請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96827
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳俊維 | zh_TW |
dc.contributor.advisor | Chun-Wei Chen | en |
dc.contributor.author | 汪奕達 | zh_TW |
dc.contributor.author | I-Ta Wang | en |
dc.date.accessioned | 2025-02-21T16:44:00Z | - |
dc.date.available | 2025-02-22 | - |
dc.date.copyright | 2025-02-21 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-12-31 | - |
dc.identifier.citation | [1] D. Hsieh, et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970-974 (2008).
[2] M. Z. Hasan, & C. L. Kane, Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045-3067 (2010). [3] Y. Ando. Topological Insulator Materials. J phys. Soc.Jpn. 82, 102001 (2013). [4] D. Hsieh, et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101-1105 (2009). [5] Z. Fan, et al. Superconductivity in nickelate and cuprate superconductors with strong bilayer coupling. Phys. Rev. B 110, 024514 (2024). [6] R. X. Zhang, & S Das Darma, Intrinsic Time-Reversal-Invariant Topological Superconductivity in Thin Films of Iron-Based Superconductors. Phys. Rev. Lett. 126, 137001 (2021). [7] R. X. Zhang, W. S. Cole, & S Das Darma, Helical Hinge Majorana Modes in Iron-Based Superconductors. Phys. Rev. Lett. 122, 187001 (2019). [8] B. R. Ortiz, et al. CsV3Sb5: A Z2 Topological Kagome Metal with a Superconducting Ground State. Phys. Rev. Lett. 125, 247002 (2020). [9] S. Li, et al. Magnetic-Field-Induced Quantum Phase Transitions in a van der Waals Magnet. Phys. Rev. X 10, 011075 (2020). [10] P. A. McClarty. Topological Magnons: A Review. Annu. Rev. Condens. Matter Phys. 13, 171-190 (2022). [11] N, Nagaosa, T. Morimoto, & Y. Tokura, Transport, magnetic and optical properties of Weyl materials. Nat Rev Mater. 5, 621–636 (2020). [12] S. Nie, et al. Magnetic Semimetals and Quantized Anomalous Hall Effect in EuB6. Phys. Rev. Lett. 124, 076403 (2020). [13] B. Zhang, et al. Quantum Wave-Particle Duality in Free-Electron--Bound-Electron Interaction. Phys. Rev. Lett. 126, 244801 (2021). [14] N. Schwaller, M. A. Dupertuis, & C. Javerzac-Galy, Evidence of the entanglement constraint on wave-particle duality using the IBM Q quantum computer. Phys. Rev. A 103, 022409 (2021). [15] L. Li, et al. Symmetry-Breaking-Induced Multifunctionalities of Two-Dimensional Chromium-Based Materials for Nanoelectronics and Clean Energy Conversion. Phys. Rev. Appl. 18, 014013 (2022). [16] L. Fu, & C. L. Kane, Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007). [17] T. L. Hughes, E. Prodan, & B. A. Bernevig, Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011). [18] N. Rösch, Time-reversal symmetry, Kramers' degeneracy and the algebraic eigenvalue problem chem. Phys. 80, 1-5 (1983). [19] S. Lee, et al. Broken Kramers Degeneracy in Altermagnetic MnTe. Phys. Rev. Lett. 132, 036702 (2024). [20] R. Ramazashvili, Kramers degeneracy in a magnetic field and Zeeman spin-orbit coupling in antiferromagnetic conductors. Phys. Rev. B 79, 184432 (2009). [21] N. Sai, et al. Compositional Inversion Symmetry Breaking in Ferroelectric Perovskites. Phys. Rev. Lett. 84, 5636-5639 (2000). [22] M. P. Warusawithana, Asymmetric ferroelectricity by design in atomic-layer superlattices with broken inversion symmetry. Phys. Rev. B 104, 085103 (2021). [23] S. Hashemizadeh, et al. Symmetry breaking in hexagonal and cubic polymorphs of BaTiO3. J. Appl. Phys. 119, 094105 (2016). [24] A. Karvounis, et al. Barium Titanate Nanostructures and Thin Films for Photonics. Adv. Opt. Mater. 