請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96816
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 童世煌 | zh_TW |
dc.contributor.advisor | Shih-Huang Tung | en |
dc.contributor.author | 游竹淋 | zh_TW |
dc.contributor.author | Jhu-Lin You | en |
dc.date.accessioned | 2025-02-21T16:40:51Z | - |
dc.date.available | 2025-02-22 | - |
dc.date.copyright | 2025-02-21 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-01-02 | - |
dc.identifier.citation | [1] 5G Devices Market Size, Share, and Trends 2024 to 2033, January 2024. https://www.precedenceresearch.com/5g-devices-market. (Accessed October 15 2024).
[2] 2023 Amendment to the Waste Framework Directive, 2023. https://environment.ec.europa.eu/topics/waste-and-recycling/waste-framework-directive_en. (Accessed October 15 2024). [3] 3D Printing Trend Report 2024, 2024. https://www.hubs.com/get/trends/. (Accessed October 15 2024). [4] M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, S. Magdassi, 3D Printing of Shape Memory Polymers for Flexible Electronic Devices, Advanced Materials (Deerfield Beach, Fla.) 28(22) (2015) 4449-4454. [5] K. Liang, S. Carmone, D. Brambilla, J.-C. Leroux, 3D printing of a wearable personalized oral delivery device: A first-in-human study, Science advances 4(5) (2018) eaat2544. [6] S. Bose, D. Ke, H. Sahasrabudhe, A. Bandyopadhyay, Additive manufacturing of biomaterials, Progress in materials science 93 (2018) 45-111. [7] L.R. Toleos Jr, N. Luna, M.C.E. Manuel, J.M.R. Chua, E.M.A. Sangalang, P.C. So, Feasibility study for Fused Deposition Modeling (FDM) 3D-printed propellers for unmanned aerial vehicles, International Journal of Mechanical Engineering and Robotics Research 9(4) (2020) 548-558. [8] C.H. Lee, J. Hajibandeh, T. Suzuki, A. Fan, P. Shang, J.J. Mao, Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex, Tissue Engineering Part A 20(7-8) (2014) 1342-1351. [9] A.D. Valentine, T.A. Busbee, J.W. Boley, J.R. Raney, A. Chortos, A. Kotikian, J.D. Berrigan, M.F. Durstock, J.A. Lewis, Hybrid 3D printing of soft electronics, advanced Materials 29(40) (2017) 1703817. [10] K. Pacewicz, A. Sobotka, Ł. Gołek, Characteristic of materials for the 3D printed building constructions by additive printing, MATEC Web of Conferences, EDP Sciences, 2018, p. 01013. [11] Y.F. Zhang, N. Zhang, H. Hingorani, N. Ding, D. Wang, C. Yuan, B. Zhang, G. Gu, Q. Ge, Fast‐response, stiffness‐tunable soft actuator by hybrid multimaterial 3D printing, Advanced Functional Materials 29(15) (2019) 1806698. [12] R. Chaudhary, P. Fabbri, E. Leoni, F. Mazzanti, R. Akbari, C. Antonini, Additive manufacturing by digital light processing: a review, Progress in Additive Manufacturing 8(2) (2023) 331-351. [13] A. Ambrosi, M. Pumera, 3D-printing technologies for electrochemical applications, Chemical society reviews 45(10) (2016) 2740-2755. [14] A. Ramya, S.L. Vanapalli, 3D printing technologies in various applications, International Journal of Mechanical Engineering and Technology 7(3) (2016) 396-409. [15] P. Ferretti, C. Leon-Cardenas, G.M. Santi, M. Sali, E. Ciotti, L. Frizziero, G. Donnici, A. Liverani, Relationship between FDM 3D printing parameters study: parameter optimization for lower defects, Polymers 13(13) (2021) 2190. [16] D. Espalin, D.W. Muse, E. MacDonald, R.B. Wicker, 3D Printing multifunctionality: structures with electronics, The International Journal of Advanced Manufacturing Technology 72 (2014) 963-978. [17] J. Cesarano III, P. Calvert, Freeforming objects with low-binder slurry. 2000, Google Patents (1992). [18] M. Saadi, A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Ikram, A.J. Hart, P.M. Ajayan, M.M. Rahman, Direct ink writing: a 3D printing technology for diverse materials, Advanced Materials 34(28) (2022) 2108855. [19] M. Schaffner, J.A. Faber, L. Pianegonda, P.A. Rühs, F. Coulter, A.R. Studart, 3D printing of robotic soft actuators with programmable bioinspired architectures, Nature communications 9(1) (2018) 878. [20] M. Cheng, A. Ramasubramanian, M.G. Rasul, Y. Jiang, Y. Yuan, T. Foroozan, R. Deivanayagam, M. Tamadoni Saray, R. Rojaee, B. Song, Direct ink writing of polymer composite electrolytes with enhanced thermal conductivities, Advanced Functional Materials 31(4) (2021) 2006683. [21] Y. Zhang, G. Shi, J. Qin, S.E. Lowe, S. Zhang, H. Zhao, Y.L. Zhong, Recent progress of direct ink writing of electronic components for advanced wearable devices, ACS applied electronic materials 1(9) (2019) 1718-1734. [22] Y. Kim, H. Yuk, R. Zhao, S.A. Chester, X. Zhao, Printing ferromagnetic domains for untethered fast-transforming soft materials, Nature 558(7709) (2018) 274-279. [23] B. Chen, W. Tang, T. Jiang, L. Zhu, X. Chen, C. He, L. Xu, H. Guo, P. Lin, D. Li, Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing, Nano energy 45 (2018) 380-389. [24] W. Meiners, K. Wissenbach, A. Gasser, Selective laser sintering at melting temperature, Google Patents, 2001. [25] J.S.H. Emanuel M. Sachs, Michael J. Cima, Paul A. Williams,, Three-dimensional printing techniques,, 1993. [26] S.F.S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H.S.C. Metselaar, N.A. Kadri, N.A.A. Osman, A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing, Science and technology of advanced materials 16(3) (2015) 033502. [27] L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, Metal fabrication by additive manufacturing using laser and electron beam melting technologies, Journal of Materials Science & Technology 28(1) (2012) 1-14. [28] H. Kodama, Automatic method for fabricating a three‐dimensional plastic model with photo‐hardening polymer, Review of scientific instruments 52(11) (1981) 1770-1773. [29] C.W. Hull, Apparatus for production of three-dimensional objects by stereolithography, Google Patents, 1986. [30] M. Shah, A. Ullah, K. Azher, A.U. Rehman, W. Juan, N. Aktürk, C.S. Tüfekci, M.U. Salamci, Vat photopolymerization-based 3D printing of polymer nanocomposites: current trends and applications, RSC advances 13(2) (2023) 1456-1496. [31] M. Vaezi, H. Seitz, S. Yang, A review on 3D micro-additive manufacturing technologies, The International Journal of Advanced Manufacturing Technology 67 (2013) 1721-1754. [32] S.D. Nath, S. Nilufar, An overview of additive manufacturing of polymers and associated composites, Polymers 12(11) (2020) 2719. [33] J. Wu, J. Guo, C. Linghu, Y. Lu, J. Song, T. Xie, Q. Zhao, Rapid digital light 3D printing enabled by a soft and deformable hydrogel separation interface, Nature communications 12(1) (2021) 6070. [34] S. Li, J. Pang, S. Hong, X. Chen, S. Shao, H. Wang, H. Lao, L. Xiong, H. Wu, W. Yang, A novel technology for preparing the placebos of vortioxetine hydrobromide tablets using LCD 3D printing, European Journal of Pharmaceutics and Biopharmaceutics 178 (2022) 159-167. [35] W. Shan, Y. Chen, M. Hu, S. Qin, P. Liu, 4D printing of shape memory polymer via liquid crystal display (LCD) stereolithographic 3D printing, Materials Research Express 7(10) (2020) 105305. [36] W. Xiao, G. Peng, H. Zhang, X. Zhang, Z. Tian, G. Xu, H. Zhang, F. Liu, Constructing a two-layer oblique honeycomb sandwich structure by LCD 3D printing for efficient electromagnetic wave absorbing, Composite Structures 305 (2023) 116449. [37] C.S. Sampaio, K.D. Niemann, D.D. Schweitzer, R. Hirata, P.J. Atria, Microcomputed tomography evaluation of cement film thickness of veneers and crowns made with conventional and 3D printed provisional materials, Journal of Esthetic and Restorative Dentistry 33(3) (2021) 487-495. [38] A.J. Guerra, H. Lara-Padilla, M.L. Becker, C.A. Rodriguez, D. Dean, Photopolymerizable resins for 3D-printing solid-cured tissue engineered implants, Current drug targets 20(8) (2019) 823-838. [39] M. Madžarević, S. Ibrić, Evaluation of exposure time and visible light irradiation in LCD 3D printing of ibuprofen extended release tablets, European Journal of Pharmaceutical Sciences 158 (2021) 105688. [40] A. Bagheri, J. Jin, Photopolymerization in 3D printing, ACS Applied Polymer Materials 1(4) (2019) 593-611. [41] C. Mendes‐Felipe, J. Oliveira, I. Etxebarria, J.L. Vilas‐Vilela, S. Lanceros‐Mendez, State‐of‐the‐art and future challenges of UV curable polymer‐based smart materials for printing technologies, Advanced Materials Technologies 4(3) (2019) 1800618. [42] N. Arsu, M. Aydin, Y. Yagci, S. Jockusch, N.J. Turro, One component thioxanthone based Type II photoinitiators, Photochemistry and UV curing: new trends 1 (2006) 17-29. [43] C. Noè, M. Hakkarainen, M. Sangermano, Cationic UV-curing of epoxidized biobased resins, Polymers 13(1) (2020) 89. [44] M. Korčušková, J. Svatík, W. Tomal, A. Šikyňová, V. Vishakha, F. Petko, M. Galek, P. Stalmach, J. Ortyl, P. Lepcio, Anatase and rutile nanoparticles in photopolymer 3D-printed nanocomposites: Band gap-controlled electron interactions in free-radical and cationic photocuring, Reactive and Functional Polymers 200 (2024) 105923. [45] R. Schwalm, UV coatings: basics, recent developments and new applications, (2006). [46] K. Ruhland, F. Habibollahi, R. Horny, Quantification and elucidation of the UV‐light triggered initiation kinetics of TPO and BAPO in liquid acrylate monomer, Journal of Applied Polymer Science 137(6) (2020) 48357. [47] H.K. Park, M. Shin, B. Kim, J.W. Park, H. Lee, A visible light-curable yet visible wavelength-transparent resin for stereolithography 3D printing, NPG Asia Materials 10(4) (2018) 82-89. [48] F.S. HÖRSTING INGO, THIELE KAI, WONTORA BEATRICE, BENDER GEORG,, Method for coating a surface, 2019. [49] I. Gibson, D.W. Rosen, B. Stucker, M. Khorasani, D. Rosen, B. Stucker, M. Khorasani, Additive manufacturing technologies, Springer2021. [50] C. Hofstetter, S. Orman, S. Baudis, J. Stampfl, Combining cure depth and cure degree, a new way to fully characterize novel photopolymers, Additive Manufacturing 24 (2018) 166-172. [51] M. Štaffová, F. Ondreáš, J. Svatik, M. Zbončák, J. Jančář, P. Lepcio, 3D printing and post-curing optimization of photopolymerized structures: Basic concepts and effective tools for improved thermomechanical properties, Polymer Testing 108 (2022) 107499. [52] K. Kojio, S. Nakashima, M. Furukawa, Microphase-separated structure and mechanical properties of norbornane diisocyanate-based polyurethanes, Polymer 48(4) (2007) 997-1004. [53] Y.-H. Chen, C.-H. Wu, Y.-C. Chen, Optimized condition for eco-friendly wood composites manufactured from castor oil-based polyurethane, Construction and Building Materials 306 (2021) 124789. [54] J.-Z. Hwang, C.-L. Chen, C.-Y. Huang, J.-T. Yeh, K.-N. Chen, Green PU resin from an accelerated Non-isocyanate process with microwave radiation, Journal of Polymer Research 20 (2013) 1-10. [55] E.H. Backes, S.V. Harb, L.A. Pinto, N.K. de Moura, G.F. de Melo Morgado, J. Marini, F.R. Passador, L.A. Pessan, Thermoplastic polyurethanes: synthesis, fabrication techniques, blends, composites, and applications, Journal of Materials Science 59(4) (2024) 1123-1152. [56] H. Dong, J. Sun, X. Liu, X. Jiang, S. Lu, Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection, ACS Applied Materials & Interfaces 14(13) (2022) 15504-15516. [57] A. Das, P. Mahanwar, A brief discussion on advances in polyurethane applications, Advanced Industrial and Engineering Polymer Research 3(3) (2020) 93-101. [58] I. Yilgor, B.D. Mather, S. Unal, E. Yilgor, T.E. Long, Preparation of segmented, high molecular weight, aliphatic poly (ether-urea) copolymers in isopropanol. In-situ FTIR studies and polymer synthesis, Polymer 45(17) (2004) 5829-5836. [59] J. Datta, P. Kasprzyk, Thermoplastic polyurethanes derived from petrochemical or renewable resources: A comprehensive review, Polymer Engineering & Science 58(S1) (2018) E14-E35. [60] C. Zhang, J. Hu, S. Chen, F. Ji, Theoretical study of hydrogen bonding interactions on MDI-based polyurethane, Journal of molecular modeling 16 (2010) 1391-1399. [61] Y. Zhao, J. Zhong, Y. Wang, Q. Chen, J. Yin, J. Wang, H. Zhao, Y. Li, H. Gong, W. Huang, Photocurable and elastic polyurethane based on polyether glycol with adjustable hardness for 3D printing customized flatfoot orthosis, Biomaterials Science 11(5) (2023) 1692-1703. [62] I. Yilgor, T. Eynur, S. Bilgin, E. Yilgor, G.L. Wilkes, Influence of soft segment molecular weight on the mechanical hysteresis and set behavior of silicone-urea copolymers with low hard segment contents, Polymer 52(2) (2011) 266-274. [63] A.M. Nelson, T.E. Long, Synthesis, properties, and applications of ion‐containing polyurethane segmented copolymers, Macromolecular Chemistry and Physics 215(22) (2014) 2161-2174. [64] D.B. Klinedinst, I. Yilgör, E. Yilgör, M. Zhang, G.L. Wilkes, The effect of varying soft and hard segment length on the structure–property relationships of segmented polyurethanes based on a linear symmetric diisocyanate, 1, 4-butanediol and PTMO soft segments, Polymer 53(23) (2012) 5358-5366. [65] W. Xu, D. Liu, High solid content waterborne polyurethane with high foaming rate to artificial leather: Synthesis and characterization, Progress in Organic Coatings 189 (2024) 108332. [66] J. Pang, J. Zhong, Z. Pu, K. Yang, Y. Yang, M. Yue, L. Wu, Study on synthesis of polycarbonate dilate polyurethane elastomers, Journal of Polymer Research 31(6) (2024) 1-7. [67] Y. Xue, Q. Xu, G. Jiang, D. Teng, Preparation and properties of lignin-based polyurethane materials, Arabian Journal of Chemistry 17(1) (2024) 105471. [68] X. Liu, Z. Zhang, Y. Luo, J. Sun, P. Tian, H. Liu, Z. Mao, S. Kan, X. Yu, Curing characteristics and performance of a bio-based polyurethane engineered sealant with high bonding strength: Effect of R value and chain extender content, Construction and Building Materials 432 (2024) 136684. [69] Z. Dai, P. Jiang, W. Lou, P. Zhang, Y. Bao, X. Gao, J. Xia, A. Haryono, Preparation of degradable vegetable oil-based waterborne polyurethane with tunable mechanical and thermal properties, European Polymer Journal 139 (2020) 109994. [70] J. Ma, K. Cai, C. Yang, M. Li, X. Pan, Y. Huang, J. Yao, J. Zheng, J. Shao, Synthesis and properties of photocurable polyurethane acrylate for textile artificial leather, Progress in Organic Coatings 171 (2022) 107017. [71] Innovative Production Technology of Hydrocarbon Resin Polymers with Low Dielectric Loss Facilitates 5G Transmission, 2024. https://www.lcycic.com/en/product/electronics-materials/article/innovative-production-technology-of-hydrocarbon-resin-polymers-with-low-dielectric-loss-facilitates-5g-transmission. (Accessed