; Liu, B.; He, P.; He, Y.; Li, Y.; Xu, Z.-X.; Lu, S.; Zhao, P.; Zang, Z.; Chen, J. Application of Natural Molecules in Efficient and Stable Perovskite Solar Cells Materials 2023, 16, 2163. 215. Cho, C.; Palatnik, A.; Sudzius, M.; Grodofzig, R.; Nehm, F.; Leo, K., Controlling and Optimizing Amplified Spontaneous Emission in Perovskites. ACS Applied Materials & Interfaces 2020, 12 (31), 35242-35249. 216. Wang, Y.; Yu, H.; Wu, X.; Zhao, D.; Zhang, S.; Zou, X.; Li, B.; Gao, D.; Li, Z.; Xia, X.; Chen, X.; Lu, X.; Yan, H.; Chueh, C.-C.; Jen, A. K. Y.; Zhu, Z., Boosting the Fill Factor through Sequential Deposition and Homo Hydrocarbon Solvent toward Efficient and Stable All-Polymer Solar Cells. Advanced Energy Materials 2022, 12 (48), 2202729. 217. Feng, K.; Guo, H.; Sun, H.; Guo, X., n-Type Organic and Polymeric Semiconductors Based on Bithiophene Imide Derivatives. Accounts of Chemical Research 2021, 54 (20), 3804-3817. 218. Xu, C.; Wang, Z.; Dong, W.; He, C.; Shi, Y.; Bai, J.; Zhang, C.; Gao, M.; Jiang, H.; Deng, Y.; Ye, L.; Han, Y.; Geng, Y., Aggregation Behavior and Electrical Performance Control of Isoindigo-Based Conjugated Polymers via Carbosilane Side Chain Engineering. Macromolecules 2022, 55 (23), 10385-10394. 219. Gao, C.; Yang, H.; Li, E.; Yan, Y.; He, L.; Chen, H.; Lin, Z.; Guo, T., Heterostructured Vertical Organic Transistor for High-Performance Optoelectronic Memory and Artificial Synapse. ACS Photonics 2021, 8 (10), 3094-3103. 220. Lin, Y.-C.; Terayama, K.; Yoshida, K.; Yu, P.-J.; Chueh, P.-H.; Chueh, C.-C.; Higashihara, T.; Chen, W.-C., Strain-Insensitive Naphthalene-Diimide-Based Conjugated Polymers Through Sequential Regularity Control. Materials Chemistry Frontiers 2022, 6 (7), 891-900. 221. An, C.; Dong, W.; Yu, R.; Xu, C.; Pei, D.; Wang, X.; Chen, H.; Chi, C.; Han, Y.; Geng, Y., High-Performance n-Type Stretchable Semiconductor Blends for Organic Thin-Film Transistors and Artificial Synapses. Chemistry of Materials 2023. 222. Kim, T.; Yun, K.-S., Photonic Synaptic Transistors With New Electron Trapping Layer For High Performance And Ultra-Low Power Consumption. Scientific Reports 2023, 13 (1), 12583. 223. Xie, Z.; Zhuge, C.; Zhao, Y.; Xiao, W.; Fu, Y.; Yang, D.; Zhang, S.; Li, Y.; Wang, Q.; Wang, Y.; Yue, W.; McCulloch, I.; He, D., All-Solid-State Vertical Three-Terminal N-Type Organic Synaptic Devices for Neuromorphic Computing. Advanced Functional Materials 2022, 32 (21), 2107314. 224. Abiodun, S. L.; Gee, M. Y.; Greytak, A. B., Combined NMR and Isothermal Titration Calorimetry Investigation Resolves Conditions for Ligand Exchange and Phase Transformation in CsPbBr3 Nanocrystals. The Journal of Physical Chemistry C 2021, 125 (32), 17897-17905. 225. Almeida, G.; Goldoni, L.; Akkerman, Q.; Dang, Z.; Khan, A. H.; Marras, S.; Moreels, I.; Manna, L., Role of Acid–Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals. ACS Nano 2018, 12 (2), 1704-1711. 