8, 2001249 (2020). [25] P. Perna, et al. Interfacial exchange-coupling induced chiral symmetry breaking of spin-orbit effects. Phys. Rev. B 92, 220422 (2015). [26] Y. Fukaya, et al. Interorbital topological superconductivity in spin-orbit coupled superconductors with inversion symmetry breaking. Phys. Rev. B 97, 174522 (2018). [27] H. Ishizuka, & Y. Motome, Spontaneous spatial inversion symmetry breaking and spin Hall effect in a spin-ice double-exchange model. Phys. Rev. B 88, 100402 (2013). [28] Y. Zhou, et al. Topological Spin Textures: Basic Physics and Devices. Adv. Mater. 2312935 (2024). [29] Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature, 447, 190-193 (2007). [30] S. Mühlbauer, et al. Skyrmion Lattice in a Chiral Magnet. Science 323, 915-919 (2009). [31] J. S. W. Lamb, & J. A. G. Roberts, Time-reversal symmetry in dynamical systems: A survey. Phys. D: Nonlinear Phenom. 112, 1-39 (1998). [32] C. Herring, Effect of Time-Reversal Symmetry on Energy Bands of Crystals. Phys. Rev. 52, 361-365 (1937). [33] S. U. Piatrusha, et al.Topological Protection Brought to Light by the Time-Reversal Symmetry Breaking. Phys. Rev. Lett. 123, 056801 (2019). [34] S. Hayami, & H. Kusunose, Spin-orbital-momentum locking under odd-parity magnetic quadrupole ordering. Phys. Rev. B 104, 045117 (2021). [35] C. Z. Chang, P. Wei, & J. S. Moodera, Breaking time reversal symmetry in topological insulators. MRS Bull. 39 (2014). [36] I. N. Karnaukhov, Spontaneous breaking of time-reversal symmetry in topological insulators. Phys. Lett. A 381, 1967-1970 (2017). [37] C. Z. Chang, & M. Li, Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators. J. Phys.: Condens. Matter. 28, 123002 (2016). [38] Y. Yang. et al. Time-Reversal-Symmetry-Broken Quantum Spin Hall Effect. Phys. Rev. Lett. 107, 066602 (2011). [39] X. L. Qi, & S. C. Zhang, The quantum spin Hall effect and topological insulators. Phys. Today 63, 33–38 (2010). [40] K. Sun, & E. Fradkin, Time-reversal symmetry breaking and spontaneous anomalous Hall effect in Fermi fluids. Phys. Rev. B 78, 245122 (2008). [41] L. Šmejkal et al. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020). [42] N. Stefanakis, Charge current in a ferromagnet-superconductor junction with the pairing state of broken time-reversal symmetry. Phys. Rev. B 64, 224502 (2001). [43] S. Das Sarma, & E.H. Hwang, Collective Modes of the Massless Dirac Plasma. Phys. Rev. Lett. 102, 206412 (2009). [44] N. P. Armitage, E. J. Mele, & A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018). [45] O. Vafek, & A. Vishwanath, Dirac Fermions in Solids: From High-Tc Cuprates and Graphene to Topological Insulators and Weyl Semimetals. Annu. Rev. Condens. Matter Phys. 5, 83-112 (2014). [46] H. Weyl, Elektron und Gravitation. Z. Phys. 56, 330–352 (1929). [47] Y. Zhang, et al. First-principles study of the low-temperature charge density wave phase in the quasi-one-dimensional Weyl chiral compound. Phys. Rev. B 101, 174106 (2020). [48] S. M. Huang, et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015). [49] B. Q. Lv, et al. Observation of Weyl nodes in TaAs. Nature Phys. 11, 724–727 (2015). [50] C. C. Lee, et al. Fermi surface interconnectivity and topology in Weyl fermion semimetals TaAs, TaP, NbAs, and NbP. Phys. Rev. B 92, 235104 (2015). [51] N. W. Ashcroft & N. D. Mermin, Solid State Physics. (Chapter 17, Beyond the Independent Electron Approximation; Brooks/Cole Cengage Learning, Belmont USA, 1976) [52] G. Y. Hu, & R. F. O’Connell, Generalization of the Lindhard dielectric function to include fluctuation effects. Phys. Rev. B 40, 3600-3604 (1989). [53] G. Grüner, Density waves in solids (Perseus Publishing, Cambridge, Massachusetts, 1994). [54] K. Rossnagel. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Condens. Matter Phys. 23, 213001 (2011). [55] C. Chen. On the Nature of Charge Density Waves, Superconductivity and Their Interplay in 1T-TiSe2. Springer Nature (2019). [56] D. I. Khomskii. Basic aspects of the quantum theory of solids: order and elementary excitations. Cambridge University Press (2010). [57] R. E. Peierls. Quantum theory of solids. oxford UP. London, England, (1955). [58] S. Hellmann, et al. Ultrafast Melting of a Charge-Density Wave in the Mott Insulator 1T-TaS2. Phys. Rev. Lett. 105, 187401 (2010). [59] H. Fröhlich. On the theory of superconductivity: the one-dimensional case. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 223, 296–305, (1954). [60] E. J. Woll Jr & W. Kohn. Images of the Fermi surface in phonon spectra of metals. Phys. Rev. 126, 1693 (1962). [61] M. D. Johannes, I. I. Mazin, & C. A. Howells, Fermi-surface nesting and the origin of the chargedensity wave in NbSe2. Phys. Rev. B 73, 205102 (2006). [62] J. Bardeen, L. N. Cooper, & J. R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175 (1957). [63] W. L. McMillan, Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331 (1968). [64] W. L. McMillan, Collective modes of a charge-density wave near the lock-in transition. Phys. Rev. B 16, 4655, (1977). [65] B. I. Halperin, & T. M. Rice, Possible anomalies at a semimetal-semiconductor transistion. Rev. Mod. Phys. 40, 755 (1968). [66] I. Langmuir, Proc. Nat. Acad. Sci 14, 627 (1926). [67] D. Pines, Elementary Excitations in Solids, Benjamin (1964). [68] D. Pines, & Ph. Nozieres, The Theory of Quantum Liquids, Benjamin (1966). [69] H. Raether, Excitations of Plasmons and Interband Transitions by Electrons. (Springer-Verlag, Berlin Heidelberg New York, 1980). [70] J. Hunt, EELS imaging and analysis school 2003. [71] L. V. Keldysh, D. A. Kirshnits, & A. A. Maradudin, The dielectric function of condensed systems, North Holland (1989). [72] M. Dressel, & G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter. (CambridgeUniversity Press, Cambridge, 2002). [73] P. Drude, Zur Elektronentheorie der Metalle. Ann. Phys. 306, 566-613(1900). [74] M. Dressel, & M. Scheffler, Verifying the Drude response. Ann. Phys. 518, 535-544 (2006). [75] C, John. "Lorentz Oscillator Model". Brigham Young University, Department of Physics & Astronomy. Brigham Young University (2020). [76] A. F. J. Levi, The Lorentz oscillator model, Essential Classical Mechanics for Device Physics (2016). [77] C. F. Bohren, & D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 9. [78] G. Botton, & J.C.H. Spence. Science of microscopy (Springer Science+Business Media, LLC, 2007). [79] D. Stroppa, et al. High-Resolution Scanning Transmission Electron Microscopy (HRSTEM) Techniques: High-Resolution Imaging and Spectroscopy Side by Side. Chemphyschem. 13, 437 (2012). [80] C. Jeanguillaume, & C. Colliex, Spectrum-image: The next step in EELS digital acquisition and processing. Ultramicroscopy 28, 252 (1989). [81] G. Balossier et al. Parallel EELS elemental mapping in scanning transmission electron microscopy: use of the difference methods. Microsc. Microanal. Microstruct. 2, 531 (1991). [82] P.E. Batson, Simultaneous STEM imaging and electron-loss spectroscopy with atomic-column sensitivity. Nature 366, 727 (1993). [83] O. Scherzer Optil 2, 114 (1947). [84] M.Haider et al. A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 53 (1998). [85] R. Leary, & R. Brydson. Chromatic Aberration Correction: The Next Step in Electron Microscopy. Adv. Imaging Electron Phys. 165, 73-130 (2011). [86] B. DiBartolo, et al. Collective Excitation in Solids, Nato ASI Series B 88, Plenum (1981). [87] J. Fink, Recent Developments in Energy-Loss-Spectroscopy. Adv. in Electronics and El. Physics. 75, Academic Press, (1985). [88] S.E. Schnatterly, Inelastic electron scattering spectroscopy. Solid State Physics 34, 275 (1979). [89] S. Wang, et al. Pressure-induced superconductivity in the quasi-one-dimensional charge density wave material CuTe. Phys. Rev. B 103, 134518 (2021). [90] H. Zhong, et al. Hidden charge density wave induced shadow bands and ultrafast dynamics of CuTe investigated using time-resolved ARPES. Phys. Rev. B 109, 165411 (2024). [91] R. S. Li, et al. Optical spectroscopy and ultrafast pump-probe study of a quasi-one-dimensional charge density wave in CuTe. Phys. Rev. B 105, 115102 (2022). [92] X, Zhu, et al. Classification of charge density waves based on their nature. Proc. Natl. Acad. Sci. 112, 2367-2371 (2015). [93] M.D. Johannes, & II Mazin, Fermi surface nesting and the origin of charge density waves in metals. Phys. Rev. B 77, 165135 (2008). [94] M.D. Johannes, II Mazin, & C.A. Howells, Fermi-surface nesting and the origin of the charge-density wave in NbSe2. Phys. Rev. B 73, 205102 (2006). [95] C. N. Kuo, et al. Transport and thermal behavior of the charge density wave phase transition in CuTe. Phys. Rev. B 102, 155137 (2020). [96] K. Zhang, et al. Evidence for a Quasi-One-Dimensional Charge Density Wave in CuTe by Angle-Resolved Photoemission Spectroscopy. Phys. Rev. Lett. 121,206402 (2018). [97] K. Stolze, et al. CuTe: Remarkable Bonding Features as a Consequence of a Charge Density Wave. Chem. Int. Ed. 52, 862 (2013). [98] Tsui, Y. K. et al. Current direction dependent magnetotransport in CuTe. Phys. Rev. B 108, 115162 (2023). [99] M. Nord, et al. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv Struct Chem Imag. 3, 9 (2017). [100] J.M. LeBeau, et al. Standardless atom counting in scanning transmission electron microscopy. Nano. Lett. 10, 4405–4408 (2010). [101] S.M. Anthony, & S. Granick, Image analysis with rapid and accurate two-dimensional Gaussian fitting. Langmuir 25, 8152–8160 (2009). [102] S. Kim, B. Kim, & K. Kim, Role of Coulomb correlations in the charge density wave of CuTe. Phys. Rev. B 100, 054112 (2019). [103] N. N. Quyen, et al. Three-dimensional ultrafast charge-density-wave dynamics in CuTe. Nat. Commun. 15, 2386 (2024). [104] S. Wang, et al. Observation of room-temperature amplitude mode in quasi-one-dimensional charge-density-wave material CuTe. Appl. Phys. Lett. 120, 151902 (2022). [105] K. Stolze, et al. CuTe: Remarkable Bonding Features as a Consequence of a Charge Density Wave. Chem. Int. Ed. 52, 862 (2013). [106] P. Cudazzo, & L. Wirtz, Collective electronic excitations in charge density wave systems: The case of CuTe. Phys. Rev. B 104, 125101 (2021). [107] E. Runge. & E. K. U. Gross, Density-function theory for time-dependent systems. Phys. Rev. Lett. 52, 997 (1984). [108] G. Onida, L. Reining, & A. Rubio, Electronic excitations: density-functional versus many-body Green’s-function approached. Rev. Mod. Phys. 74, 601 (2002). [109] W. Kohn, & L. J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965). [110] M. Campetella, et al. Electron-phonon driven charge density wave in CuTe. Phys. Rev. B 108, 024304 (2023). [111] S. Pezzini, et al. Unconventional mass enhancement around the Dirac nodal loop in ZrSiS. Nat. Phys. 14, 178-183 (2018). [112] Y. Shao, et al. Electronic correlations in nodal-line semimetals. Nat. Phys. 16, 636 (2020). [113] P. M. latzman, & P. A. Wolff, Waves and Interactions in Solid State Plasma. (Academic Press, New York and London, 1973). [114] Z. Lin, et al. Dramatic plasmon response to the charge-density-wave gap development in 1T-TiSe2. Phys. Rev. Lett. 129, 187601 (2022). [115] G. Li, et al. Anomalous metallic state of Cu0.07TiSe2: an optical spectroscopy study. Phys. Rev. Lett. 99, 167002 (2007). [116] P. Lambin, J. P. Vigneron, & A. Lucas, Computation of the surface electron-energy-loss spectrum in specular geometry for an arbitrary plane-stratified medium. Comput. Phys. Commun. 60, 351 (1990). [117] G. Campagnoli, et al. Plasmon behavior at the charge-density-wave onset in 2H-TaSe2. Phys. Rev. B 20, 2217-2227 (1979). [118] N. Nücker, et al. Long-wavelength collective excitations of charge carriers in high-Tc superconductors. Phys. Rev. B 44, 7155-7158 (1991). [119] A. Politano, et al. 3D Dirac plasmons in the type-II Dirac semimetal PtTe2. Phys. Rev. Lett. 121, 086804 (2018). [120] S. Xue, et al. Observation of nodal-line plasmons in ZrSiS. Phys. Rev. Lett. 127, 186802 (2021). [121] N. Nücker, et al. Plasmons and interband transitions in Bi2Sr2CaCu2O8. Phys. Rev. B 39, 12379-12382 (1989). [122] Sing, M. et al. Plasmon excitations in quasi-one-dimensional K0.3MoO3. Phys. Rev. B 59, 5414-5425 (1999) [123] A. Kogar, et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314-1317 (2017). [124] R. Schuster, et al. Negative plasmon dispersion in the transition-metal dichalcogenide 2H-TaSe2. Phys. Rev. B 79, 045134 (2009). [125] J. Van Wezel, et al. Effect of charge order on the plasmon dispersion in t ransition-metal dichalcogenides. Phys. Rev. Lett. 107, 176404 (2011). [126] P. Cudazzo, M. Gatti, & A. Rubio, Plasmon dispersion in layered transition-metal dichalcogenides. Phys. Rev. B 86, 075121 (2012). [127] P. Cudazzo, et al. Negative plasmon dispersion in 2H-NbS2 beyond the charge-density-wave interpretation. New J. Phys. 18, 103050 (2016). [128] M. Sing, et al. Unusual plasmon dispersion in the quasi-one-dimensional conductor (TaSe4)2I: experiment and theory. Phys. Rev. B 57, 12768-12771 (1998). [129] N. Nücker, et al. Symmetry of holes in high-Tc superconductors. Phys. Rev. B 36, 6619 (1989). [130] S Das Sarma, & Hwang, E. H. Collective modes of the massless Dirac plasma. Phys. Rev. Lett. 102, 206412 (2009). [131] L. P. He, et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2. Phys. Rev. Lett. 113, 246402 (2014). [132] D. C. Elias, et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 701-704 (2011). [133] Reimer, L. Transmission Electron Microscopy (Chapter 7, Theory of Electron Diffraction; 4th edition, Springer, Berlin, 1997). [134]K.A. Mkhoyan, et al. Separation of bulk and surface-losses in low-loss EELS measurements in STEM. Ultramicroscopy 107, 345-355 (2006). [135]A. Gloter, et al. Improving energy resolution of EELS spectra: an alternative to the monochromator solution. Ultramicroscopy 96, 385-400 (2003). [136] K. Ishizuka, K. Kimoto, & Y. Bando, Improving energy resolution of EELS spectra by deconvolution using maximum-entropy and Richardson-Lucy algorithms. Microsc. Microanal. 9 (Suppl. 2), 832-833 (2003). [137] S. A. Kivelson, et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201-1241 (2003). [138] C. Monney, et al. Dramatic effective mass reduction driven by a strong potential of competing periodicity. Europhysics Lett. 92, 47003 (2010). [139] M, Imada, A. Fujimori, & Y. Tokura, Metal-insulator transitions. Rev. Mod. Phys. 70, 1039-1263 (1998). [140] I. C. Lin, et al. Atomic-scale observation of spontaneous hole doping and concomitant lattice instabilities in strained nickelate films. New J. Phys. 24, 023011 (2022). [141]M. -W. Chu, et al. Probing charge order and hidden topology at the atomic scale by cryogenic scanning transmission electron microscopy and spectroscopy. Phys. Rev. B 103, 115130 (2021). [142]C.-P. Chang, et al. Atomic-scale observation of a graded polar discontinuity and a localized two-dimensional electron density at an insulating oxide interface. Phys. Rev. B 87, 075129 (2013). [143] P.-W. Lee, et al. Hidden lattice instabilities as origin of the conductive interface between insulating LaAlO3 and SrTiO3. Nat. Commun. 7, 12773 (2016). [144]K. Lyon, et al. Theory of magnon diffuse scattering in scanning transmission electron microscopy. Phys. Rev. B 104, 214418 (2021). [145] B. G. Mendis, Quantum theory of magnon excitation by high energy electron beams. Ultramicroscopy 239, 113548 (2022). [146] J. A. Do Nascimento, et al. Theory of momentum-resolved magnon electron energy loss spectra: the case of yttrium iron garnet. Preprint at https://doi.org/10.48550/arXiv.2401.12302 (2024) | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96827 | - |
dc.description.abstract | 隨著量子材料的出現,越來越多有趣的性質開始被大家研究並檢視。近年來,擁有在對稱保護下表現線性色散能帶的拓樸半金屬引起了大家的注意,這樣特殊的能帶結構,會造成特別的電荷屏蔽效應。我們利用電荷響應函數(Charge Response Function)去計算電磁易感率(Susceptibility)特別是電荷密度波(CDW)存在於材料中的情況,可幫助我們了解拓樸量子材料中有趣的電子結構。在本論文中,我們利用動量解析電子能量損失光譜(q-EELS)以及古典電漿子(plasmon)色散關係去偵測並且計算材料中載子的有效質量和費米速度,我們發現在碲化銅(CuTe)中,載子的有效質量和費米速度隨著電荷密度波序化的增強而分別變輕和增快,這與一般擁有電荷密度波的材料所表現的行為相反,也是本論文想要探討的主要目標。
在第一章中,我們對於量子材料和電荷屏蔽效應進行簡單的介紹,我們藉由對稱性的觀點切入量子材料,分別由反對稱中心和時間反演對稱中心以及破壞對於狄拉克(Dirac)和外爾(Weyl)費米子進行探討;我們也在電荷屏蔽的章節裡,簡單介紹電荷密度波、電漿子以及德汝德-勞倫茲模型(Drude-Lorentz Model)。在第二章,我們詳細的闡述掃瞄式穿透電子顯微鏡以及動量解析電子能量損失光譜的原理和應用。在第三章中,我們討論了關於碲化銅在動量解析電子能量損失光譜的結果,在不同動量空間下的光譜中,我們可以利用電漿子的色散關係得到相關載子的有效質量和費米速度,在碲化銅中,主要載子來源於線性色散能帶的輕電子以及與其垂直方向的重電洞。 在第四章中,我們探討在不同溫度下的動量解析電子能量損失光譜的實驗結果,因為隨著溫度低於電荷密度波相轉變溫度,電荷密度波序化會隨著溫度降低而增強,我們可以觀察電荷密度波序化增強與載子的關係。在室溫時,線性色散能帶的電子,同時也是與電荷密度波序化相關的載子,其有效質量約為0.28倍的電子靜止質量(m0),而其費米速度則約為光速的0.005倍。隨著溫度的降低和電荷密度波序化的增強,我們發現輕電子的有效質量變得更輕並且費米速度變得更快。在溫度到100 K時,載子的有效質量和費米速度相對於室溫時,變輕和增快約百分之20。我們推測,造成這樣的原因,是因為線性色散的能帶在低溫下進行能帶的重整化(Band Renormalization),使得能帶變的更陡峭,進而導致載子的有效質量變輕,以其費米速度增快。 電荷密度波隨著不同溫度下的序化現象在材料中有著重要的地位,碲化銅是一個適合針對電荷密度波以及弱相關系統進行研究的材料,而在適當的條件下,動量解析電子能量損失光譜更可以助於我們瞭解材料內的物理現象以及計算重要的物理參數,我們期待在更多擁有豐富物理性質的材料上,利用動量解析電子能量損失光譜獲得更加有趣的實驗結果。 | zh_TW |
dc.description.abstract | With the rapid advances discovery in various systems, quantum materials have aroused lots of attention in the field. Recently, topological semimetals featuring symmetry-protected crossing of linearly dispersing bands in the bulk electronic structure has gained growing attentions in the investigation of the electronic screening due to a finite density of states. Those unique material systems become interested with the concept of the matters susceptible to electronic ordering, where charge density waves (CDWs) are pervasive orders in the systems. The capability to probe the carrier density near the Fermi level inside the CDW systems in topological quantum matters allows a direct unveiling observation of the electronic structure.
This Ph.D. thesis has been dedicated to the momentum-dependent electron energy loss spectroscopy (q-EELS) on probing the effective mass and the Fermi velocity without further experiment setup. The reduced effective mass and the enhanced Fermi velocity in our CuTe system with CDW order growing exhibits an inverse result to the usual CDW systems. A general introduction to the quantum materials and the charge response phenomena is presented in Chapter 1 and the experimental elucidation is addressed in Chapter 2. In Chapter 3, we show the q-EELS experimental result on the CuTe crystal, where we can obtain the effective mass and the Fermi velocity using the classical plasmon dispersion relation. We can simultaneously capture the effective mass and the Fermi velocity of the related, practically linearly dispersing electron and the counterpart of heavy-hole carrier. In Chapter 4, we show the temperature dependent q-EELS experiment across the transition temperature 335 K (TCDW, CDW transition temperature) to help to observe the change followed the CDW order growth. The effective mass of practically linearly dispersing electron relating to CDW gap opening is 0.28 m0 (m0, the electron rest mass) and the Fermi velocity is approximate 0.005 c (c, the speed of light) at room temperature. Following the CDW order growth, the electrons becomes lighter and moves faster by ~20% toward to 100 K. Thorough inspection below TCDW unveils the essential role of the increasing opening of the CDW gap. CuTe is a rich platform for the exploration of CDW and weak-coupled correlation physics with q-EELS as a useful tool for probing the associated fundamental properties. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:44:00Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-21T16:44:00Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 i
Abstract iii Content v List of Figures viii List of Tables xv Chapter 1 Introduction 1 1.1 Quantum Materials 1 1.1.1 Inversion symmetry and its breaking 3 1.1.2 Time-reversal symmetry and its breaking 5 1.1.3 Dirac and Weyl fermions in quantum materials 7 1.1.4 Summary 9 1.2 Fundamental in Charge Screening 10 1.2.1 Charge screening and the Lindhard response function 11 1.2.2 Static limit and Charge Density Wave (CDW) 13 1.2.3 Long-wavelength limit and Plasmon 20 1.2.4 Drude model and Drude-Lorentz model 23 1.3 Summary 29 Chapter 2 Experimental method 30 2.1 Scanning Transmission Electron Microscopy (STEM) 30 2.1.1 Introduction to STEM 30 2.1.2 Spherical aberration correction (Cs-corrector) 33 2.2 Electron Energy Loss Spectroscopy (EELS) 35 2.3 Momentum-Dependent Electron Energy Loss Spectroscopy (q-EELS) 37 Chapter 3 The Electronic Structure and the Momentum-Dependent Electron Energy Loss Spectroscopy (q-EELS) Probing on Copper Telluride (CuTe) 39 3.1 Introduction of CuTe 39 3.2 Experimental Procedure 41 3.2.1 Sample Preparation of CuTe 41 3.2.2 Atom Displacement Calculation by Atomap 43 3.2.3 q-EELS Experiment Setup 47 3.3 Results and Discussion 49 3.3.1 The Crystalline and Electronic Structure of CuTe 49 3.3.2 Capturing Effective Mass (m*) and Fermi Velocity (vF) of the Te-px Light Electrons and the Te-py Heavy Holes. 54 3.4 Conclusion 76 Chapter 4 The Temperature Dependent q-EELS Measurement and STEM-EELS Chemical Analysis on CuTe 77 4.1 introduction 77 4.2 Experimental procedure 79 4.3 Results and Discussion 80 4.3.1 Reduced Effective Mass (m*) and Enhanced Fermi Velocity (vF) of the Te-px Light-Electrons below TCDW and the BCS Weak Coupling CDW. 80 4.3.2 The weak, frozen CDW potential below TCDW and the linear-band renormalization in graphene. 90 4.4 Conclusion 98 Chapter 5 Conclusion 100 Reference 102 | - |
dc.language.iso | en | - |
dc.title | 碲化銅中增強的波動狀電荷密度波序化促進電子的加速與輕化 | zh_TW |
dc.title | The Growing Charge-Density-Wave Order in CuTe Lightens and Speeds up Electrons | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.coadvisor | 朱明文 | zh_TW |
dc.contributor.coadvisor | Ming-Wen Chu | en |
dc.contributor.oralexamcommittee | 呂欽山;羅志偉;薛宏中 | zh_TW |
dc.contributor.oralexamcommittee | Chin-Shan Lue;Chih-Wei Luo;Hung-Chung Hsueh | en |
dc.subject.keyword | 碲化銅,電荷密度波,電漿子色散關係,介電函數,德汝德-勞倫茲模型,動量解析電子能量損失光譜, | zh_TW |
dc.subject.keyword | Copper Telluride (CuTe),Charge Density Wave,Plasmon Dispersion,Dielectric Function,Drude-Lorentz Model,Momentum-Dependent Electron Energy Loss Spectroscopy, | en |
dc.relation.page | 114 | - |
dc.identifier.doi | 10.6342/NTU202404787 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-01-02 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 分子科學與技術國際研究生博士學位學程 | - |
dc.date.embargo-lift | 2025-02-22 | - |
顯示於系所單位: | 分子科學與技術國際研究生博士學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 3.98 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。