Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96856
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡曜陽zh_TW
dc.contributor.advisorYao-Yang Tsaien
dc.contributor.author林承漢zh_TW
dc.contributor.authorCheng-Han Linen
dc.date.accessioned2025-02-24T16:16:44Z-
dc.date.available2025-02-25-
dc.date.copyright2025-02-24-
dc.date.issued2024-
dc.date.submitted2025-01-07-
dc.identifier.citation[1] X. Wang, "Three-dimensional vision-based sensing of GTAW: a review," The International Journal of Advanced Manufacturing Technology, vol. 72, no. 1, pp. 333-345, 2014/04/01 2014, doi: 10.1007/s00170-014-5659-0.
[2] P. Kah, P. Layus, E. Hiltunen, and J. Martikainen, "Real-Time Weld Process Monitoring," Advanced Materials Research, vol. 933, pp. 117-124, 05/01 2014, doi: 10.4028/www.scientific.net/AMR.933.117.
[3] Y. M. Zhang, Y.-P. Yang, W. Zhang, and S.-J. Na, "Advanced Welding Manufacturing: A Brief Analysis and Review of Challenges and Solutions," Journal of Manufacturing Science and Engineering, vol. 142, no. 11, 2020, doi: 10.1115/1.4047947.
[4] Y. Cheng, R. Yu, Q. Zhou, H. Chen, W. Yuan, and Y. Zhang, "Real-time sensing of gas metal arc welding process – A literature review and analysis," Journal of Manufacturing Processes, vol. 70, pp. 452-469, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.jmapro.2021.08.058.
[5] M. Vasudevan, N. Chandrasekhar, V. Maduraimuthu, A. K. Bhaduri, and B. Raj, "Real-Time Monitoring of Weld Pool during GTAW using Infra-Red Thermography and analysis of Infra-Red thermal images," Weld. World, vol. 55, no. 7, pp. 83-89, 2011/07/01 2011, doi: 10.1007/BF03321311.
[6] D. Yang, G. Wang, and G. Zhang, "Thermal analysis for single-pass multi-layer GMAW based additive manufacturing using infrared thermography," J. Mater. Process. Technol., vol. 244, pp. 215-224, 2017/06/01/ 2017, doi: https://doi.org/10.1016/j.jmatprotec.2017.01.024.
[7] Y. Wang et al., "Prediction of internal welding penetration based on IR thermal image supported by machine vision and ANN-model during automatic robot welding process," Journal of Advanced Joining Processes, vol. 9, p. 100199, 2024/06/01/ 2024, doi: https://doi.org/10.1016/j.jajp.2024.100199.
[8] B. Mi and C. Ume, "Real-Time Weld Penetration Depth Monitoring With Laser Ultrasonic Sensing System," Journal of Manufacturing Science and Engineering, vol. 128, no. 1, pp. 280-286, 2005, doi: 10.1115/1.2137747.
[9] L. Zhang, A. C. Basantes-Defaz, D. Ozevin, and E. Indacochea, "Real-time monitoring of welding process using air-coupled ultrasonics and acoustic emission," The International Journal of Advanced Manufacturing Technology, vol. 101, no. 5, pp. 1623-1634, 2019/04/01 2019, doi: 10.1007/s00170-018-3042-2.
[10] N. E. Sweeney et al., "In-process phased array ultrasonic weld pool monitoring," NDT & E International, vol. 137, p. 102850, 2023/07/01/ 2023, doi: https://doi.org/10.1016/j.ndteint.2023.102850.
[11] P. B. Garcia-Allende, J. Mirapeix, O. M. Conde, A. Cobo, and J. M. Lopez- Higuera, "Arc-Welding Spectroscopic Monitoring based on Feature Selection and Neural Networks," Sensors, vol. 8, no. 10, pp. 6496-6506, 2008. [Online]. Available: https://www.mdpi.com/1424-8220/8/10/6496.
[12] V. N. Lednev et al., "Online and in situ laser-induced breakdown spectroscopy for laser welding monitoring," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 175, p. 106032, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.sab.2020.106032.
[13] L. Quackatz, I. Gornushkin, A. Griesche, T. Kannengiesser, K. Treutler, and V. Wesling, "In situ chemical analysis of duplex stainless steel weld by laser induced breakdown spectroscopy," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 214, p. 106899, 2024/04/01/ 2024, doi: https://doi.org/10.1016/j.sab.2024.106899.
[14] J. J. Wang, T. Lin, and S. B. Chen, "Obtaining weld pool vision information during aluminium alloy TIG welding," International Journal of Advanced Manufacturing Technology, vol. 26, no. 3, pp. 219-227, Aug 2005, doi: 10.1007/s00170-003-1548-7.
[15] Z. Chen, J. Chen, and Z. Feng, "Welding penetration prediction with passive vision system," Journal of Manufacturing Processes, vol. 36, pp. 224-230, 2018/12/01/ 2018, doi: https://doi.org/10.1016/j.jmapro.2018.10.009.