226. Stelmakh, A.; Aebli, M.; Baumketner, A.; Kovalenko, M. V., On the Mechanism of Alkylammonium Ligands Binding to the Surface of CsPbBr3 Nanocrystals. Chemistry of Materials 2021, 33 (15), 5962-5973. 227. Boufflet, P.; Bovo, G.; Occhi, L.; Yuan, H.-K.; Fei, Z.; Han, Y.; Anthopoulos, T. D.; Stavrinou, P. N.; Heeney, M., The Influence of Backbone Fluorination on the Dielectric Constant of Conjugated Polythiophenes. Advanced Electronic Materials 2018, 4 (10), 1700375. 228. Jia, D.; Chen, J.; Qiu, J.; Ma, H.; Yu, M.; Liu, J.; Zhang, X., Tailoring Solvent-Mediated Ligand Exchange For Cspbi3 Perovskite Quantum Dot Solar Cells With Efficiency Exceeding 16.5%. Joule 2022, 6 (7), 1632-1653. 229. Kazes, M.; Udayabhaskararao, T.; Dey, S.; Oron, D., Effect of Surface Ligands in Perovskite Nanocrystals: Extending in and Reaching out. Accounts of Chemical Research 2021, 54 (6), 1409-1418. 230. Su, R.; Xu, Z.; Wu, J.; Luo, D.; Hu, Q.; Yang, W.; Yang, X.; Zhang, R.; Yu, H.; Russell, T. P.; Gong, Q.; Zhang, W.; Zhu, R., Dielectric Screening In Perovskite Photovoltaics. Nature Communications 2021, 12 (1), 2479. 231. Zheng, F.; Raeber, T.; Rubanov, S.; Lee, C.; Seeber, A.; Hall, C.; Smith, T. A.; Gao, M.; Angmo, D.; Ghiggino, K. P., Spontaneous Formation of a Ligand-Based 2D Capping Layer on the Surface of Quasi-2D Perovskite Films. ACS Applied Materials & Interfaces 2022, 14 (46), 51910-51920. 232. Liu, A.; Lu, P.; Lu, M.; Chai, X.; Liu, Y.; Guan, G.; Gao, Y.; Wu, Z.; Bai, X.; Hu, J.; Wang, D.; Zhang, Y., Multiple Phase Regulation Enables Efficient and Bright Quasi-2D Perovskite Light-Emitting Diodes. Nano Letters 2023, 23 (23), 11082-11090. 233. Qin, M.; Chan, P. F.; Lu, X., A Systematic Review of Metal Halide Perovskite Crystallization and Film Formation Mechanism Unveiled by In Situ GIWAXS. Advanced Materials 2021, 33 (51), 2105290. 234. Qin, M.; Tse, K.; Lau, T.-K.; Li, Y.; Su, C.-J.; Yang, G.; Chen, J.; Zhu, J.; Jeng, U. S.; Li, G.; Chen, H.; Lu, X., Manipulating the Mixed-Perovskite Crystallization Pathway Unveiled by In Situ GIWAXS. Advanced Materials 2019, 31 (25), 1901284. 235. Gish, M. K.; Karunasena, C. D.; Carr, J. M.; Kopcha, W. P.; Greenaway, A. L.; Mohapatra, A. A.; Zhang, J.; Basu, A.; Brosius, V.; Pratik, S. M.; Bredas, J.-L.; Coropceanu, V.; Barlow, S.; Marder, S. R.; Ferguson, A. J.; Reid, O. G., The Excited-State Lifetime of Poly(NDI2OD-T2) Is Intrinsically Short. The Journal of Physical Chemistry C 2024, 128 (15), 6392-6400. 236. Wang, R.; Chen, P.; Hao, D.; Zhang, J.; Shi, Q.; Liu, D.; Li, L.; Xiong, L.; Zhou, J.; Huang, J., Artificial Synapses Based on Lead-Free Perovskite Floating-Gate Organic Field-Effect Transistors for Supervised and Unsupervised Learning. ACS Applied Materials & Interfaces 2021, 13 (36), 43144-43154. 237. Chen, W.-C.; Lin, Y.-C.; Syu, Z.-S.; Wu, Y.-S.; Lin, K.-W.; Liu, C.-L.; Kuo, C.-C.; Chen, W.-C., Surface Ligand Engineering Of Perovskite Quantum Dots For N-Type And Stretchable Photosynaptic Transistor With An Ultralow Energy Consumption. Chemical Engineering Journal 2024, 494, 152897. 