請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96818
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 趙福杉 | zh_TW |
dc.contributor.advisor | Fu-Shan Jaw | en |
dc.contributor.author | 謝向傑 | zh_TW |
dc.contributor.author | Hsiang-Chieh Hsieh | en |
dc.date.accessioned | 2025-02-21T16:41:24Z | - |
dc.date.available | 2025-02-22 | - |
dc.date.copyright | 2025-02-21 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-01-03 | - |
dc.identifier.citation | 1. Tull F, Borrelli Jr J. Soft-tissue injury associated with closed fractures: evaluation and management. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2003;11(6):431-8.
2. Miller AG, Margules A, Raikin SM. Risk factors for wound complications after ankle fracture surgery. JBJS. 2012;94(22):2047-52. 3. Holm B, Kristensen MT, Bencke J, Husted H, Kehlet H, Bandholm T. Loss of knee-extension strength is related to knee swelling after total knee arthroplasty. Archives of physical medicine and rehabilitation. 2010;91(11):1770-6. 4. Loyd BJ, Stackhouse S, Dayton M, Hogan C, Bade M, Stevens-Lapsley J. The relationship between lower extremity swelling, quadriceps strength, and functional performance following total knee arthroplasty. The Knee. 2019;26(2):382-91. 5. Noble PC, Conditt MA, Cook KF, Mathis KB. The John Insall Award: Patient expectations affect satisfaction with total knee arthroplasty. Clinical Orthopaedics and Related Research (1976-2007). 2006;452:35-43. 6. O Driscoll SW, Giori NJ. Continuous passive motion (CPM): theory and principles of clinical application. Journal of rehabilitation research and development. 2000;37(2):179-88. 7. Yau LK, Henry F, Man Hong C, Amy C, Wai Kwan Vincent C, Ping Keung C, et al. Swelling assessment after total knee arthroplasty. Journal of Orthopaedic Surgery. 2022;30(3):10225536221127668. 8. Schaser KD, Vollmar B, Menger MD, Schewior L, Kroppenstedt SN, Raschke M, et al. In vivo analysis of microcirculation following closed soft‐tissue injury. Journal of orthopaedic research. 1999;17(5):678-85. 9. Bakar Y, Özdemir Ö, Sevim S, Duygu E, Tuğral A, Sürmeli M. Intra-observer and inter-observer reliability of leg circumference measurement among six observers: a single blinded randomized trial. Journal of medicine and life. 2017;10(3):176. 10. Riedel MD, Parker A, Zheng M, Briceno J, Staffa SJ, Miller CP, et al. Correlation of soft tissue swelling and timing to surgery with acute wound complications for operatively treated ankle and other lower extremity fractures. Foot & Ankle International. 2019;40(5):526-36. 11. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clinical nutrition. 2004;23(5):1226-43. 12. van der Sande FM, van de Wal-Visscher ER, Stuard S, Moissl U, Kooman JP. Using bioimpedance spectroscopy to assess volume status in dialysis patients. Blood purification. 2020;49(1-2):178-84. 13. Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis–clinical relevance and applicability of impedance parameters. Clinical nutrition. 2012;31(6):854-61. 14. King RJ, Clamp JA, Hutchinson JW, Moran CG. Bioelectrical impedance: a new method for measuring post-traumatic swelling. Journal of orthopaedic trauma. 2007;21(7):462-8. 15. Vanderkarr MF, Ruppenkamp JW, Vanderkarr M, Parikh A, Holy CE, Putnam M. Incidence, costs and post-operative complications following ankle fracture–A US claims database analysis. BMC Musculoskeletal Disorders. 2022;23(1):1129. 16. Munk S, Jensen NJ, Andersen I, Kehlet H, Hansen TB. Effect of compression therapy on knee swelling and pain after total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy. 2013;21(2):388-92. 17. Wyatt PB, Nelson CT, Cyrus JW, Goldman AH, Patel NK. The role of cryotherapy after total knee arthroplasty: a systematic review. The Journal of Arthroplasty. 