[16] A. Biber, R. Sharma, and U. Reisgen, "Robotic welding system for adaptive process control in gas metal arc welding," (in English), Weld. World, ; Early Access p. 10, 2024 Mar 2024, doi: 10.1007/s40194-024-01756-y.
[17] Y. J. Guo, J. Q. Gao, C. S. Wu, and X. Y. Gui, "Correlation between fusion hole morphology and weld penetration in TIG welding," International Journal of Advanced Manufacturing Technology, vol. 101, no. 9-12, pp. 2991-3000, Apr 2019, doi: 10.1007/s00170-018-3063-x.
[18] Q. Y. Liu et al., "Progress and perspectives of joints defects of laser-arc hybrid welding: a review," (in English), International Journal of Advanced Manufacturing Technology, Review vol. 130, no. 1-2, pp. 915-931, Jan 2024, doi: 10.1007/s00170-023-12724-z.
[19] J. Guo, J. Ma, Á. F. García-Fernández, Y. Zhang, and H. Liang, "A survey on image enhancement for Low-light images," Heliyon, vol. 9, no. 4, p. e14558, 2023/04/01/ 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e14558.
[20] S. Q. Moinuddin, S. S. Hameed, A. K. Dewangan, K. Ramesh Kumar, and A. Shanta Kumari, "A study on weld defects classification in gas metal arc welding process using machine learning techniques," Materials Today: Proceedings, vol. 43, pp. 623-628, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.matpr.2020.12.159.
[21] J. Chen, Q. Li, H. Wang, and M. Deng, "A Machine Learning Ensemble Approach Based on Random Forest and Radial Basis Function Neural Network for Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River Delta, China," International Journal of Environmental Research and Public Health, vol. 17, no. 1, p. 49, 2020. [Online]. Available: https://www.mdpi.com/1660-4601/17/1/49.
[22] "“Cross-validation: evaluating estimator performance,” scikit-learn, 2022," doi: https://scikit-learn.org/stable/modules/cross_validation.html.
[23] Z. Zhao, L. Deng, L. Bai, Y. Zhang, and J. Han, "Optimal imaging band selection mechanism of weld pool vision based on spectrum analysis," Optics & Laser Technology, vol. 110, pp. 145-151, 2019/02/01/ 2019, doi: https://doi.org/10.1016/j.optlastec.2018.08.058.
[24] C. Li, J. Gao, Y. Cao, X. Yan, and X. Gui, "Visual observation of fusion hole in thin plate TIG welding with a reserved gap," Journal of Manufacturing Processes, vol. 45, pp. 634-641, 2019/09/01/ 2019, doi: https://doi.org/10.1016/j.jmapro.2019.08.002.
[25] M. W. David Sliney "safety with lasers and other optical sources," 1980.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96856-
dc.description.abstract在製造業中,焊接品質的控制對於最終產品的穩定性和可靠性至關重要。尤其在薄片材料的焊接中,由於材料特性和厚度較薄,焊接過程極易出現變形及各種缺陷,對品質的即時監控有著更高的要求。然而,傳統檢測方法多為事後檢查,難以及時反映焊接過程中的異常與缺陷,如工件表面的裂紋或熔透不足等問題。尤其是在管道類環境中,接口焊接完成後甚至無法直接檢查內部是否焊接成功。此外,使用被動視覺工業相機記錄焊接過程,由於電弧光強度高和焊接區域溫度高,影像捕捉與分析面臨挑戰。因此,如何透過實時監視焊接過程並減少缺陷成為一項需解決的課題。
本研究提出一種基於被動視覺工業相機的實時監控系統,並利用機器學習對焊接過程中捕捉到的影像進行分析,從而實現對加工成品形貌的分類和預測。本研究將拍攝下來的加工影像進行分類,其後將影像做處理後抓取影像中的特徵信息,將熔池邊緣輪廓作為特徵進行計算。接著本研究第二部份利用隨機森林模型學習這些特徵信息,以達到對加工成品形貌的預測分類效果。此技術在提高工業焊接生產線自動化程度方面具有重要意義,能夠有效減少因材料特性帶來的焊接缺陷,提高產品的一致性和可靠性。
zh_TW
dc.description.abstractIn the manufacturing industry, the control of welding quality is crucial to the stability and reliability of the final product. Particularly in the welding of thin sheet materials, the unique material properties and reduced thickness make the process highly prone to deformation and various defects, placing higher demands on real-time quality monitoring. However, traditional inspection methods are predominantly post-process and struggle to promptly detect anomalies and defects during welding, such as surface cracks or insufficient penetration. This issue is even more pronounced in pipeline environments, where it is often impossible to directly inspect the internal welding quality after joint completion. Additionally, using passive industrial cameras to capture welding processes is challenging due to the high intensity of arc light and the elevated temperatures in the welding area. Therefore, developing methods to monitor the welding process in real-time and reduce defects has become a critical issue to address.