October 15 2024). [72] Propagation Delay, 2020. https://foolman-notebook.neocities.org/Signal_Integrity/Propagation_Delay/propagation_delay. [73] Antenna Grade Laminates. https://www.rogerscorp.com/advanced-electronics-solutions/ro4000-series-laminates/ro4700-antenna-grade-laminates. (Accessed October 15 2024). [74] S-parameter, 2019. https://www.oldfriend.url.tw/SI_PI/ansys_ch_s-para.html#%E7%9C%8B%E4%B8%80%E6%A2%9D%E7%B7%9A%E7%9A%84%E7%89%B9%E6%80%A7. (Accessed October 15 2024). [75] S. William, S. Alberto, Measurement of Dielectric Material Properties—Application Note, Rohde & Schwarz: Munich, Germany (2006). [76] C. Qian, R. Bei, T. Zhu, W. Zheng, S. Liu, Z. Chi, M.P. Aldred, X. Chen, Y. Zhang, J. Xu, Facile strategy for intrinsic low-k dielectric polymers: molecular design based on secondary relaxation behavior, Macromolecules 52(12) (2019) 4601-4609. [77] M.A. Silaghi, Dielectric Material, BoD–Books on Demand2012. [78] Z. Ahmad, Polymer dielectric materials, Dielectric material, IntechOpen2012. [79] R. Sawada, S. Ando, Polarization analysis and humidity dependence of dielectric properties of aromatic and semialicyclic polyimides measured at 10 GHz, The Journal of Physical Chemistry C 128(16) (2024) 6979-6990. [80] J. Wang, D.-L. Zhou, X. Lin, J.-H. Li, D. Han, H. Bai, Q. Fu, Preparation of Low-k Poly (dicyclopentadiene) nanocomposites with excellent comprehensive properties by adding larger POSS, Chemical Engineering Journal 439 (2022) 135737. [81] Z. Hu, Y. Wang, X. Liu, Q. Wang, X. Cui, S. Jin, B. Yang, Y. Xia, S. Huang, Z. Qiang, Rational design of POSS containing low dielectric resin for SLA printing electronic circuit plate composites, Composites Science and Technology 223 (2022) 109403. [82] X. Li, X. Liu, H. Liu, R. He, F. Wang, S. Meng, Z. Li, The low-k epoxy/cyanate nanocomposite modified with epoxy-based POSS: The effect of microstructure on dielectric properties, Reactive and Functional Polymers 184 (2023) 105522. [83] L. Wang, X. Liu, C. Liu, X. Zhou, C. Liu, M. Cheng, R. Wei, X. Liu, Ultralow dielectric constant polyarylene ether nitrile foam with excellent mechanical properties, Chemical Engineering Journal 384 (2020) 123231. [84] W. Ren, X. Huang, G. Yan, J. Yang, G. Zhang, Structuring multiscale porous architecture in polyether sulfone films for ultra-low dielectric constant, Polymer 272 (2023) 125832. [85] Y. Li, Y. Cao, S. Wu, Y. Ju, X. Zhang, C. Lu, W. Sun, Manipulative pore-formation of polyimide film for tuning the dielectric property via breath figure method, Polymer 269 (2023) 125731. [86] Y.C. Hwang, S. Khim, J.M. Sohn, K.-H. Nam, Controllable growth of porous morphology in low dielectric polyimides via thermal-driven spontaneous phase separation, European Polymer Journal 195 (2023) 112195. [87] B. Zhao, C. Zhao, C. Wang, C.B. Park, Poly (vinylidene fluoride) foams: a promising low-k dielectric and heat-insulating material, Journal of Materials Chemistry C 6(12) (2018) 3065-3073. [88] H. Li, F. Bao, S. Li, Y. Li, X. Li, K. Mu, M. Wang, C. Zhu, J. Xu, Preparation of fluorinated polyimides with low dielectric constants and low dielectric losses by combining ester groups and triphenyl pyridine structures, Polymer Chemistry 15(1) (2024) 22-29. [89] J. Peng, T. Cao, Y. You, X. Liu, Y. Huang, Fabrication of low dielectric constant fluorinated poly (arylene ether nitrile) composites by cross-linking with metal-organic frameworks, Polymer 283 (2023) 126229. [90] P. Zuo, J. Jiang, D. Chen, J. Lin, Z. Zhao, B. Sun, Q. Zhuang, Enhanced interfacial and dielectric performance for polyetherimide nanocomposites through tailoring shell polarities, ACS Applied Materials & Interfaces 15(19) (2023) 23792-23803. [91] L. Wang, M. Qu, Z. Wang, H. Wang, J. Zhao, G. Zhou, Synthesis and characterization of amorphous fluorinated polyarylether prepared from phenolphthalein and decafluorobiphenyl, Journal of Applied Polymer Science 140(11) (2023) e53628. [92] F. Bao, H. Lei, B. Zou, W. Peng, L. Qiu, F. Ye, Y. Song, F. Qi, X. Qiu, M. Huang, Colorless polyimides derived from rigid trifluoromethyl-substituted triphenylenediamines, Polymer 273 (2023) 125883. [93] X. Liu, Y. Sun, Y. Chen, Z. Zhao, Z. Wang, G. Zhou, Design and synthesis of novel poly (aryl ether ketones) containing trifluoromethyl and trifluoromethoxy groups, Designed Monomers and Polymers 26(1) (2023) 140-149. [94] J. Lee, S. Yoo, D. Kim, Y.H. Kim, S. Park, N.K. Park, Y. So, J. Kim, J. Park, M.J. Ko, Intrinsic low-dielectric constant and low-dielectric loss aliphatic-aromatic copolyimides: The effect of chemical structure, Materials Today Communications 33 (2022) 104479. [95] M. Ling, K. Yu, J. Wang, H. Wang, H. Nie, Z. Wang, G. Zhou, Synthesis and properties of low dielectric constant phenolphthalein-based poly (aryl ether) resin containing isopropyl groups, Materials Letters 311 (2022) 131547. [96] G. Hougham, G. Tesoro, A. Viehbeck, J. Chapple-Sokol, Polarization effects of fluorine on the relative permittivity in polyimides, Macromolecules 27(21) (1994) 5964-5971. [97] G. Hougham, G. Tesoro, A. Viehbeck, Influence of free volume change on the relative permittivity and refractive index in fluoropolyimides, Macromolecules 29(10) (1996) 3453-3456. [98] M. Hasegawa, Development of solution-processable, optically transparent polyimides with ultra-low linear coefficients of thermal expansion, Polymers 9(10) (2017) 520. [99] Q. Wu, X. Ma, F. Zheng, X. Lu, Q. Lu, High performance transparent polyimides by controlling steric hindrance of methyl side groups, European Polymer Journal 120 (2019) 109235. [100] W. Peng, H. Lei, L. Qiu, F. Bao, M. Huang, Perfluorocyclobutyl-containing transparent polyimides with low dielectric constant and low dielectric loss, Polymer Chemistry 13(26) (2022) 3949-3955. [101] Y. Liu, C. Qian, L. Qu, Y. Wu, Y. Zhang, X. Wu, B. Zou, W. Chen, Z. Chen, Z. Chi, A bulk dielectric polymer film with intrinsic ultralow dielectric constant and outstanding comprehensive properties, Chemistry of Materials 27(19) (2015) 6543-6549. [102] M. Zhong, X. Wu, C. Shu, Y. Wang, X. Huang, W. Huang, Organosoluble polyimides with low dielectric constant prepared from an asymmetric diamine containing bulky m-trifluoromethyl phenyl group, Reactive and Functional Polymers 169 (2021) 105065. [103] R. Bei, K. Chen, Y. He, C. Li, Z. Chi, S. Liu, J. Xu, Y. Zhang, A systematic study of the relationship between the high-frequency dielectric dissipation factor and water adsorption of polyimide films, Journal of Materials Chemistry C 11(30) (2023) 10274-10281. [104] Y. Li, T. Chen, Y. Liu, X. Liu, X. Wang, Simultaneously enhance dielectric strength and reduce dielectric loss of polyimide by compositing reactive fluorinated graphene filler, Polymer 254 (2022) 125084. [105] T.M. Long, T.M. Swager, Molecular design of free volume as a route to low-κ dielectric materials, Journal of the American Chemical Society 125(46) (2003) 14113-14119. [106] H. Tang, J. Yang, J. Zhong, R. Zhao, X. Liu, Synthesis and dielectric properties of polyarylene ether nitriles with high thermal stability and high mechanical strength, Materials Letters 65(17-18) (2011) 2758-2761. [107] P. Huo, J. Ba, S. Zhang, X. Zhang, Z. Geng, Y. Liu, G. Wang, The influence of different length of symmetrical alkyl side chains on the dielectric constant of soluble poly (aryl ether ketone) copolymers, High Performance Polymers 28(4) (2016) 492-501. [108] S. Miyane, C.-K. Chen, Y.-C. Lin, M. Ueda, W.-C. Chen, Thermally stable colorless copolyimides with a low dielectric constant and dissipation factor and their organic field-effect transistor applications, ACS Applied Polymer Materials 3(6) (2021) 3153-3163. [109] J. Wang, J. Zhou, K. Jin, L. Wang, J. Sun, Q. Fang, A new fluorinated polysiloxane with good optical properties and low dielectric constant at high frequency based on easily available tetraethoxysilane (TEOS), Macromolecules 50(23) (2017) 9394-9402. [110] K. Zhang, L. Han, P. Froimowicz, H. Ishida, A smart latent catalyst containing o-trifluoroacetamide functional benzoxazine: Precursor for low temperature formation of very high Performance polybenzoxazole with low dielectric constant and high thermal stability, Macromolecules 50(17) (2017) 6552-6560. [111] J. Lu, Y. Zhang, J. Li, M. Fu, G. Zou, S. Ando, Y. Zhuang, Tröger’s Base (TB)-Based Polyimides as Promising Heat-Insulating and Low-K Dielectric Materials, Macromolecules 56(5) (2023) 2164-2174. [112] R. Bei, C. Qian, Y. Zhang, Z. Chi, S. Liu, X. Chen, J. Xu, M.P. Aldred, Intrinsic low dielectric constant polyimides: relationship between molecular structure and dielectric properties, Journal of Materials Chemistry C 5(48) (2017) 12807-12815. [113] Y. Watanabe, Y. Shibasaki, S. Ando, M. Ueda, Synthesis of semiaromatic polyimides from aromatic diamines containing adamantyl units and alicyclic dianhydrides, Journal of Polymer Science Part A: Polymer Chemistry 42(1) (2004) 144-150. [114] P. Lv, Z. Dong, X. Dai, H. Wang, X. Qiu, Synthesis and properties of ultralow dielectric porous polyimide films containing adamantane, Journal of Polymer Science Part A: Polymer Chemistry 56(5) (2018) 549-559. [115] H. Zhu, F. Bao, X. Lan, H. Li, Y. Li, M. Ji, M. Wang, C. Zhu, J. Xu, Polyimide resins with superior thermal stability, dielectric properties, and solubility obtained by introducing trifluoromethyl and diphenylpyridine with different bulk pendant groups, Polymer 283 (2023) 126245. [116] A. Erice, A.R. de Luzuriaga, J.M. Matxain, F. Ruipérez, J.M. Asua, H.-J. Grande, A. Rekondo, Reprocessable and recyclable crosslinked poly (urea-urethane) s based on dynamic amine/urea exchange, Polymer 145 (2018) 127-136. [117] D. Montarnal, M. Capelot, F. Tournilhac, L. Leibler, Silica-like malleable materials from permanent organic networks, Science 334(6058) (2011) 965-968. [118] S. Burattini, H.M. Colquhoun, J.D. Fox, D. Friedmann, B.W. Greenland, P.J. Harris, W. Hayes, M.E. Mackay, S.J. Rowan, A self-repairing, supramolecular polymer system: healability as a consequence of donor–acceptor π–π stacking interactions, Chemical communications (44) (2009) 6717-6719. [119] S. Burattini, B.W. Greenland, D.H. Merino, W. Weng, J. Seppala, H.M. Colquhoun, W. Hayes, M.E. Mackay, I.W. Hamley, S.J. Rowan, A healable supramolecular polymer blend based on aromatic π− π stacking and hydrogen-bonding interactions, Journal of the American Chemical Society 132(34) (2010) 12051-12058. [120] F. Gao, J. Cao, Q. Wang, R. Liu, S. Zhang, J. Liu, X. Liu, Properties of UV-cured self-healing coatings prepared with PCDL-based polyurethane containing multiple H-bonds, Progress in Organic Coatings 113 (2017) 160-167. [121] R. Liu, X. Yang, Y. Yuan, J. Liu, X. Liu, Synthesis and properties of UV-curable self-healing oligomer, Progress in Organic Coatings 101 (2016) 122-129. [122] C. Zou, C. Chen, Polar‐functionalized, crosslinkable, self‐healing, and photoresponsive polyolefins, Angewandte Chemie International Edition 59(1) (2020) 395-402. [123] H. Gong, Y. Gao, S. Jiang, F. Sun, Photocured materials with self-healing function through ionic interactions for flexible electronics, ACS applied materials & interfaces 10(31) (2018) 26694-26704. [124] J. Han, H. Gong, S. Jiang, Y. Gao, J. Nie, F. Sun, Effect of Imidazolium Monomer Structure on Properties of Imidazolium‐Functionalized Self‐Healing UV‐Cured Polymers for Flexible Electronic Devices, Macromolecular Chemistry and Physics 220(23) (2019) 1900362. [125] Z. Hu, D. Zhang, F. Lu, W. Yuan, X. Xu, Q. Zhang, H. Liu, Q. Shao, Z. Guo, Y. Huang, Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host–guest interactions, Macromolecules 51(14) (2018) 5294-5303. [126] M. Zhang, D. Xu, X. Yan, J. Chen, S. Dong, B. Zheng, F. Huang, Self-healing supramolecular gels formed by crown ether based host-guest interactions, Angewandte Chemie (International ed. in English) 51(28) (2012) 7011-7015. [127] J. Liu, Z. Zhou, X. Su, J. Cao, M. Chen, R. Liu, Stiff UV-Curable self-healing coating based on double reversible networks containing diels-alder cross-linking and hydrogen bonds, Progress in Organic Coatings 146 (2020) 105699. [128] Z. Wang, H. Yang, B.D. Fairbanks, H. Liang, J. Ke, C. Zhu, Fast self-healing engineered by UV-curable polyurethane contained Diels-Alder structure, Progress in Organic Coatings 131 (2019) 131-136. [129] X. Li, R. Yu, Y. He, Y. Zhang, X. Yang, X. Zhao, W. Huang, Four-dimensional printing of shape memory polyurethanes with high strength and recyclability based on Diels-Alder chemistry, Polymer 200 (2020) 122532. [130] L. Cao, J. Fan, J. Huang, Y. Chen, A robust and stretchable cross-linked rubber network with recyclable and self-healable capabilities based on dynamic covalent bonds, Journal of Materials Chemistry A 7(9) (2019) 4922-4933. [131] M. Guerre, C. Taplan, J.M. Winne, F.E. Du Prez, Vitrimers: directing chemical reactivity to control material properties, Chemical science 11(19) (2020) 4855-4870. [132] Y. Tao, X. Liang, J. Zhang, I.M. Lei, J. Liu, Polyurethane vitrimers: Chemistry, properties and applications, Journal of Polymer Science 61(19) (2023) 2233-2253. [133] S. Debnath, S. Kaushal, U. Ojha, Catalyst-free partially bio-based polyester vitrimers, ACS Applied Polymer Materials 2(2) (2020) 1006-1013. [134] S. Debnath, S.K. Tiwary, U. Ojha, Dynamic carboxylate linkage based reprocessable and self-healable segmented polyurethane vitrimers displaying creep resistance behavior and triple shape memory ability, ACS Applied Polymer Materials 3(4) (2021) 2166-2177. [135] J.P. Brutman, D.J. Fortman, G.X. De Hoe, W.R. Dichtel, M.A. Hillmyer, Mechanistic study of stress relaxation in urethane-containing polymer networks, The Journal of Physical Chemistry B 123(6) (2019) 1432-1441. [136] D.T. Sheppard, K. Jin, L.S. Hamachi, W. Dean, D.J. Fortman, C.J. Ellison, W.R. Dichtel, Reprocessing postconsumer polyurethane foam using carbamate exchange catalysis and twin-screw extrusion, ACS Central Science 6(6) (2020) 921-927. [137] D.J. Fortman, J.P. Brutman, C.J. Cramer, M.A. Hillmyer, W.R. Dichtel, Mechanically activated, catalyst-free polyhydroxyurethane vitrimers, Journal of the American Chemical Society 137(44) (2015) 14019-14022. [138] M. Ciaccia, S. Di Stefano, Mechanisms of imine exchange reactions in organic solvents, Organic & biomolecular chemistry 13(3) (2015) 646-654. [139] H. Zheng, Q. Liu, X. Lei, Y. Chen, B. Zhang, Q. Zhang, A conjugation polyimine vitrimer: Fabrication and performance, Journal of Polymer Science Part A: Polymer Chemistry 56(22) (2018) 2531-2538. [140] Y. Sun, D. Sheng, H. Wu, X. Tian, H. Xie, B. Shi, X. Liu, Y. Yang, Bio-based vitrimer-like polyurethane based on dynamic imine bond with high-strength, reprocessability, rapid-degradability and antibacterial ability, Polymer 233 (2021) 124208. [141] D.-M. Xie, D.-X. Lu, X.-L. Zhao, Y.-D. Li, J.-B. Zeng, Sustainable and malleable polyurethane networks from castor oil and vanillin with tunable mechanical properties, Industrial Crops and Products 174 (2021) 114198. [142] F. García, M.M. Smulders, Dynamic covalent polymers, Journal of Polymer Science Part A: Polymer Chemistry 54(22) (2016) 3551-3577. [143] C.-J. Fan, Z.-B. Wen, Z.-Y. Xu, Y. Xiao, D. Wu, K.-K. Yang, Y.-Z. Wang, Adaptable strategy to fabricate self-healable and reprocessable poly (thiourethane-urethane) elastomers via reversible thiol–isocyanate click chemistry, Macromolecules 53(11) (2020) 4284-4293. [144] G. Griffini, B. Rigatelli, S. Turri, Diels‐Alder Macromolecular Networks in Recyclable, Repairable and Reprocessable Polymer Composites for the Circular Economy–A Review, Macromolecular Materials and Engineering 308(11) (2023) 2300133. [145] A.C. Restrepo-Montoya, I. Larraza, O. Echeverria-Altuna, I. Harismendy, A. Saralegi, A. Eceiza, Emerging Reprocessable and Recyclable Biobased Cross-Linked Polyurethanes Through Diels–Alder Chemistry, ACS Applied Polymer Materials 6(8) (2024) 4475-4486. [146] B. Zhao, H. Mei, G. Hang, L. Li, S. Zheng, Shape recovery and reprocessable polyurethanes crosslinked with double decker silsesquioxane via Diels-Alder reaction, Polymer 230 (2021) 124042. [147] J. Aizpurua, L. Martin, M. Fernández, A. González, L. Irusta, Recyclable, remendable and healing polyurethane/acrylic coatings from UV curable waterborne dispersions containing Diels-Alder moieties, Progress in Organic Coatings 139 (2020) 105460. [148] L. Martin, High isolated yields in thermodynamically controlled peptide synthesis in toluene catalysed by thermolysin adsorbed on Celite R-640, Chemical Communications (6) (2000) 467-468. [149] M. Hutchby, C.E. Houlden, M.F. Haddow, S. Tyler, G.C. Lloyd-Jones, K.I. Booker-Milburn, Switching pathways: room-temperature neutral solvolysis and substitution of amides, Angewandte Chemie (International ed. in English) 51(2) (2011) 548-551. [150] H. Ying, Y. Zhang, J. Cheng, Dynamic urea bond for the design of reversible and self-healing polymers, Nature communications 5(1) (2014) 3218. [151] J. Hou, J. Sun, Q. Fang, Oxygen-free polymers: new materials with low dielectric constant and ultra-low dielectric loss at high frequency, Polymer Chemistry 14(27) (2023) 3203-3212. [152] S.-C. Tsai, L.-H. Chen, C.-P. Chu, W.-C. Chao, Y.-C. Liao, Photo curable resin for 3D printed conductive structures, Additive Manufacturing 51 (2022) 102590. [153] J. Li, C. Boyer, X. Zhang, 3D printing based on photopolymerization and photocatalysts: review and prospect, Macromolecular Materials and Engineering 307(8) (2022) 2200010. [154] D. Bozoglu, H. Deligoz, K. Ulutas, S. Yakut, D. Deger, Structural and dielectrical characterization of low-k polyurethane composite films with silica aerogel, Journal of Physics and Chemistry of Solids 130 (2019) 46-57. [155] H. Zhao, S.-Q. Zhao, Q. Li, M.R. Khan, Y. Liu, P. Lu, C.-X. Huang, L.-J. Huang, T. Jiang, Fabrication and properties of waterborne thermoplastic polyurethane nanocomposite enhanced by the POSS with low dielectric constants, Polymer 209 (2020) 122992. [156] X. Ji, D. Chen, J. Shen, S. Guo, Flexible and flame-retarding thermoplastic polyurethane-based electromagnetic interference shielding composites, Chemical Engineering Journal 370 (2019) 1341-1349. [157] S. Liu, R. Duan, S. He, H. Liu, M. Huang, X. Liu, W. Liu, C. Zhu, Research progress on dielectric properties of PU and its application on capacitive sensors and OTFTs, Reactive and Functional Polymers 181 (2022) 105420. [158] X. Wu, J. Zhang, H. Li, H. Gao, M. Wu, Z. Wang, Z. Wang, Dual-hard phase structures make mechanically tough and autonomous self-healable polyurethane elastomers, Chemical Engineering Journal 454 (2023) 140268. [159] Z. Hu, X. Liu, T. Ren, H.A. Saeed, Q. Wang, X. Cui, K. Huai, S. Huang, Y. Xia, K. Fu, Research progress of low dielectric constant polymer materials, Journal of Polymer Engineering 42(8) (2022) 677-687. [160] C. Mendes-Felipe, T. Rodrigues-Marinho, J.L. Vilas, S. Lanceros-Mendez, UV curable nanocomposites with tailored dielectric response, Polymer 196 (2020) 122498. [161] L. Xiong, D. Li, Y. Yang, X. Ye, Y. Huang, E. Xu, C. Xia, M. Yang, Z. Liu, X. Cui, Tailoring crosslinking networks to fabricate photocurable polyurethane acrylate (PUA) dielectric elastomer with balanced electromechanical performance, Reactive and Functional Polymers 183 (2023) 105498. [162] D. Kwon, T.-I. Lee, J. Shim, S. Ryu, M.S. Kim, S. Kim, T.-S. Kim, I. Park, Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer, ACS applied materials & interfaces 8(26) (2016) 16922-16931. [163] S. Chen, B. Zhuo, X. Guo, Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range, ACS applied materials & interfaces 8(31) (2016) 20364-20370. [164] W. Yang, N.W. Li, S. Zhao, Z. Yuan, J. Wang, X. Du, B. Wang, R. Cao, X. Li, W. Xu, A breathable and screen‐printed pressure sensor based on nanofiber membranes for electronic skins, Advanced Materials Technologies 3(2) (2018) 1700241. [165] X. Yin, Y. Feng, Q. Zhao, Y. Li, S. Li, H. Dong, W. Hu, W. Feng, Highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite films with low dielectric constant, Journal of Materials Chemistry C 6(24) (2018) 6378-6384. [166] S. Nayak, B. Sahoo, T.K. Chaki, D. Khastgir, Development of polyurethane–titania nanocomposites as dielectric and piezoelectric material, RSC advances 3(8) (2013) 2620-2631. [167] N. Hong, Y. Zhang, Q. Sun, W. Fan, M. Li, M. Xie, W. Fu, The evolution of organosilicon precursors for low-k interlayer dielectric fabrication driven by integration challenges, Materials 14(17) (2021) 4827. [168] P. Bashpa, K. Bijudas, T. Francis, Enhanced dielectric and thermal properties of thermoplastic polyurethane/multi-walled carbon nanotube composites, Materials Today: Proceedings 51 (2022) 2254-2259. [169] W. Li, X. Jin, Y. Zheng, X. Chang, W. Wang, T. Lin, F. Zheng, O. Onyilagha, Z. Zhu, A porous and air gap elastomeric dielectric layer for wearable capacitive pressure sensor with high sensitivity and a wide detection range, Journal of Materials Chemistry C 8(33) (2020) 11468-11476. [170] V. Jousseaume, J. El Sabahy, C. Yeromonahos, G. Castellan, A. Bouamrani, F. Ricoul, SiOCH thin films deposited by chemical vapor deposition: From low-κ to chemical and biochemical sensors, Microelectronic Engineering 167 (2017) 69-79. [171] G. Zhang, Y. Cao, Y. Zhang, X. Song, J. Lu, S. Li, Preparation and characteristic analysis of ultra-low dielectric constant nano-porous silicon oxide films, Advanced Graphic Communication, Printing and Packaging Technology: Proceedings of 2019 10th China Academic Conference on Printing and Packaging, Springer, 2020, pp. 730-736. [172] J.I. Wang, M.A. Yamoah, Q. Li, A.H. Karamlou, T. Dinh, B. Kannan, J. Braumüller, D. Kim, A.J. Melville, S.E. Muschinske, Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits, Nature materials 21(4) (2022) 398-403. [173] S. Hong, C.