238. Ren, Y.; Yang, X.; Zhou, L.; Mao, J.-Y.; Han, S.-T.; Zhou, Y., Recent Advances in Ambipolar Transistors for Functional Applications. Advanced Functional Materials 2019, 29 (40), 1902105. 239. Xue, D.; Gong, W.; Yan, C.; Zhang, Y.; Lu, J.; Yin, Y.; Zhang, J.; Wang, Z.; Huang, L.; Chi, L., Boosting Bidirectional Photoresponse with Wavelength Selectivity through Ambipolar Transport Modulation. Advanced Functional Materials 2024, 34 (38), 2402884. 240. Yang, Y.-T.; Wu, Y.-S.; He, W.; Tien, H.-C.; Yang, W.-C.; Michinobu, T.; Chen, W.-C.; Lee, W.-Y.; Chueh, C.-C., Tuning Ambipolarity of the Conjugated Polymer Channel Layers of Floating-Gate Free Transistors: From Volatile Memories to Artificial Synapses. Advanced Science 2022, 9 (31), 2203025. 241. Chen, Q.; Chen, L.; Ye, F.; Zhao, T.; Tang, F.; Rajagopal, A.; Jiang, Z.; Jiang, S.; Jen, A. K. Y.; Xie, Y.; Cai, J.; Chen, L., Ag-Incorporated Organic–Inorganic Perovskite Films and Planar Heterojunction Solar Cells. Nano Letters 2017, 17 (5), 3231-3237. 242. Jang, H.; Lim, H. Y.; Park, C. B.; Seo, J.; Son, J. G.; Song, T.; Lee, J.; Shin, Y. S.; Roe, J.; Kwak, S. K.; Kim, D. S.; Kim, J. Y., Zn2+ Ion Doping For Structural Modulation Of Lead-Free Sn-Based Perovskite Solar Cells. Journal of Materials Chemistry A 2023, 11 (20), 10605-10611. 243. Yang, Y.-T.; Shih, Y.-H.; Chen, Q.-G.; Chen, C.-H.; Yu, M.-H.; Nieh, C.-H.; Lin, B.-H.; Chen, W.-C.; Lee, W.-Y.; Chueh, C.-C., Revealing the Potential of Perovskite Transistors for Dual-Modulated Synaptic Behavior through Heterojunction Design. ACS Energy Letters 2024, 9 (9), 4564-4571. 244. Wang, Q.; Shao, Y.; Xie, H.; Lyu, L.; Liu, X.; Gao, Y.; Huang, J., Qualifying Composition Dependent P And N Self-Doping In CH3NH3PbI3. Applied Physics Letters 2014, 105 (16), 163508. 245. Choi, D.; Kim, H.; Bae, Y.; Lim, S.; Park, T., Perovskite Colloidal Quantum Dots with Tailored Properties: Synthesis Strategies and Photovoltaic Applications. ACS Energy Letters 2024, 9 (6), 2633-2658. 246. Kumawat, N. K.; Yuan, Z.; Bai, S.; Gao, F., Metal Doping/Alloying of Cesium Lead Halide Perovskite Nanocrystals and their Applications in Light-Emitting Diodes with Enhanced Efficiency and Stability. Israel Journal of Chemistry 2019, 59 (8), 695-707. 247. Mehta, A.; Im, J.; Kim, B. H.; Min, H.; Nie, R.; Seok, S. I., Stabilization of Lead–Tin-Alloyed Inorganic–Organic Halide Perovskite Quantum Dots. ACS Nano 2018, 12 (12), 12129-12139. 248. Zhou, S.; Ma, Y.; Zhou, G.; Xu, X.; Qin, M.; Li, Y.; Hsu, Y.-J.; Hu, H.; Li, G.; Zhao, N.; Xu, J.; Lu, X., Ag-Doped Halide Perovskite Nanocrystals for Tunable Band Structure and Efficient Charge Transport. ACS Energy Letters 2019, 4 (2), 534-541. 249. Zou, S.; Liu, C.; Li, R.; Jiang, F.; Chen, X.; Liu, Y.; Hong, M., From Nonluminescent to Blue-Emitting Cs4PbBr6 Nanocrystals: Tailoring the Insulator Bandgap of 0D Perovskite through Sn Cation Doping. Advanced Materials 2019, 31 (24), 1900606. 250. de Weerd, C.; Lin, J.; Gomez, L.; Fujiwara, Y.; Suenaga, K.; Gregorkiewicz, T., Hybridization of Single Nanocrystals of Cs4PbBr6 and CsPbBr3. The Journal of Physical Chemistry C 2017, 121 (35), 19490-19496. 251. Rao, L.; Sun, B.; Liu, Y.; Zhong, G.; Wen, M.; Zhang, J.; Fu, T.; Wang, S.; Wang, F.; Niu, X. Highly Stable and Photoluminescent CsPbBr3/Cs4PbBr6 Composites for White-Light-Emitting Diodes and Visible Light Communication Nanomaterials 2023, 13, 355. 252. Romero-Pérez, C.; Delgado, N. F.; Collado, M. H.; Calvo, M. E.; Míguez, H., Intense and Stable Blue Light Emission From CsPbBr3/Cs4PbBr6 Heterostructures Embedded in Transparent Nanoporous Films. Advanced Optical Materials 2024, 12, 2400763. 253. Bao, Z.; Tseng, Y.-J.; You, W.; Zheng, W.; Chen, X.; Mahlik, S.; Lazarowska, A.; Lesniewski, T.; Grinberg, M.; Ma, C.; Sun, W.; Zhou, W.; Liu, R.-S.; Attfield, J. P., Efficient Luminescence from CsPbBr3 Nanoparticles Embedded in Cs4PbBr6. The Journal of Physical Chemistry Letters 2020, 11 (18), 7637-7642. 254. Yan, D.; Mo, Q.; Zhao, S.; Cai, W.; Zang, Z., Room Temperature Synthesis of Sn2+ Doped Highly Luminescent CsPbBr3 Quantum Dots For High CRI White Light-Emitting Diodes. Nanoscale 2021, 13 (21), 9740-9746. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96864 | - |
| dc.description.abstract | 隨著物聯網、光通訊、人工智慧迅速發展,人們對於高性能、低能耗軟性電子產品的需求日益增長。科學家們近期提出了低能耗新穎光感神經元元件,透過模仿人體神經突觸,整合數據處理與數據儲存於單一元件之中,並透過光通訊傳輸進一步降低元件能耗。但如何整合此類元件與軟性電子元件仍需深入研究,使這些軟性電子元件不僅擁有可拉伸和耐用的特性,同時具備高效運行、低能耗和即時數據處理等能力。為滿足這些需求,開發可拉伸性奈米複合材料是其一具前瞻性的策略,其中,結合本質可拉伸共軛高分子 (CPs)與鈣鈦礦量子點 (PeQDs)展現出巨大潛力,此奈米複合材料提供了一種簡潔的架構,並將高分子的柔韌性與PeQDs的優越光電特性結合。然而,此策略仍存在一些挑戰,包括PeQDs的自聚集、有限的電荷轉移效率及本質可拉伸高分子與PeQDs的界面問題。因此,本論文提出了多種策略,包括透過設計嵌段共聚高分子的自組裝特性、CPs的骨架設計、PeQDs的表面配體工程以及極性調控,來優化奈米複合材料並探討其帶來的元件效能影響。在第二章中,我們提出可以透過δ-癸內酯與3-己基噻吩之嵌段高分子於不同溶劑中的相分離,來改善PeQDs的自聚集問題。通過此策略可以增加3-己基噻吩晶粒尺寸的同時並改善了3-己基噻吩結晶與PeQDs之間的界面,這樣的優化,使光感神經元元件實現了最快的光響應時間(1 ms)、最高的電流對比度(4.9 × 105)、1.93的成對脈衝加成(PPF)。此外,這一方法也成功被應用於全拉伸光突觸元件,並展示其可模仿類神經肌肉突觸之特性,例如高抗拉伸性、彎曲彈性和外在脈衝刺激的可塑性。在第三章中,我們針對兩個方向進行研究,首先討論另一種本質可拉伸CPs具備柔性骨架及n型特性—萘二醯亞胺二噻吩與PeQDs的結合,以研究不同策略之本質可拉伸特性與不同傳輸類型的CPs於奈米複合材料中的影響。第二,我們通過設計不同鏈長和立體障礙的PeQDs表面配體,來進一步討論PeQDs之表面配體工程對於異質界面的影響。結果顯現雙十二烷基二甲基溴化銨提供了理想的配體適配性,增強了缺陷鈍化、改善了異質界面並降低了缺陷密度。通過對PeQDs進行表面配體工程,此複合材料實現了可在多波長光刺激及拉伸條件下,有效地模擬了光突觸特性,並展現顯著的性能指標:最快響應時間(1 ms)、最高電流對比度(3.2 × 106)、1.97的PPF、0.16 aJ的超低能耗,以及在50%拉伸應變下50 mV超低操作電壓下的類人學習行為。這些結果顯示,PeQDs的表面配體工程可實現低能耗、缺陷最小化的人工突觸。基於前兩章研究的基礎下,發現PeQDs能有效與不同傳輸特性的本質可拉伸式CPs結合,並體現卓越的光感神經元特性。因此,第四章我們提出透過錫(Sn)混摻來調控PeQDs對於電子與電動的親性,藉此影響其異質界面的載子轉換效率與捕獲傾向,並深入討論其對於不同傳輸類型的本質可拉伸p型和n型CPs之間相互作用的影響。結果顯現錫混摻方法可有效提升PeQDs之電子親和力,影響其最高佔據分子軌域。透過瞬態光電流分析,Sn摻雜的PeQDs通過增強電子捕獲提高了p型CPs的元件性能 (電流消散時間延長3倍、光電流提升1.28 × 101),反而使n型CPs元件性能下降。因此,透過錫摻雜可選擇性調節PeQDs的捕獲特性,進一步優化p型光感神經元元件性能,像是脈衝刺激和脈衝時間的可塑性、電流和PPF數值,此外,實現了在–0.1 mV和1 ms光脈衝下的超低能耗 (0.169 aJ),此效能優於其他p型光電突觸。透過上述實驗,本文剖析如何透過PeQDs改質與本質可拉伸CPs設計來優化改善奈米複合材料之界面,使其有效應用於新穎光感神經元元件。 | zh_TW |
| dc.description.abstract | The rapid development of the Internet of Things, light fidelity, and artificial intelligence has increased demand for high-performance, low-energy soft electronics. Recently, scientists have proposed advanced photosynaptic devices that mimic human synapses, integrating data processing and storage within a single device while minimizing energy consumption through optical communication. Nevertheless, additional research is required to effectively integrate these devices with soft materials, combining stretchability with efficient operation. Developing stretchable nanocomposites is a promising approach to address these demands, particularly by leveraging intrinsically stretchable conjugated polymers (CPs) with perovskite quantum dots (PeQDs). This nanocomposite provides a simple structure that merges the flexibility of polymers with the superior optoelectronic properties of PeQDs. However, challenges remain, including the self-aggregation of PeQDs, limited charge transfer efficiency, and interface issues between CPs and PeQDs. Therefore, this dissertation proposes multiple strategies, including utilizing the self-assembly of block copolymers, backbone of CPs, surface ligand engineering, and polarity of PeQDs to optimize the nanocomposite and explore its impact on device performance. In Chapter 2, we demonstrated that selecting specific solvents in poly(δ-decanolactone)-based block copolymers effectively controls the assembly of poly(3-hexylthiophene) (P3HT), leading to enhanced self-aggregation, larger grain size, and improved interfaces between P3HT and PeQDs. This approach achieved the fastest response time (1 ms), highest current contrast (4.9 × 105), and paired-pulse facilitation (PPF) of 1.93. Additionally, it enabled the creation of a fully stretchable photosynaptic device, exhibiting neuromuscular synapse characteristics such as high strain tolerance, bending resilience, and spike-dependent plasticity features. In Chapter 3, we first integrated PeQDs with another intrinsically stretchable CPs, naphthalene-diimide-bithiophene, which had a flexible backbone and n-type properties, to examine the effects of different strategies and types of intrinsically stretchable CPs. Next, by designing surface ligands for PeQDs with tailored chain lengths and steric hindrance, we optimized the interface between PeQDs and CPs. Specifically, didodecyldimethylammonium bromide provided ideal ligand accommodation, enhancing defect passivation, improving heterojunction quality, and reducing trap density. Through this surface ligand engineering, the composite effectively emulated photosynaptic characteristics under multiwavelength light stimuli and strain, achieving remarkable performance metrics: highest current contrast (3.2 × 106), PPF of 1.97, ultra-low energy consumption (0.16 aJ). These results showed that the surface ligand engineering of PeQDs facilitated the creation of low-energy, defect-minimized artificial synapses. Building on these insights, Chapter 4 focused on modulating PeQDs bipolarity through tin doping and examining its effects on interactions with p- and n- types CPs. Photocurrent analysis revealed that Sn-doped PeQDs enhanced performance with p-type CPs by boosting electron trapping, while performance with n-type CPs declined. Selective tuning of trapping characteristics improved photosynaptic responses, increasing spike-dependent plasticity and PPF ratios. Optimal Sn doping enabled ultra-low energy consumption of 0.169 aJ, surpassing other p-type photosynaptic devices. This dissertation explored how PeQDs modification and the design of intrinsically stretchable CPs can optimize the heterojunction, enhancing their practical application in novel photosynaptic devices. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:18:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-24T16:18:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iv ABSTRACT vi CONTENTS viii LIST OF FIGURES xii LIST OF TABLES xxix Chapter 1 Introduction 1 1.1 Stretchable Polymeric Semiconductors 1 1.1.1 Polymer Blending Composites 1 1.1.2 Intrinsically Stretchable Conjugated Polymers 3 1.1.2.1 Main-Chain Engineering 3 1.1.2.2 Side-Chain Engineering 6 1.1.3 Stretchable Polymeric Semiconductor Optoelectronic Applications 8 1.2 Perovskite Materials 11 1.2.1 Composition and Dimension Control 12 1.2.2 Synthesis Method and Post-Treatment 15 1.2.3 Perovskite’s Optoelectronic Applications 18 1.3 Hybrid Materials 21 1.3.1 Polymer-Carbon Based Nanocomposite Hybrids 23 1.3.2 Polymer-Perovskite Nanocomposite Hybrids 25 1.4 Organic Transistor Applications 28 1.4.1 Electric-Driven Organic Transistor Memory/Synaptic Device 31 1.4.2 Organic Phototransistor Memory/ Synaptic Devices 34 1.5 Research Objectives 38 1.6 Tables and Figures 42 Chapter 2 Stretchable Photosynaptic Transistor with an Ultralow Energy Consumption Conferred Using Conjugated Block Copolymers/ Perovskite Quantum Dots Nanocomposites 67 2.1 Background 67 2.2 Experimental Section 73 2.2.1 Materials 73 2.2.2 Synthesis of Conjugated Polymers 73 2.2.3 Fraction of Aggregate 74 2.2.4 Synthesis and Purification Process of Perovskite Quantum Dots 75 2.2.5 Fabrication of Photonic Transistor Device 76 2.2.6 Fully Stretchable Photosynaptic Device 77 2.2.7 Device Characterization 77 2.2.8 Characterization 78 2.3 Results and Discussion 79 2.3.1 Phase Separation and Optical Properties of Triblock Copolymers with PeQDs 79 2.3.2 Morphology, PeQDs Distribution, and Crystalline Characterization 82 2.3.3 Analysis of Transient Photocurrent and Photogenerated Exciton Dynamic 86 2.3.4 Photonic Synaptic Characteristics and Human Memory Consolidation 92 2.3.5 Stretchable Photonic Synapses for Pattern Recognition 96 2.4 Summary 99 2.5 Tables and Figures 100 Chapter 3 Surface Ligand Engineering of Perovskite Quantum Dots for N-type and Stretchable Photosynaptic Transistor with An Ultralow Energy Consumption 134 3.1 Background 134 3.2 Experimental Section 137 3.2.1 Materials 137 3.2.2 Synthesis, Purification Process, and Ligand Exchanged Process of Perovskite Quantum Dots 138 3.2.3 Fabrication of the Phototransistor Device 140 3.2.4 Film-Transfer Process for Stretchable Thin Films in the Photosynaptic Device 140 3.2.5 Dielectric Constant and Trap Density Characterizations 141 3.2.6 Phototransistor Device Characterization 142 3.2.7 Characterization 143 3.3 Results and Discussion 144 3.3.1 Steady-State and Time-Resolved Optical Properties of the Surface Ligand-Engineered PeQDs 144 3.3.2 Surface Morphology and Crystallinity of the PNDI2T/PeQDs Films 149 3.3.3 Multiwavelength Photoresponse of the PNDI2T/PeQDs Transistors under Varied Tensile Strains 152 3.3.4 Multiwavelength Response of the Photosynaptic Transistors under Varied Tensile Strains 154 3.3.5 Neuromorphic Learning Functions of the Photosynaptic Transistors with Ultralow Operation Voltages 159 3.4 Summary 161 3.5 Tables and Figures 163 Chapter 4 Bipolarity Adjustment in Perovskite Quantum Dots via Metal Doping for High-Performance Photosynaptic Transistors 189 4.1 Background 189 4.2 Experimental Section 192 4.2.1 Materials 192 4.2.2 Synthesis and Post-Treatment of PeQDs 193 4.2.3 Fabrication of the Phototransistor Device 194 4.2.4 Phototransistor Device Characterization 194 4.2.5 Characterization 195 4.3 Results and Discussion 195 4.3.1 Analysis of Sn-PeQDs Post-Treatment and Optical Properties 195 4.3.2 Crystalline Structure and Morphology of Sn-PeQDs 198 4.3.3 Charge Trapping Ability and Photogenerated Exciton Dynamics 199 4.3.4 Energy Level and Electrical Properties of PeQDs 201 4.3.5 Photosynaptic Transistor Characteristics 203 4.4 Summary 206 4.5 Tables and Figures 207 Chapter 5 Conclusion and Perspectives 230 5.1 Conclusion 230 5.2 Future Work 233 5.3 Figures 236 REFERENCE 239 AUTOBIOGRAPHY 267 PUBLICATION AND AWARDS LIST 268 | - |
| dc.language.iso | en | - |
| dc.subject | 本質可拉伸特性 | zh_TW |
| dc.subject | 複合材料 | zh_TW |
| dc.subject | 表面配體工程 | zh_TW |
| dc.subject | 鈣鈦礦量子點 | zh_TW |
| dc.subject | 自組裝 | zh_TW |
| dc.subject | 導電高分子 | zh_TW |
| dc.subject | perovskite quantum dots | en |
| dc.subject | intrinsic stretchability | en |
| dc.subject | Semiconducting polymer | en |
| dc.subject | composites | en |
| dc.subject | surface engineering | en |
| dc.title | 本質可拉伸共軛高分子與鈣鈦礦量子點異質接面設計及其軟性光電元件應用 | zh_TW |
| dc.title | Heterojunction Design of Intrinsically Stretchable Conjugated Polymers and Perovskite Quantum Dots for Soft Optoelectronic Device Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 廖英志;闕居振;劉振良;郭霽慶;林彥丞 | zh_TW |
| dc.contributor.oralexamcommittee | Ying-Chih Liao;Chu-Chen Chueh;Cheng-Liang Liu;Chi-Ching Kuo;Yan-Cheng Lin | en |
| dc.subject.keyword | 本質可拉伸特性,導電高分子,自組裝,鈣鈦礦量子點,表面配體工程,複合材料, | zh_TW |
| dc.subject.keyword | Semiconducting polymer,intrinsic stretchability,perovskite quantum dots,surface engineering,composites, | en |
| dc.relation.page | 272 | - |
| dc.identifier.doi | 10.6342/NTU202500037 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-01-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 22.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