2023;38(5):950-6. 18. Lu H, Shao Q, Li W, Li F, Xiong W, Li K, et al. Effects of manual lymphatic drainage on total knee replacement: a systematic review and meta-analysis of randomized controlled trials. BMC Musculoskeletal Disorders. 2024;25(1):30. 19. Wickline A, Cole W, Melin M, Ehmann S, Aviles F, Bradt J. Mitigating the Post-Operative Swelling Tsunami in Total Knee Arthroplasty: A Call to Action. Journal of Orthopaedic Experience & Innovation. 2023. 20. Yue C, Zhang X, Zhu Y, Jia Y, Wang H, Liu Y. Systematic review of three electrical stimulation techniques for rehabilitation after total knee arthroplasty. The journal of arthroplasty. 2018;33(7):2330-7. 21. Hamblin MR. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS biophysics. 2017;4(3):337. 22. Zungu IL, Hawkins Evans D, Abrahamse H. Mitochondrial responses of normal and injured human skin fibroblasts following low level laser irradiation—an in vitro study. Photochemistry and Photobiology. 2009;85(4):987-96. 23. da Silva TG, Ribeiro RS, Mencalha AL, de Souza Fonseca A. Photobiomodulation at molecular, cellular, and systemic levels. Lasers in Medical Science. 2023;38(1):136. 24. De Oliveira MF, Johnson DS, Demchak T, Tomazoni SS, Ernesto C. Low-intensity LASER and LED (photobiomodulation therapy) for pain control of the most common musculoskeletal conditions. European journal of physical and rehabilitation medicine. 2022;58(2):282. 25. Huang Y-Y, Chen AC-H, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose-response. 2009;7(4):dose-response. 09-027. Hamblin. 26. Leal ECP, Lopes-Martins RÁB, Frigo L, De Marchi T, Rossi RP, De Godoi V, et al. Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. journal of orthopaedic & sports physical therapy. 2010;40(8):524-32. 27. Bjordal JM, Couppé C, Chow RT, Tunér J, Ljunggren EA. A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. Australian journal of physiotherapy. 2003;49(2):107-16. 28. Beckerman H, de Bie RA, Bouter LM, De Cuyper HJ, Oostendorp RA. The efficacy of laser therapy for musculoskeletal and skin disorders: a criteria-based meta-analysis of randomized clinical trials. Physical therapy. 1992;72(7):483-91. 29. Atik OS. Photobiomodulation for Achilles Tendinopathy. Photomedicine and laser surgery. 2017;36(1):1-2. 30. Ahmad MA, Hamid MSA, Yusof A. Effects of low-level and high-intensity laser therapy as adjunctive to rehabilitation exercise on pain, stiffness and function in knee osteoarthritis: a systematic review and meta-analysis. Physiotherapy. 2022;114:85-95. 31. Stausholm MB, Naterstad IF, Joensen J, Lopes-Martins RÁB, Sæbø H, Lund H, et al. Efficacy of low-level laser therapy on pain and disability in knee osteoarthritis: systematic review and meta-analysis of randomised placebo-controlled trials. BMJ open. 2019;9(10):e031142. 32. Langella LG, Casalechi HL, Tomazoni SS, Johnson DS, Albertini R, Pallotta RC, et al. Photobiomodulation therapy (PBMT) on acute pain and inflammation in patients who underwent total hip arthroplasty—a randomized, triple-blind, placebo-controlled clinical trial. Lasers in medical science. 2018;33:1933-40. 33. Bahrami H, Moharrami A, Mirghaderi P, Mortazavi SMJ. Low-level laser and light therapy after total knee arthroplasty improves postoperative pain and functional outcomes: a three-arm randomized clinical trial. Arthroplasty Today. 2023;19:101066. 34. Pichonnaz C, Bassin J-P, Lécureux E, Currat D, Jolles BM. Bioimpedance spectroscopy for swelling evaluation following total knee arthroplasty: a validation study. BMC Musculoskeletal Disorders. 2015;16:1-8. 35. Riga M, Altsitzioglou P, Saranteas T, Mavrogenis AF. Enhanced recovery after surgery (ERAS) protocols for total joint replacement surgery. SICOT-J. 2023;9. 36. Yamada Y, Yoshida T, Murakami H, Kawakami R, Gando Y, Ohno H, et al. Phase angle obtained via bioelectrical impedance analysis and objectively measured physical activity or exercise habits. Scientific reports. 2022;12(1):17274. 37. Akamatsu Y, Kusakabe T, Arai H, Yamamoto Y, Nakao K, Ikeue K, et al. Phase angle from bioelectrical impedance analysis is a useful indicator of muscle quality. Journal of cachexia, sarcopenia and muscle. 2022;13(1):180-9. 38. Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: Visual analog scale for pain (vas pain), numeric rating scale for pain (nrs pain), mcgill pain questionnaire (mpq), short‐form mcgill pain questionnaire (sf‐mpq), chronic pain grade scale (cpgs), short form‐36 bodily pain scale (sf‐36 bps), and measure of intermittent and constant osteoarthritis pain (icoap). Arthritis care & research. 2011;63(S11):S240-S52. 39. Lisi C, Caspani P, Bruggi M, Carlisi E, Scolè D, Benazzo F, et al. Early rehabilitation after elective total knee arthroplasty. Acta Bio Medica: Atenei Parmensis. 2017;88(Suppl 4):56. 40. Sattler L, Hing W, Vertullo C. Changes to rehabilitation after total knee replacement. Australian journal of general practice. 2020;49(9):587-91. 41. Konnyu KJ, Thoma LM, Cao W, Aaron RK, Panagiotou OA, Bhuma MR, et al. Rehabilitation for total knee arthroplasty: a systematic review. American journal of physical medicine & rehabilitation. 2023;102(1):19-33. 42. Loyd BJ, Kittelson AJ, Forster J, Stackhouse S, Stevens-Lapsley J. Development of a reference chart to monitor postoperative swelling following total knee arthroplasty. Disability and Rehabilitation. 2020;42(12):1767-74. 43. Bennell K, Dobson F, Hinman R. Measures of physical performance assessments: self‐paced walk test (SPWT), stair climb test (SCT), six‐minute walk test (6MWT), chair stand test (CST), timed up & go (TUG), sock test, lift and carry test (LCT), and car task. Arthritis care & research. 2011;63(S11):S350-S70. 44. Gacto-Sánchez M, Lozano-Meca JA, Lozano-Guadalajara JV, Montilla-Herrador J. Concurrent validity of the 2-and 6-minute walk test in knee osteoarthritis. The Knee. 2023;43:34-41. 45. Ezzati K, Fekrazad R, Raoufi Z. The effects of photobiomodulation therapy on post-surgical pain. Journal of lasers in medical sciences. 2019;10(2):79. 46. Rezende MUd, Varone BB, Martuscelli DF, Ocampos GP, Freire GMG, Pinto NC, et al. Pilot study of the effect of therapeutic photobiomodulation on postoperative pain in knee arthroplasty. Brazilian Journal of Anesthesiology. 2022;72:159-61. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96818 | - |
dc.description.abstract | 腫脹是創傷後損傷和手術後常見的問題,對患者的治療效果和康復有顯著影響。本論文探討了在下肢骨折和全膝關節置換術兩種臨床狀況中,評估和處理腫脹的創新方法。
本研究主要有兩個部分,第一部分研究了生物阻抗分析作為評估急性踝關節骨折後腫脹的非侵入性工具的應用。腫脹由急性發炎和微血管通透性上升引起,會延遲手術時機並增加併發症風險。在19名急性踝關節骨折患者中,使用多頻率生物阻抗分析(5–200 kHz)和周徑測量,每12小時進行一次測量,直到手術為止。結果顯示,阻抗值與周徑變化之間具有顯著相關性(r = 0.736),且患肢與健側肢阻抗比值的下降反映了腫脹的惡化。併發症患者的術前阻抗比值較低(0.69比0.82),表明生物阻抗分析是監測軟組織健康的可靠且量化的工具。 第二部分評估了光生物調節療法在減少術後腫脹及改善全膝關節置換患者康復中的作用。在一項隨機對照試驗中,光生物調節療法組每天接受波長為650 nm和850 nm的光療,同時接受標準術後復健。使用生物阻抗分析評估腫脹,並通過2分鐘步行測試、疼痛視覺類比量表和膝關節主動活動範圍測量功能結果。在術後第6天,光生物調節療法組的阻抗比值和2分鐘步行測試距離(27公尺比16公尺,p = 0.009)顯著改善,表明腫脹減輕和行動能力提高。 本研究證實了生物阻抗分析和光生物調節療法作為監測下肢骨折和全膝關節置換術後腫脹的先進工具的潛力。生物阻抗分析能提供精確的腫脹評估,而光生物調節療法能減少水腫並加速康復。這些結果支持將此類技術整合到臨床實踐中以改善患者治療效果,並建議進一步進行大規模研究以驗證其效果。 | zh_TW |
dc.description.abstract | Swelling, a critical concern following post-traumatic injuries and surgical procedures, significantly impacts patient outcomes and recovery strategies. This dissertation explores innovative approaches to evaluate and manage swelling in two clinical contexts: lower leg fractures and total knee arthroplasty (TKA).
The first part investigates the use of bioimpedance analysis (BIA) as a non-invasive tool for assessing post-traumatic swelling in 19 patients with acute ankle fractures. Swelling, driven by inflammatory and microvascular responses, delays surgical intervention and increases complications. Multifrequency BIA (5–200 kHz) and circumferential measurements were performed at 12-hour intervals prior to surgery. Results revealed a strong correlation (r = 0.736) between impedance and circumferential changes, with declining impedance ratios reflecting worsening swelling. Complications were associated with lower preoperative impedance ratios (0.69 vs. 0.82), highlighting BIA as a reliable, quantifiable method for monitoring soft tissue health. The second part evaluates photobiomodulation therapy (PBMT) in reducing postoperative swelling and enhancing recovery in 30 TKA patients. In a randomized controlled trial, the PBMT group received daily light therapy (650 nm and 850 nm wavelengths) alongside standard care. Swelling was assessed using BIA, while functional outcomes were measured through the 2-minute walk test (2MWT), visual analog scale (VAS) for pain, and active range of motion (aROM). PBMT significantly improved impedance ratios and 2MWT distances (27 m vs. 16 m, p = 0.009) by postoperative day 6, indicating reduced swelling and enhanced mobility. This research demonstrates the potential of BIA and PBMT as advanced tools for managing swelling in lower leg fractures and TKA. BIA provides precise swelling assessment, while PBMT reduces edema and accelerates recovery. These findings support integrating these technologies into clinical practice to improve patient outcomes, warranting further large-scale studies for validation. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:41:24Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-21T16:41:24Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
中文摘要ii Abstract iii List of Figures v List of Tables vi Chapter 1. Introduction to Post-Traumatic and Post-Surgery Swelling......1 Chapter 2. Evaluation and Monitoring of Swelling.........................5 Chapter 3. Clinical Trial of BIA for Post-Traumatic Swelling of Patients with Ankle Fracture.....................................................10 Chapter 4. Methods for Swelling reduction...............................18 Chapter 5. Photobiomodulation Therapy in Total Knee Arthroplasty........24 Chapter 6. Conclusion and Future Expectation............................41 Reference...............................................................42 | - |
dc.language.iso | en | - |
dc.title | 光生物調節療法對全膝關節置換術腫脹改善 和恢復促進的影響 | zh_TW |
dc.title | The Impact of Photobiomodulation Therapy on Swelling Reduction and Recovery Enhancement in Total Knee Arthroplasty | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 謝建興;施博仁;江鴻生;吳冠彣 | zh_TW |
dc.contributor.oralexamcommittee | Jiann-Shing Shieh;Po-Jen Shih;Hong-sen Chiang;Kuan-Wen Wu | en |
dc.subject.keyword | 生物阻抗分析,光生物調節療法,腫脹處置,全膝關節置換術, | zh_TW |
dc.subject.keyword | bioimpedance analysis,photobiomodulation therapy,low-level laser therapy,swelling management,total knee arthroplasty, | en |
dc.relation.page | 45 | - |
dc.identifier.doi | 10.6342/NTU202500002 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-01-03 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 醫學工程學系 | - |
dc.date.embargo-lift | 2025-02-22 | - |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 1.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。