-S. Lee, M.-H. Lee, Y. Lee, K.Y. Ma, G. Kim, S.I. Yoon, K. Ihm, K.-J. Kim, T.J. Shin, Ultralow-dielectric-constant amorphous boron nitride, Nature 582(7813) (2020) 511-514. [174] Y. Zhuang, J.G. Seong, Y.M. Lee, Polyimides containing aliphatic/alicyclic segments in the main chains, Progress in Polymer Science 92 (2019) 35-88. [175] J. Chen, M. Zeng, Z. Feng, T. Pang, Y. Huang, Q. Xu, Design and preparation of benzoxazine resin with high-frequency low dielectric constants and ultralow dielectric losses, ACS Applied Polymer Materials 1(4) (2019) 625-630. [176] G. Lamoureux, G. Artavia, Use of the adamantane structure in medicinal chemistry, Current medicinal chemistry 17(26) (2010) 2967-2978. [177] Y. Zhang, Z. Geng, S. Niu, S. Zhang, J. Luan, G. Wang, Preparation and applications of low-dielectric constant poly aryl ether, Advanced Industrial and Engineering Polymer Research 3(4) (2020) 175-185. [178] D.J. Liaw, B.Y. Liaw, J.J. Hsu, Y.C. Cheng, Synthesis and characterization of new soluble polyesters derived from various cardo bisphenols by solution polycondensation, Journal of Polymer Science Part A: Polymer Chemistry 38(24) (2000) 4451-4456. [179] K. Wang, R. Yin, J. Nie, Q. Yu, Synthesis and characterization of a novel dimethacrylate based on adamantane as possible dental resins, Materials Science and Engineering: C 32(5) (2012) 1141-1145. [180] F. Zou, H. Chen, S. Fu, S. Chen, Shape memory materials based on adamantane-containing polyurethanes, RSC advances 8(45) (2018) 25584-25591. [181] J.-L. You, C.-P. Chang, N.-W. Pu, Y.-S. Chen, L.-H. Wang, K.-H. Pan, M.-D. Ger, Electroless plating of a 5G copper antenna on polyimide patterned with laser-induced selective activation and curing of metal–organic catalyst, Applied Surface Science 599 (2022) 153990. [182] J.-L. You, Y.-S. Chen, C.-P. Chang, M.-Z. Wu, M.-D. Ger, Utilizing a pH-responsive palladium nanocomposite to fabricate adhesion-enhanced and highly reliable copper coating on nylon 6 fabrics, Journal of Materials Research and Technology 15 (2021) 3983-3994. [183] J. Joseph, E.D. Jemmis, Red-, blue-, or no-shift in hydrogen bonds: a unified explanation, Journal of the American Chemical Society 129(15) (2007) 4620-4632. [184] Y. Meng, Y. Huang, C. Wang, L. Wang, Q. Fan, J. Shao, Tertiaryamine linked and polysiloxane modified polyurethane acrylate oligomer and its effects of migration/co-initiation on photo-curable inkjet printing, Progress in Organic Coatings 152 (2021) 106114. [185] H.S. Huang, Y.C. Liao, Thermal and dielectric properties enhancement of photocurable acrylate polymers for digital light processing 3D printed electronics, Journal of Applied Polymer Science 139(18) (2022) 52070. [186] H. Xu, F. Qiu, Y. Wang, W. Wu, D. Yang, Q. Guo, UV-curable waterborne polyurethane-acrylate: preparation, characterization and properties, Progress in Organic Coatings 73(1) (2012) 47-53. [187] C. Hong, X. Zhou, Y. Ye, W. Li, Synthesis and characterization of UV-curable waterborne Polyurethane–acrylate modified with hydroxyl-terminated polydimethylsiloxane: UV-cured film with excellent water resistance, Progress in Organic Coatings 156 (2021) 106251. [188] J. Huang, Y. Xiong, X. Zhou, Z. Yang, T. Yuan, A novel polyfunctional polyurethane acrylate prepolymer derived from bio-based polyols for UV-curable coatings applications, Polymer Testing 106 (2022) 107439. [189] T.S.R.T. Naiwi, M.M. Aung, M. Rayung, A. Ahmad, K.L. Chai, M.L.W. Fui, E.Z.M. Tarmizi, N.A.A. Aziz, Dielectric and ionic transport properties of bio-based polyurethane acrylate solid polymer electrolyte for application in electrochemical devices, Polymer Testing 106 (2022) 107459. [190] D. Zhang, J. Liu, Z. Li, Y. Shen, P. Wang, D. Wang, X. Wang, X. Hu, Preparation and properties of UV-curable waterborne silicon-containing polyurethane acrylate emulsion, Progress in Organic Coatings 160 (2021) 106503. [191] T. Archibald, A. Malik, K. Baum, M. Unroe, Thermally stable acetylenic adamantane polymers, Macromolecules 24(19) (1991) 5261-5265. [192] J. Miao, X. Hu, X. Wang, X. Meng, Z. Wang, J. Yan, Colorless polyimides derived from adamantane-containing diamines, Polymer Chemistry 11(37) (2020) 6009-6016. [193] A. Galukhin, R. Nosov, G. Taimova, I. Nikolaev, D. Islamov, S. Vyazovkin, Polymerization kinetics of adamantane-based dicyanate ester and thermal properties of resulting polymer, Reactive and Functional Polymers 165 (2021) 104956. [194] G. Romero-Sabat, L.A. Granda, S. Medel, Synthesis of UV-curable polyurethane-acrylate hybrids with tuneable hardness and viscoelastic properties on-demand, Materials Advances 3(12) (2022) 5118-5130. [195] G. Taormina, C. Sciancalepore, M. Messori, F. Bondioli, 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends, Journal of applied biomaterials & functional materials 16(3) (2018) 151-160. [196] G. Zhu, J. Zhang, J. Huang, Y. Qiu, M. Liu, J. Yu, C. Liu, Q. Shang, Y. Hu, L. Hu, Recyclable and reprintable biobased photopolymers for digital light processing 3D printing, Chemical Engineering Journal 452 (2023) 139401. [197] Y. Zhu, C. Romain, C.K. Williams, Sustainable polymers from renewable resources, Nature 540(7633) (2016) 354-362. [198] J. Liu, D. Ye, Photo-curable waterborne polyurethane acrylates with low VOCs and low odor by devolatilization and deodorizing, Progress in Organic Coatings 185 (2023) 107930. [199] P. Li, S. Ma, J. Dai, X. Liu, Y. Jiang, S. Wang, J. Wei, J. Chen, J. Zhu, Itaconic acid as a green alternative to acrylic acid for producing a soybean oil-based thermoset: synthesis and properties, ACS Sustainable Chemistry & Engineering 5(1) (2017) 1228-1236. [200] O. Zovi, L. Lecamp, C. Loutelier-Bourhis, C.M. Lange, C. Bunel, A solventless synthesis process of new UV-curable materials based on linseed oil, Green chemistry 13(4) (2011) 1014-1022. [201] C. Zhang, H. Liang, D. Liang, Z. Lin, Q. Chen, P. Feng, Q. Wang, Renewable castor‐oil‐based waterborne polyurethane networks: simultaneously showing high strength, self‐healing, processability and tunable multishape memory, Angewandte Chemie International Edition 60(8) (2021) 4289-4299. [202] F. Song, Z. Li, P. Jia, M. Zhang, C. Bo, G. Feng, L. Hu, Y. Zhou, Tunable “soft and stiff”, self-healing, recyclable, thermadapt shape memory biomass polymers based on multiple hydrogen bonds and dynamic imine bonds, Journal of Materials Chemistry A 7(21) (2019) 13400-13410. [203] T. Patel, J. Park, M.P. Kim, Z. Ye, H. Ko, H.W. Jung, J.K. Oh, Dynamic poly (hindered urea) hybrid network materials crosslinked with reactive methacrylate polymer, Polymer Chemistry 14(46) (2023) 5115-5124. [204] H. Zhang, D. Lu, S. Yang, Y. He, H. Zhang, J. Bao, A photocurable polyurethane elastomer for digital light processing with comprehensive reusability based on dynamic hindered urea bonds, Polymer 292 (2024) 126657. [205] D.-M. Xie, Y.-X. Zhang, Y.-D. Li, Y. Weng, J.-B. Zeng, Castor oil-derived sustainable poly (urethane urea) covalent adaptable networks with tunable mechanical properties and multiple recyclability based on reversible piperidine-urea bond, Chemical Engineering Journal 446 (2022) 137071. [206] N. McCrum, C. Buckley, C. Bucknall, Principles of Polymer Engineering, Oxford Science Publications, Oxford, 2003. [207] R.J. Crawford, P.J. Martin, Plastics engineering, Butterworth-Heinemann2020. [208] H. Khonakdar, J. Morshedian, U. Wagenknecht, S. Jafari, An investigation of chemical crosslinking effect on properties of high-density polyethylene, Polymer 44(15) (2003) 4301-4309. [209] S. Xie, D. Wang, S. Zhang, J. Xu, J. Fu, High performance poly (methyl methacrylate) via hindered urea bond crosslinking, Journal of Materials Chemistry A 10(17) (2022) 9457-9467. [210] S. Samavedi, L.K. Poindexter, M. Van Dyke, A.S. Goldstein, Synthetic biomaterials for regenerative medicine applications, Regenerative medicine applications in organ transplantation, Elsevier2014, pp. 81-99. [211] N. He, X. Wang, L. Shi, J. Li, L. Mo, F. Chen, Y. Huang, H. Liu, X. Zhu, W. Zhu, Photoinhibiting via simultaneous photoabsorption and free-radical reaction for high-fidelity light-based bioprinting, Nature Communications 14(1) (2023) 3063. [212] M. Baniasadi, E. Yarali, A. Foyouzat, M. Baghani, Crack self-healing of thermo-responsive shape memory polymers with application to control valves, filtration, and drug delivery capsule, European Journal of Mechanics-A/Solids 85 (2021) 104093. [213] J.H. Yoon, S.-M. Kim, H.J. Park, Y.K. Kim, D.X. Oh, H.-W. Cho, K.G. Lee, S.Y. Hwang, J. Park, B.G. Choi, Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids, Biosensors and Bioelectronics 150 (2020) 111946. [214] S. Ren, W. Zhou, K. Song, X. Gao, X. Zhang, H. Fang, X. Li, Y. Ding, Robust, self-healing, anti-corrosive waterborne polyurethane urea composite coatings enabled by dynamic hindered urea bonds, Progress in Organic Coatings 180 (2023) 107571. [215] Y. Sheng, M. Wang, K. Zhang, Z. Wu, Y. Chen, X. Lu, An “inner soft external hard”, scratch-resistant, self-healing waterborne poly (urethane-urea) coating based on gradient metal coordination structure, Chemical Engineering Journal 426 (2021) 131883. [216] L. Wang, X. Wang, T. Liu, F. Sun, S. Li, Y. Geng, B. Yao, J. Xu, J. Fu, Bio-inspired self-healing and anti-corrosion waterborne polyurethane coatings based on highly oriented graphene oxide, npj Materials Degradation 7(1) (2023) 96. [217] X. Zhang, Z. Xiao, Spontaneously self‐healing silicone polyurea coating for metal corrosion protection, Polymer Engineering & Science 64(2) (2024) 779-787. [218] M. Jabbar, M. Adnan, K. Shaker, T. Abdullah, Y. Nawab, R. Hussain, A. Malik, Strength and durability that last—Mechanical properties of polyurea and polyurethane coated composites, Polymer Composites 44(7) (2023) 4324-4335. [219] Y. Huang, H. Yan, M. Cai, S. Song, C. He, X. Fan, M. Zhu, Polyurea as a reinforcing filler for the anti-corrosion and wear-resistant application of epoxy resin, Progress in Organic Coatings 171 (2022) 107049. [220] S. Ahmed, H.M. Lee, G.Y. Kim, J.C. Kim, I.W. Cheong, Nanoscratch-healing of single and bilayer thin films of hindered urea bond-based self-healable copolymers, Applied Surface Science 624 (2023) 157112. [221] K. Barbakadze, W. Brostow, T. Datashvili, N. Hnatchuk, N. Lekishvili, Antibiocorrosive epoxy-based coatings with low friction and high scratch resistance, Wear 394 (2018) 228-235. [222] C. Liu, J. Li, Z. Jin, P. Hou, H. Zhao, L. Wang, Synthesis of graphene-epoxy nanocomposites with the capability to self-heal underwater for materials protection, Composites Communications 15 (2019) 155-161. [223] P. Ran, B. Qiu, H. Zheng, S. Xie, G. Zhang, W. Cao, X. Li, On-demand bactericidal and self-adaptive antifouling hydrogels for self-healing and lubricant coatings of catheters, Acta Biomaterialia 186 (2024) 215-228. [224] S.Y. Kim, T.H. Lee, Y.I. Park, J.H. Nam, S.M. Noh, I.W. Cheong, J.C. Kim, Influence of material properties on scratch-healing performance of polyacrylate-graft-polyurethane network that undergo thermally reversible crosslinking, Polymer 128 (2017) 135-146. [225] S. Hu, M. Wang, P. Wang, H. Jiang, M. Cheng, S. Sun, C. Li, Self‐Repairing Coating with Excellent Mechanical Properties by Compatibility Epoxy Resin‐Loaded Polyurea Formaldehyde Microcapsule, Advanced Engineering Materials 25(11) (2023) 2201668. [226] Y. Xu, G. Chen, Z. Liu, J. Zhu, J. Shen, S. Guo, X. Zhang, Scratch behaviors of polyacrylate-based hard coatings on alternating multi-layered PMMA+ PC substrates, Wear 530 (2023) 204997. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96816 | - |
dc.description.abstract | 光固化3D列印是一種以光聚合反應為基礎的成型技術,作為先進的積層製造(AM)技術之一,因其出色的成型精度和快速的成型效率,近年來開始備受矚目且被廣泛應用於工業製造、電子產業及生物醫學等各領域。目前適合此技術的主要列印材料為光固化樹酯,它是由光起始劑、光固化預聚物、反應單體和其他添加劑組成的複合樹酯,其中光固化聚胺酯因其獨特的分子結構,可透過調節軟鏈段與硬鏈段之間比例或微相分離程度的差異,賦予其多變化的材料性能,如彈性體、耐磨性、高抗拉強度及良好熱穩定性等特性。隨著高速傳輸的電子訊號需求日益劇增,對於訊號保真度的要求也越來越高,低介電係數聚合物在此類的電子產品中扮演著重要角色,當前最常見的低介電係數材料有聚醯亞胺(PI)、聚四氟乙烯(PTFE)及液晶高分子(LCP),然而這些高分子因其固有分子結構上的限制,大多以薄膜及平面電路基板等硬質材料形式使用,且不利於作為3D列印技術材料,為了克服上述問題以滿足軟性電子產品需求,迫切需要開發兼具低Dk及具可3D列印的光固化高分子材料,這些先進材料將可能徹底改變下一代電子產品的型態及其生產方式,為次世代的電子設備提供更高的製程靈活性和生產效率。
本論文研究核心建立以LCD 3D光固化列印技術為研究平台,在第二章中開發了一種專為3D列印技術使用的低Dk光固化樹酯,將帶有非極性及立體障礙功能之金剛烷二醇導入光固化聚胺酯分子主鏈中,藉此增加基質的自由體積,進而改善光固化聚胺酯固有的高介電特性,實驗結果已顯著優於常用的PCB材料(High Tg FR-4),同時也提升光固化聚胺酯材料整體熱穩定性與機械性質。然而,光固化樹酯材料成品與其他熱固型聚合物一樣,一旦固化反應,將產生永久性塑膠廢棄物,其降解效率和回收能力遠不及熱塑型塑膠或超分子塑膠,僅能透過研磨後用作填料或以燃燒方式銷毀,為解決這個問題,在第三章開發可降解回收型的3D列印光固化樹酯,採用受阻脲鍵(Hindered Urea Bond,HUB)來設計用於可回收的光固化聚胺酯彈體,能在溫和條件下可重新解離回異氰酸酯和受阻胺,藉由導入類似1-(tert-butyl)-1-ethyl urea(TBEU)之結構來合理設計含HUB的動態聚脲熱固性材料,故在環境永續保護及成本效益上將有很大助益。最後在第四章中,將金剛烷結構導入含有HUBs的PUUA分子鏈中,所研製出之PUUA-ADO光固化樹酯具有基本的自修復能力外,在磨耗測試及刮痕測試亦展現優異的耐磨耗特性,因此除了可運用於電子元件材料,其高強度機械性質、優異的高硬度及耐磨耗性,亦可作為環保型耐磨耗性塗料,同時賦予物體表面抗腐蝕的保護功能,並可藉由加熱方式使受損漆面恢復原貌,達到自修復之功能。 | zh_TW |
dc.description.abstract | The photocurable three-dimensional (3D) printing technology is based on photopolymerization reactions. This technology has received extensive attention in industrial manufacturing, electronics, and biomedical engineering because of its excellent forming accuracy and rapid forming efficiency. The printing material most compatible with this technology is photopolymerizable resin, which consists of photoinitiator, photocurable prepolymer, reactive monomer, and other additives. Photocurable polyurethane can be endowed with various properties, such as elastomeric behavior, wear resistance, high tensile strength, and good thermal stability, by adjusting the ratio of its soft segments to hard segments or through microphase separation. The increasing demand for high-speed transmission of electronic signals is accompanied by the stringent requirement of signal fidelity. Low-dielectric-constant (low-Dk) polymers, such as polyimide, polytetrafluoroethylene, and liquid crystal polymer, play a crucial role in such electronic products. However, owing to their inherent molecular structures, these polymers are mostly used in the form of rigid materials such as films and flat circuit boards; they are not suitable for use as 3D printing materials. To overcome these problems, developing photocurable polymers that exhibit low dielectric constants and can be used in 3D printing is imperative.
The study focuses on liquid crystal display LCD 3D printing technology. Chapter 2 describes the development of a low-dielectric-constant photocurable resin specifically designed for 3D printing. Adamantane having the properties of nonpolarity and steric hindrance was introduced into the main chain of polyurethane, thereby increasing the free volume of the matrix and improving the inherently high dielectric properties of the photocurable polyurethane. The experimental results indicated that the newly developed photocurable resin performed significantly better than the commonly used printed circuit board materials (high-glass-transition-temperature FR-4) and enhanced the thermal stability and mechanical properties of the photocurable polyurethanes. However, similar to other thermoset polymers, photocured products produce plastic waste after the curing reaction is completed. Their degradation efficiency and recyclability are far inferior to those of thermoplastic plastics or supramolecular plastics. They can only be used as fillers after grinding or can be destroyed by burning. To address these drawbacks, a degradable and recyclable photocurable resin for 3D printing was engineered, the development of which is described in Chapter 3. Recyclable photocurable polyurethane elastomers were designed using hindered urea bonds (HUBs); they can be re-dissociated into isocyanates and hindered amines under mild conditions. Dynamic polyurea thermosetting materials containing HUBs can be rationally designed by introducing a compound with a structure similar to that of 1-(tert-butyl)-1-ethyl urea. This provides major advantages in terms of environmental sustainability and cost-effectiveness. Finally, Chapter 4 describes the introduction of adamantane into the molecular chain of polyurethane urea acrylate containing hindered urea bonds. The developed polyurethane urea acrylate–adamantane photocurable resin exhibits not only the basic ability to self-repair but also excellent performance in abrasion and scratch resistance tests. In addition to its potential use in electronic components, this resin can be used as an eco-friendly, abrasion-resistant coating because of its high mechanical strength, outstanding hardness, and excellent abrasion resistance. Moreover, it protects surfaces from corrosion and can restore damaged paint by heating, thus exhibiting self-repair abilities. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:40:51Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-21T16:40:51Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract v 圖次 xi 表次 xvii 第一章 緒論 1 1.1 前言 1 1.2 3D列印技術 4 1.2.1 擠出成型(Extrusion) 8 1.2.2 選擇性雷射燒結(SLS)和黏著劑噴塗成型(BJ) 10 1.2.3 光固化技術(Vat PhotoPolymerization) 12 1.3 光固化機制及反應物 15 1.3.1 光固化反應 15 1.3.2 光固化起始劑 19 1.3.3 Jacobs工作曲線 22 1.4 光固化聚氨酯丙烯酸酯 24 1.4.1 聚氨酯 24 1.4.2 光固化聚氨酯樹酯 27 1.4.3 光固化聚氨酯原料選擇 29 1.5 聚合物介電性質改善方針 33 1.5.1 介電性質對5G通訊設備的影響 33 1.5.2 聚合物介電理論 35 1.5.3 材料介電性質改善方針 37 1.6 可加工性及回收性的聚合物 40 1.6.1 酯交換型PU Vitrimer 43 1.6.2 氨基甲酸酯鍵交換型PU Vitrimer 44 1.6.3 亞胺鍵交換型PU Vitrimer 46 1.6.4 二硫鍵(S−S )鍵交換型PU Vitrimer 48 1.6.5 Diels-Alder交換反應型PU Vitrimer 50 1.6.6 脲素鍵交換反應型PU Vitrimer 53 第二章 金剛烷基低介電常數光固化樹酯 56 2.1前言 56 2.2實驗 60 2.2.1實驗藥品 60 2.2.2實驗儀器設備 63 2.2.3實驗步驟及測試方法 65 2.2.3.1 金剛烷基聚胺酯丙烯酸酯(PUA-ADO)樹酯的合成步驟 65 2.2.3.2 LCD 3D列印操作參數 68 2.2.3.3 基材金屬化 69 2.3結果與討論 70 2.3.1 PUA-ADO樹酯的合成與特性分析 70 2.3.2 PUA-ADO樹酯其R值最佳化 74 2.3.3 PUA2.0-ADO系列樹酯其ADO含量最佳化 77 2.3.4 PUA2.0-ADO系列樹酯的熱穩定性 83 2.3.5 PUA2.0-ADO2.0系列樹酯Df值優化 86 2.3.6 PUA2.0-ADO2.0-BN系列樹酯特性分析 89 2.3.6 基材金屬化其銅層附著性 91 2.3.7 LCD 3D列印物件應用可行性 95 2.4結論 97 第三章 環保型光固化樹酯 99 3.1前言 99 3.2實驗 101 3.2.1實驗藥品 101 3.2.2實驗儀器設備 104 3.2.3實驗步驟及測試方法 106 3.2.3.1 含HUBs的PUUA光固化樹酯的合成步驟 106 3.2.3.2 LCD 3D樹酯製備及其列印操作參數 108 3.2.3.3光固化成品回收加工方式 109 3.3結果與討論 110 3.3.1 含HUBs的PUUA光固化樹酯其合成與特性分析 110 3.3.2 含HUBs的PUUA光固化樣品可回收性探究 114 3.3.3 含HUBs的PUUA光固化樣品其回收後特性-熱性質分析 123 3.3.3.1 熱重量分析TGA 123 3.3.3.2 差示掃描量熱法分析DSC 125 3.3.3.3 動態機械分析DMA及材料交聯密度 126 3.3.4 含HUBs的PUUA光固化樣品其回收後特性-力學性質分析 130 3.3.4.1 拉伸測試 130 3.3.4.2 壓縮測試 131 3.3.6 含HUBs的PUUA光固化樹酯於LCD 3D列印可行性分析 139 3.3.7 PUUA-BEDA光固化樹酯3D列印物件及其回收再加工應用 145 3.4結論 148 第四章 含金剛烷基環保型光固化樹酯開發與其自修復之應用 150 4.1前言 150 4.2實驗設計 153 4.2.1實驗藥品 153 4.2.2實驗儀器設備 155 4.2.3 PUUA-ADO光固化樹酯的合成步驟 156 4.2.4 塗層固化及刮痕試驗樣品製備 158 4.3結果與討論 159 4.3.1 自修復測試 159 4.3.2 耐腐蝕性測試 161 4.3.3 電化學阻抗譜量測 163 4.3.4 鉛筆硬度測試 165 4.3.5 蕭氏硬度測試及漸進式負載刮痕測試 167 4.4結論 170 第五章 結論與未來展望 171 參考文獻 177 | - |
dc.language.iso | zh_TW | - |
dc.title | 先進低介電環保型光固化樹酯開發及其3D列印應用 | zh_TW |
dc.title | The development of advanced low-dielectric-constant, environmentally-friendly photocurable resin for 3D printing applications | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.coadvisor | 廖英志 | zh_TW |
dc.contributor.coadvisor | Ying-Chih Liao | en |
dc.contributor.oralexamcommittee | 賴育英;邱昱誠;吳建欣 | zh_TW |
dc.contributor.oralexamcommittee | Yu-Ying Lai;Yu-Cheng Chiu;Chien-Hsin Wu | en |
dc.subject.keyword | 光固化3D列印,金剛烷,低介電常數,可回收,金屬化, | zh_TW |
dc.subject.keyword | LCD 3D printing,Adamantane,Low-dielectric-constant,Recyclable,Metallization, | en |
dc.relation.page | 196 | - |
dc.identifier.doi | 10.6342/NTU202404773 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2025-01-03 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 18.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。