This study proposes a real-time monitoring system based on passive vision industrial cameras, and uses machine learning to analyze the images captured during the welding process, thereby achieving classification and prediction of the morphology of processed products. This study classifies the captured processed images and then processes them to capture feature information from the images. In the second part of this study, the random forest model is used to learn these feature information, in order to achieve the prediction and classification effect of the processed product morphology. The model is then put into the processing process to test the accuracy and speed of real-time judgment, thereby improving the real-time monitoring efficiency of welding quality and reducing the cost and time of manual inspection. This technology is of great significance in improving the automation level of industrial welding production lines, which can effectively reduce welding defects caused by material characteristics and improve product consistency and reliability.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:16:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-24T16:16:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 ........................................................................................................... i
誌謝 .................................................................................................................................. ii
中文摘要 ......................................................................................................................... iii
英文摘要 ......................................................................................................................... iv
目次 .................................................................................................................................. v
圖次 ............................................................................................................................... viii
表次 ................................................................................................................................. xi
第 1 章 緒論 .................................................................................................................. 1
1.1 前言 ................................................................................................................... 1
1.2 文獻回顧 ........................................................................................................... 2
1.2.1 紅外(IR)熱成像檢測 ............................................................................. 2
1.2.2 超音波成像檢測 .................................................................................... 3
1.2.3 光譜監控 ................................................................................................ 5
1.2.4 視覺監控 ................................................................................................ 7
1.3 研究動機與目的 ............................................................................................... 8
1.4 論文大綱 ........................................................................................................... 9
第2章 基礎理論 .......................................................................................................... 10
2.1 電弧焊接 ......................................................................................................... 10
2.1.1 電弧焊接(Arc Weld)加工原理介紹 .................................................... 10
2.1.2 鎢極氣體保護電弧焊(GTAW) ............................................................. 11
2.2 影像處理(Image Process) ............................................................................... 12
2.2.1 灰階處理(Gray Scale) .......................................................................... 12
2.2.2 直方圖均衡化(Histogram Equalization) ............................................. 12
2.2.3 高斯模糊 (Gaussian Blur) ................................................................... 14
2.2.4 雙通濾波(Bilateral Filtering) .......................................................... 15
2.2.5 邊緣檢測(Edge Detection) ................................................................... 16
2.2.6 多項式擬合 (curve fitting) .................................................................. 17
2.2.7 影像增強(Image Augmentation)..................................................... 19
2.3 機器學習(Machine Learning, ML) ............................................................ 19
2.3.1 決策樹 .................................................................................................. 20
2.3.2 隨機森林 .............................................................................................. 21
2.3.3 網格搜索交叉驗證(GridSearchCV) .................................................... 21
2.3.4 混淆矩陣(confusion matrix) ................................................................ 22
第3章 實驗規劃與設備 .............................................................................................. 24
3.1 實驗步驟規劃 ................................................................................................. 24
3.2 實驗設備 ......................................................................................................... 25
3.2.1 加工設備 .............................................................................................. 25
3.2.2 加工材料 .............................................................................................. 30
3.2.3 影像設備 .............................................................................................. 31
3.2.4 實際實驗場景 ...................................................................................... 37
3.2.5 電腦運算設備 ...................................................................................... 39
第4章 實驗結果與討論 .............................................................................................. 40
4.1 加工參數設定 ................................................................................................. 40
4.2 實驗觀察結果 ................................................................................................. 41
4.2.1 加工參數與實際工件形貌 .................................................................. 41
4.2.2 加工參數影響分析 .............................................................................. 44
4.2.3 實驗參數調整 ...................................................................................... 50
4.3 加工過程錄製 ................................................................................................. 52
4.4 焊接影像 ......................................................................................................... 54
4.4.1 影像處理 .............................................................................................. 54
4.4.2 焊接形貌解釋 ...................................................................................... 57
4.4.3 影像特徵提取 ...................................................................................... 61
4.5 焊接形貌機器學習 ......................................................................................... 65
第5章 結論與未來展望 .............................................................................................. 71
5.1 結論 ................................................................................................................. 71
5.2 未來展望 ......................................................................................................... 71
參考文獻 ........................................................................................................................ 73
-
dc.language.isozh_TW-
dc.subject氬氣電弧無填料焊接zh_TW
dc.subject機器學習zh_TW
dc.subject影像處理zh_TW
dc.subject被動視覺zh_TW
dc.subject不鏽鋼薄片zh_TW
dc.subjectpassive visionen
dc.subjectimage processingen
dc.subjectmachine learningen
dc.subjectstainless steel sheeten
dc.subjectargon arc welding without filleren
dc.title基於熔池影像的焊接外觀結果預測研究zh_TW
dc.titleResearch on Predicting Welding Appearance Results Based on Molting Pool Imagesen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林派臣;鍾俊輝zh_TW
dc.contributor.oralexamcommitteePai-Chen Lin;Jun-Hui Zhongen
dc.subject.keyword不鏽鋼薄片,氬氣電弧無填料焊接,被動視覺,影像處理,機器學習,zh_TW
dc.subject.keywordstainless steel sheet,argon arc welding without filler,passive vision,image processing,machine learning,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202500033-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-01-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2030-01-06-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
4.43 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved