請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96815
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖文正 | zh_TW |
dc.contributor.advisor | Wen-Cheng Liao | en |
dc.contributor.author | 翁家瑞 | zh_TW |
dc.contributor.author | Jia-Rui Weng | en |
dc.date.accessioned | 2025-02-21T16:40:34Z | - |
dc.date.available | 2025-02-22 | - |
dc.date.copyright | 2025-02-21 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-12-24 | - |
dc.identifier.citation | [1] Bažant, Z.P., Wendner, R.W. (2015), “Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decade applicability”, Mater. Struct. Vol. 48, pp. 753-770.
[2] 孫璨. (2010), “鋼筋混凝土結構長期徐變收縮效應研究應用”. 哈爾濱工業大學深圳研究生院博士學位論文. [3] 王元豐. (2013), “鋼管混凝土徐變理論”. 科學出版社. [4] Bažant, Z.P. (2001), “Prediction of concrete creep and shrinkage: past,present and future”, Nucl. Eng. Des., Vol. 203, pp. 27-38. [5] Chern, J.C., Liu, T.C. (2009), “Life-Cycle Management of Sustainable Public Infrastructure”, International Symposium on Infrastructure and Environment, Kochi. [6] 陳振川. (2013), “積極構架健全工程環境-持續推動優質公共建設”. 混凝土科技, Vol. 7, pp. 3-25. [7] Larrard, F.D, Sedran, T. (1994), “Optimization of ultra-high-performance concrete by the use of a packing model”, Cem. Concr. Res., Vol. 24, pp. 997-1009. [8] Yang, L., Shi, C.J, Wu Z.M. (2019), “Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete-A review”, Compos. Part B. Eng. Vol. 1782, pp. 107456. [9] 邵旭東, 樊偉, 黃政宇. (2021), “超高性能混凝土在結構中的應用”. 土木工程學報, Vol. 54, pp. 1-13. [10] Yoo, D.Y., Kim, S., Kim, M.J. (2018), “Comparative shrinkage behavior of ultra-high performance fiber-reinforced concrete under ambient and heat curing conditions”. Constr. Build. Mater., Vol. 162, pp. 406-419. [11] Liu, K.Z., Yu, R., Shui, Z.H, et al. (2019), “Optimization of autogenous shrinkage and microstructure for ultra-high performance concrete (UHPC) based on appropriate application of porous pumice”. Constr. Build. Mater., Vol. 214, pp. 369-381. [12] Tazawa, E., Miyazawa, S.; Kasai, T. (1995), “Chemical shrinkage and autogenous shrinkage of hydrating cement paste”, Cem. Concr. Res. Vol. 25, pp. 288-292. [13] Beltzung, F., Wittmann, F.H. (2001), “Early chemical shrinkage due to dissolution and hydration of cement”, Mater. Struct. Vol. 34, pp. 279-283. [14] Yodsudjai, W., Wang, K.J. (2013), “Chemical shrinkage behavior of pastes made with different types of cements”, Constr. Build. Mater. Vol. 40, pp. 854-862. [15] Fu, T.F., Deboodt, T., Ideker, J.H. (2012), “Simple Procedure for Determining Long-Term Chemical Shrinkage for Cementitious Systems Using Improved Standard Chemical Shrinkage Test”, J Mater. Civil. Eng. Vol. 24, pp. 989-995. [16] Setter, N., Roy, D.M. (1978), “Mechanical features of chemical shrinkage of cement paste”, Cem. Concr. Res. Vol. 8, pp. 623-634. [17] Zhang, Y., Bouillon, C., Vlasopoulos, N., et al. (2019), “Measuring and modeling hydration kinetics of well cements under elevated temperature and pressure using chemical shrinkage test method”, Cem. Concr. Res. Vol. 123, pp. 105768. [18] Ghanem, H., Ramadan, R., Khatib, J. et al. (2024), “A Review on Chemical and Autogenous Shrinkage of Cementitious Systems”, Mater, Vol. 17, pp. 283. [19] Maryah, C.D., Luís, U.D, Malik, C., et al. (2023), “Mechanisms of Chemical and Autogenous Shrinkage in Alkali-Activated Hybrid Systems”, J Mater. Civil. Eng. Vol. 35, pp. 04023157. [20] Zhang, T.S., Gao, P., Luo, R.F., et al. (2013), “Measurement of chemical shrinkage of cement paste: Comparison study of ASTM C 1608 and an improved method”, Constr. Build. Mater. Vol. 48, pp. 662-669. [21] Liao, Y.S., Wei, X.S. (2014), “Relationship between Chemical Shrinkage and Electrical Resistivity for Cement Pastes at Early Age”, J. Mater. Civil. Eng. Vol. 26, pp. 384-387. [22] Mette, G., Torben, K. (1982), “Chemical shrinkage of portland cement pastes”, Cem. Concr. Res. Vol. 12, pp. 603-610. [23] Sun, Z.N., Tan, X.J., Chen, W.Z. et al. (2022), “Chemical shrinkage of ferrite-rich calcium sulfoaluminate clinkers with varied gypsum contents”, Constr. Build. Mater. Vol. 357, pp. 128729. [24] Wang, J.B., Cheng, Y., Yuan, L.W., et al. (2020), “Effect of nano-silica on chemical and volume shrinkage of cement-based composites”, Constr. Build. Mater. Vol. 247, pp. 118529. [25] Bouasker, M., Mounanga, P., Turcry, P., et al. (2008), “Chemical shrinkage of cement pastes and mortars at very early age: Effect of limestone filler and granular inclusions”, Cem. Concr. Compos. Vol. 30, pp. 13-22. [26] Holt, E. (2004), “Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages”, Cem. Concr. Res. Vol. 35, pp. 464-472. [27] Bentz, D.P., Jensen, O.M. (2004), “Mitigation strategies for autogenous shrinkage cracking”, Cem. Concr. Compos. Vol. 26, pp. 677-685. [28] Lynam, C.G. (1934), “Growth and movement in portland cement concrete”, Oxford University Press, London, England. pp. 26-27. [29] Ding, Q.J., Tian, Y.G., Wang, F.Z., et al. (2005), “Autogenous shrinkage of high strength lightweight aggregate concrete”, J. Wuh. Uni. Tec-Mater. Sci. Ed. Vol. 20, pp. 123-125. [30] Wu, L.M., Farzadnia, N., Shi, C.J., et al. (2017), “Autogenous shrinkage of high performance concrete: A review”, Constr. Build. Mater. Vol. 149, pp. 62-75. [31] Bentz, D.P., Jensen, O.M., Hansen, K.K., et al. (2001), “Influence of cement particle size distribution on early age autogenous strains and stresses in cement-based materials”, J. Am. Ceram. Soc. Vol. 84, pp. 129-135. [32] Gao, Y.L., Zhang, H.L., Tang, S., et al. (2013), “Study on early autogenous shrinkage and crack resistance of fly ash high-strength lightweight aggregate concrete”, Mag. Concr. Res. Vol. 65, pp. 906-913. [33] Zhang, M.H., Tam, C.T., Leow, M.P. (2003), “Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete”, Cem. Concr. Res. Vol. 33, pp. 1687-1694. [34] Mac, M.J., Yio, M.H., Wong, H.S., et al. (2021), “Analysis of autogenous shrinkage-induced microcracks in concrete from 3D images”, Cem. Concr. Res. Vol. 144, pp. 106416. [35] Bentur, A., Igarashi, S., Kovler, K., et al. (2001), “Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates”, Cem. Concr. Res. Vol. 31, pp. 1587-1591. [36] Wang, F.Z., Zhou, Y.F., Peng, B., et al. (2009), “Autogenous Shrinkage of Concrete with Super-Absorbent Polymer”, Aci. Mater. J. Vol. 106, pp. 123-127. [37] Liu, L.M., Fang, Z., Huang, Z.Y., et al. (2022), “Solving shrinkage problem of ultra-high-performance concrete by a combined use of expansive agent, super absorbent polymer, and shrinkage-reducing agent”, Compos. Part B. Eng. Vol. 230, pp. 109503. [38] Tian, L., Jiao, M.P., Fu, H., et al. (2022), “Effect of magnesia expansion agent with different activity on mechanical property, autogenous shrinkage and durability of concrete”, Constr. Build. Mater. Vol. 335, pp. 127506. [39] Afzal, S., Shahzada, K., Fahad, M., et al. (2014), “Assessment of early-age autogenous shrinkage strains in concrete using bentonite clay as internal curing technique”, Constr. Build. Mater. Vol. 66, pp. 403-409. [40] Ghafari, E., Ghahari, S.A., Costa, H., et al. (2016), “Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete”, Constr. Build. Mater. Vol. 127, pp. 43-48. [41] Yoo, D.Y., Min, K.H., Lee, J.H., et al. (2011), “Autogenous shrinkage of concrete with design strength 60-120 N/mm2”, Mag. Concr. Res. Vol. 63, pp. 751-761. [42] Kim, G.Y., Nam, J.S., Lee, E.B., et al. (2011), “Analysis of hydration heat and autogenous shrinkage of high-strength mass concrete”, Mag. Concr. Res. Vol. 63, pp. 377-389. [43] Tazawa, E., Miyazawa, S. (1995), “Influence of cement and admixture on autogenous shrinkage of cement paste”, Cem. Concr. Res. Vol. 25, pp. 281-287. [44] Oliveira, M.J., Ribeiro, A.B., Branco, F.G. (2014), “Combined effect of expansive and shrinkage reducing admixtures to control autogenous shrinkage in self-compacting concrete”, Constr. Build. Mater. Vol. 52, pp. 267-275. [45] Polat, R., Demirboga, R., Karagöl, F. (2018), “The influence of expanded perlite aggregate on compressive strength, linear autogenous shrinkage, restrained shrinkage, heat of hydration of cement-based materials”, Concr. Struct. Vol. 19, pp. 1771-1781. [46] Wan, Z.M., He, T.S., Yang, R.H., et al. (2023), “The effect of shrinkage-reducing agents on autogenous shrinkage and drying shrinkage of cement mortar with accelerator”, Mech. Time-Depend. Mater. pp. 09614 [47] Tian, C., Wei, X.S., Zheng, Z.S. (2022), “A practical model for predicting the autogenous shrinkage of cementitious materials”, Constr. Build. Mater. Vol. 14, pp. 126566. [48] Zhao, B., Xu, Y.X., Peng, H., et al. (2022), “Experiment and phase-field simulation of uniaxial compression of ultra-high-performance concrete with coarse aggregate”, Adv. Struct. Eng. Vol. 25, pp. 2121-2136. [49] Zhang, J., Han, Y.D., Gao, Y. (2014), “Effects of Water-Binder Ratio and Coarse Aggregate Content on Interior Humidity, Autogenous Shrinkage, and Drying Shrinkage of Concrete”, J. Mater. Civil. Eng. Vol. 14, pp. 126566. [50] Akcay, B. (2018), “Aggregate Restraining Effect on Autogenous Shrinkage of Cementitious Materials”, KSCE. J. Civil. Eng. Vol. 22, pp. 3102-3111. [51] Liu, Y.L., Wei, Y. (2021), “Internal curing efficiency and key properties of UHPC influenced by dry or prewetted calcined bauxite aggregate with different particle size”, Constr. Build. Mater. Vol. 312, pp. 125406. [52] Liu, Y.L., Wei, Y. (2021), “Effect of calcined bauxite powder or aggregate on the shrinkage properties of UHPC”, Cem. Concr. Compos. Vol. 118, pp. 103967. [53] Li, Y., Zhang, W.H., Sun, G.W., et al. (2023), “A new orientational molding method for ultra-high performance concrete with high content of steel fiber and investigation on its flexure and axial tensile properties”, Constr. Build. Mater. Vol. 400, pp. 132755. [54] Mu, R., Chen, J., Chen, X.S., et al. (2023), “Effect of the orientation of steel fiber on the strength of ultra-high-performance concrete (UHPC)”, Constr. Build. Mater. Vol. 406, pp. 133431. [55] Shen, D.J., Wen, C.Y., Zhu, P.F., et al. (2020), “Influence of Barchip fiber on early-age autogenous shrinkage of highstrength concrete”, Constr. Build. Mater. Vol. 256, pp. 119223. [56] Zhang, X.Z., Liu, Z.C., Wang, F.Z. (2019), “Autogenous shrinkage behavior of ultra-high performance concrete”, Constr. Build. Mater. Vol. 226, pp. 459-468. [57] Shen, D.J., Liu, C., Kang, J.C., et al. (2022), “Early-age autogenous shrinkage and tensile creep of hooked-end steel fiber reinforced concrete with different thermal treatment temperatures”, Cem. Concr. Compos. Vol. 131, pp. 104550. [58] Fang, C.F., Ali, M., Xie.T.Y., et al. (2020), “The influence of steel fibre properties on the shrinkage of ultra-high performance fibre reinforced concrete”, Constr. Build. Mater. Vol. 242, pp. 117993. [59] Hisseine, O.A., Soliman, N.A., Tolnai, B. et al. (2020), “Nano-engineered ultra-high performance concrete for controlled autogenous shrinkage using nanocellulose”, Cem. Concr. Res. Vol. 137, pp. 106217. [60] Du, Y., Zang, Y.W., Li, X.G. et al. (2024), “Assessing the influence of external curing on the early drying shrinkage of ultra-high-performance concrete”, J. Build. Eng. Vol. 89, pp. 109292. [61] Gardner, D.W., Li, J., Kunz, M. et al. (2023), “Uniaxial stress increases layer stacking disorder in calcium silicate hydrates with low calcium content”, Acta Mater. Vol. 246, pp. 118726. [62] Sun, M., Visintin, P., Bennett.T. (2022), “The effect of specimen size on autogenous and total shrinkage of ultra-high performance concrete (UHPC)”, Constr. Build. Mater. Vol. 327, pp. 126952. [63] Park, J.J., Kim, S.W., Yoo, D.Y., et al. (2013), “Drying shrinkage cracking characteristics of ultra-high-performance fibre reinforced concrete with expansive and shrinkage reducing agents”, Mag. Concr. Res. Vol. 65, pp. 248-256. [64] Yalçınkaya, Ç., Felekoğlu, B., Yazıcı, H. (2020), “Influence of aggregate volume on the shrinkage, rheological and mechanical properties of ultra-high performance concrete”, J. Fac. Eng. Archit. Gaz. Vol. 35, pp. 1701-1718. [65] Cao, Q., Nawaz, U., Jiang, X. et al. (2022), “Effect of air-cooled blast furnace slag aggregate on mechanical properties of ultra-high-performance concrete”, Case. Stud. Constr. Mater. Vol. 16, pp. e01027. [66] Wu, Z.M., Shi, C.J., Khayat, K.H. (2019), “Investigation of mechanical properties and shrinkage of ultra-high performance concrete: Influence of steel fiber content and shape”. Compos. Part B Eng. Vol. 174, pp. 107021. [67] Zhan, P.M., He. Z.H. (2019), “Application of shrinkage reducing admixture in concrete: A review”, Constr. Build. Mater. Vol. 201, pp. 676-690. [68] Assmann, A., Reinhardt, H.W. (2014), “Tensile creep and shrinkage of SAP modified concrete”, Cem. Concr. Res. Vol. 58, pp. 179-185. [69] Liu, J.H., Farzadnia, N., Shi, C.J., et al. (2019), “Shrinkage and strength development of UHSC incorporating a hybrid system of SAP and SRA”, Cem. Concr. Compos. Vol. 97, pp. 175-189. [70] Li, W.M., Min, D. (2006), “Thermal behavior of cement matrix with high-volume mineral admixtures at early hydration age”, Cem. Concr. Res. Vol. 36, pp. 1992-1998. [71] Chen, W., Brouwers, H.J. (2007), “The hydration of slag, part 1: reaction models for alkali-activated slag”, J. Mater. Sci. Vol. 42, pp. 428-443. [72] Maruyama, I., Teramoto, A. (2011), “Impact of time-dependant thermal expansion coefficient on the early-age volume changes in cement pastes”, Cem. Concr. Res. Vol. 41, pp. 380-391. [73] 吳中偉, 廉慧珍. (1999), “高性能混凝土”, 中國鐵道出版社. [74] Bertelsen, I.M., Ottosen, L. M., Fischer, G. (2020), “Influence of fibre characteristics on plastic shrinkage cracking in cement-based materials: A review”, Constr. Build. Mater. Vol. 230, pp. 116769. [75] Olivier, G., Combrinck, R., Kayondo, M., et al. (2018), “Combined effect of nano-silica, super absorbent polymers, and synthetic fibres on plastic shrinkage cracking in concrete”, Constr. Build. Mater. Vol. 192, pp. 85-98. [76] Ghourchian, S., Wyrzykowski, M., Plamondon, M., et al. (2019), “On the mechanism of plastic shrinkage cracking in fresh cementitious materials”, Cem. Concr. Res. Vol. 115, pp. 251-263. [77] Lura, P., Van, B. K., Maruyama, I. (2001), “Effect of curing temperature and type of cement on early-age shrinkage of high-performance concrete”, Cem. Concr. Res. Vol. 31, pp. 1867-1872. [78] Bentz, D. P., Garboczi, E. J., Haecker, C. J., et al. (1999), “Effects of cement particle size distribution on performance properties of portland cement-based materials”, Cem. Concr. Res. Vol. 29, pp. 1663-1671. [79] Roper, H. R. (1974), “The influence of cement composition and fitness on concrete shrinkage, tension creep and cracking tendency”, First Australian Conference on Engineering Materials, University of New South Wales, Australia. [80] Bentz, D.P., Sant, G., Weiss, J. (2008), “Early-Age Properties of Cement-Based Materials. I: Influence of Cement Fineness”, J. Mater. Civil. Eng. Vol. 20, pp. 502-508. [81] Davis, H.E. (1940), “Autogenous volume change of concrete”, Proceedings of ASTM. Atlantic City: American Society for Testing Materials, Vol. 32, pp.1103-1112. [82] Tazawa, E., Miyazawa, S. (1993), “Autogenous shrinkage of concrete and its importance in concrete technology”, Proceedings of the 5th International RILEM Symposium on Creep and Shrinkage of Concrete. London, UK: Chapman & Hall, 159-168. [83] 田倩. (2006), “低水膠比大摻量礦物摻合料水泥基材料的收縮及機理研究”. 東南大學土木工程學院博士學位論文. [84] Yalçınkaya, Ç., Yazıcı, H. (2017), “Effects of ambient temperature and relative humidity on early-age shrinkage of UHPC with high-volume mineral admixtures”. Constr. Build. Mater., Vol. 144, pp. 252-259. [85] 高小建. (2003), “高性能混凝土早期開裂機理與評價方法”. 哈爾濱工業大學土木工程學院博士學位論文. [86] Tazawa, E., Miyazawa S. (1997), “Influence of constituents and composition on autogenous shrinkage of cementitious materials”, Mag. Concr. Res. Vol. 25, pp. 281-287. [87] Cusson, D., Hoogeveen, T. (2008), “Internal curing of high-performance concrete with pre-soaked fine lightweight aggregate for prevention of autogenous shrinkage cracking”. Cem. Concr. Res. Vol. 38, pp. 757-765. [88] Huang, K., Deng, M., Mo, L., et al. (2013), “Early age stability of concrete pavement by using hybrid fiber together with mgo expansion agent in high altitude locality”. Constr. Build. Mater., Vol 48, pp. 685-690. [89] Li, Y., Bao, J., Guo, Y. (2010), “The relationship between autogenous shrinkage and pore structure of cement paste with mineral admixtures”. Constr. Build. Mater., Vol 24, pp. 1855-1860. [90] Van, V., Rößler, C., Bui, D., et al. (2014), “Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high performance concrete”, Cem. Concr. Compos. Vol. 53, pp. 270-278. [91] Liu, J., Shi, C., Ma, X., et al. (2017), “An overview on the effect of internal curing on shrinkage of high performance cement-based materials”. Constr. Build. Mater., Vol 146, pp. 702-712. [92] Wang, J., Xiao, J., Zhang, Z., et al. (2021), “Action mechanism of rice husk ash and the effect on main performances of cement-based materials: A review”. Constr. Build. Mater., Vol 288, pp. 123068. [93] Troxell, G.E., Raphael, J.M., Davis, R.E. (1958), Proc., ASTM., Vol 58, pp. 1101-1120, 1958. [94] Mehta, P.K., Monteiro, P.J. (2014), “Concrete: Microstructure, Properties, and Materials”, McGraw-Hill Education, New York, US. [95] Gorospe, K., Booya, E., Ghaednia, H., et al. (2019), “Effect of various glass aggregates on the shrinkage and expansion of cement mortar”. Constr. Build. Mater., Vol 210, pp. 301-311. [96] Zhang, W., Zakaria, M., Hama, Y. (2013), “Influence of aggregate materials characteristics on the drying shrinkage properties of mortar and concrete”. Constr. Build. Mater., Vol 49, pp. 500-510. [97] Zhang, M.H., Gjorv, O.E. (1990), “Pozzolanic activity of lightweight aggregate”. Cem. Concr. Res. Vol. 20, pp. 884-890. [98] Ji, T., Zhang, B.B., Zhuang, Y.Z., et al. (2015), “Effect of lightweight aggregate on early-age autogenous shrinkage of concrete”. ACI. Mater. J., Vol. 112, pp. 355-363. [99] 陳寶春,季韜,黃卿維,等. (2014), “超高性能混凝土研究綜述”. 建築科學與工程學報, Vol. 31, pp. 1-24. [100] 陳寶春,林毅焌,楊簡,等. (2020), “超高性能纖維增強混凝土中纖維作用綜述”.福州大學學報(自然科學版), Vol. 48, pp. 58-68. [101] 高小建, 楊英姿. (2021), “混凝土早期性能與評價方法”, 哈爾濱工業大學出版社. [102] Yoo, D.Y., Shin, H.O., Yang, J.M., et al. (2014), “Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers”. Compos. Part B. Eng. Vol. 58, pp. 122-133. [103] 吳林妹,史才軍,張祖華,等. (2017), “鋼纖維對超高性能混凝土乾燥收縮的影響”. 材料導報, Vol. 31, pp. 58-65. [104] Noushini, A., Vessalas, K., Arabian, G., et al. (2014), “Drying shrinkage behaviour of fibre reinforced concrete incorporating polyvinyl alcohol fibres and fly ash”. Adv. Civ. Eng., Vol. 24, pp. 23-30. [105] Miao, B., Chern, J.C., Yang, C.A. (2003), “Influences of fiber content on properties of self-compacting steel fiber reinforced concrete”. J. Chin. Inst. Eng., Vol. 26, pp. 523-530. [106] 林鴻斌. (2011), “鋼纖維自密實高強混凝土的製備及其性能研究”. 重慶大學土木工程學院碩士學位論文. [107] 張虎. (2017), “自密實鋼纖維輕骨料混凝土的早期性能與損傷分析”. 材料導報, Vol. 31, pp. 124-128. [108] Banthia, N., Gupta, R. (2006), “Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete”. Cem. Concr. Res., Vol. 36, pp. 1263-1267. [109] Yu, R., Liu, K.N., Yin, T.Y., et al. (2022), “Comparative study on the effect of steel and polyoxymethylene fibers on the characteristics of Ultra-High Performance Concrete (UHPC)”. Cem. Concr. Comp., Vol. 127, pp. 104418. [110] Ma, B., Wang, X.G., Li, X., et al. (2007), “Influence of superplasticizers on strength and shrinkage cracking of cement mortar under drying conditions”. J. Wuhan Univ Technol-Mater. Sci. Ed. Vol. 22, pp. 358-361. [111] Ravindra, K., Andrew, W. (1984), “Superplasticizer flowing concrete: strength and deformation properties”, Mag. Concr. Res. Vol. 36, pp. 203−215. [112] Qian, X., Yu, C., Zhang, L., et al. (2020), “Influence of Superplasticizer Type and Dosage on Early-age Drying Shrinkage of Cement Paste with Consideration of Pore Size Distribution and Water Loss”. J. Wuhan Univ Technol-Mater. Sci. Ed. Vol. 35, pp. 758-767. [113] 劉加平, 田倩. (2020), “現代混凝土早期變形與收縮裂縫控制”, 科學出版社. [114] Neville, A.M. (2011), “Properties of Concrete (fifth edition)”, Pearson Education, London, UK. [115] Sant, G.A., Eberhardt, A., Bentz, D., et al. (2010), “Influence of shrinkage-reducing admixtures on moisture absorption in cementitious materials at early ages”. ASCE, J. Mater. Civil Eng., Vol. 22, pp. 277-286. [116] Bentz, D.P., Snyder, K.A., Cass, L.C., et al. (2008), “Doubling the service life of concrete I:containing shrinkage reducing ion mobility using nanoscale viscosity modifiers”. Cem. Concr. Comp., Vol. 30, pp. 674-678. [117] Brooks, J.J., Jiang, X. (1994), “The influence of chemical admixtures on restrained drying shrinkage of concrete”. ACI SP-173: Chemical. Admixtures., pp. 249-265. [118] Folliard, K.J., Berke, N.S., (1997), “Properties of high-performance concrete containing shrinkage reducing admixtures”. Cem. Concr. Res., Vol. 27, pp. 1357-1364. [119] Yoo, D.Y., Banthia, N., Yoon, Y.S. (2015), “Effectiveness of shrinkage-reducing admixture in reducing autogenous shrinkage stress of ultra-high-performance fiber-reinforced concrete”. Cem. Concr. Comp., Vol. 64, pp. 27-36. [120] Yoo, D.Y., Kang, S.T., Lee, J.H., et al. (2013), “Effect of shrinkage reducing admixture on tensile and flexural behaviors of uhpfrc considering fiber distribution characteristics”. Cem. Concr. Res., Vol. 54, pp. 180-190. [121] Wei, K., Xu, G., Yang, J., et al. (2023), “Study on mechanical and shrinkage properties of ES-UHPC”. Constr. Build. Mater., Vol. 377, pp. 131137. [122] Xie, T., Fang, C., Mohamad, A.M., et al. (2018), “Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): an experimental study”. Cem. Concr. Comp., Vol. 91, pp. 156-173. [123] Zhang, L., Ruan, S., Qian, K., et al. (2022), “Will wind always boost early-age shrinkage of cement paste?”. J. Am. Ceram. Soc., Vol. 105, pp. 2832-2846. [124] Zhang, L., Qian, X., Lin, T., et al. (2022), “Is early drying shrinkage still determined by the mesopore content? A case study of cement paste with minerals”. J. Build. Eng., Vol. 50, pp. 104187. [125] Du, Y., Zhang, L., Ruan, S., et al. (2022), “Investigation of early drying shrinkage of ultrahigh-performance concrete under windy conditions”. J. Build. Eng., Vol. 57, pp. 104852. [126] Zhang, L., Qian, X., Lai, J., et al. (2020), “Effect of different wind speeds and sealed curing time on early-age shrinkage of cement paste”. Constr. Build. Mater., Vol. 255, pp. 119366. [127] Powers, T.C. (1947), “A discussion of cement hydration in relation to the curing of concrete”. Proc. Highw. Res. Bd, Vol. 27, pp. 178-188. [128] Klieger, P. (1957), “Early high strength concrete for prestressing”. Proc. Of. World conference on prestressed concrete. San Francisco, pp. A5/1-14. [129] Parrott, L.J. (1988), “Moisture profiles in drying concrete”. Adv. Cem. Res., Vol. 1, pp. 164-170. [130] Yang, Y., Sato, R., Kawai, K. (2005), “Autogenous shrinkage of high-strength concrete containing silica fume under drying at early ages”. Cem. Concr. Res., Vol. 35, pp. 449-456. [131] Jensen, O.M., Hansen, P.F. (2001), “Water-entrained cement-based materials: I. Principles and theoretical background”. Cem. Concr. Res., Vol. 31, pp. 647-654. [132] Jensen, O.M., Hansen, P.F. (2002), “Water-entrained cement-based materials: Ⅱ. Experimental observations”. Cem. Concr. Res., Vol. 32, pp. 973-978. [133] 黃政宇, 王嘉. (2012), “高吸水性樹脂對超高性能混凝土性能的影響”. 矽酸鹽通報, Vol. 3, pp. 539-544. [134] Jensen, O.M., Hansen, P.F. (2001), “Autogenous deformation and RH-change in perspective”. Cem. Concr. Res., Vol. 31, pp. 1859-1865. [135] Lura, P., Jensen, O.M., Van, B.K. (2003), “Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms”. Cem. Concr. Res., Vol. 33, pp. 223-232. [136] Zhang, J., Hou, D., Han, Y. (2012), “Micromechanical modeling on autogenous and drying shrinkages of concrete”. Constr. Build. Mater., Vol. 29, pp. 230-240. [137] Bangham, D.H., Fakhoury, M. (1931), “The swelling of charcoal. Ⅰ: preliminary experiments with water vapor, carbon dioxide, and sulfur dioxide”. Proc. R. Soc. London. A, Vol. 120, pp. 81-90. [138] Bentz, D.P., Garboczi, E.J., Quenard, D.A. (1998), “Modelling drying shrinkage in reconstructed porous materials: application to porous Vycor glass”. Model. Simul. Mater. Sc., Vol. 6, pp. 211-236. [139] Ye, H., Radlińska, A. (2016), “A Review and Comparative Study of Existing Shrinkage Prediction Models for Portland and Non-Portland Cementitious Materials”. Adv. Mater. Sci. Eng., Vol. 2016, pp. 1-13. [140] Powers, T.C., Brownyard, T.L. (1948), “Studies of physical properties of hardened portland cement paste”. Res. Lab. Port. Cem. Asso., PCA Bulletin. 22. [141] Bažant, Z.P., Baweja, S. (1995), “Creep and shrinkage prediction model for analysis and design of concrete structures-model B3”. Mater. Struct. Vol. 28, pp. 357-365. [142] Wendner, R., Hubler, M.H., Bažant, Z.P., (2015), “Optimization method, choice of form and uncertainty quantification of Model B4 using laboratory and multi-decade bridge databases,” Mater. Struct. Vol. 48, pp. 771-796. [143] 黃禾程. (2020), “以資料庫回歸台灣混凝土收縮與潛變預測模型並應用於預力橋梁長期變位分析”. 國立臺灣大學土木工程學研究所碩士學位論文. [144] European Committee for Standardization (CEN) Standards, (2004), “Design of concrete structures. General rules and rules for buildings”, European Committee for Standardization., Brussels, Belgium. [145] JSCE Guidelines for Concrete No.15. (2007), “English Version of Standard Specifications for Concrete Structures”. Japan Society of Civil Engineers. Tokyo, Japan. [146] CEB-FIP Model Code, (2010), “fib Model Code for Concrete Structures”. International Federation for Structural Concrete. Lausanne, Switzerland. [147] CEB, (1991), “Evaluation of the Time Dependent Properties of Concrete”, Bulletin d’Information No. 199, Comite European du Beton/Federation Internationale de la Precontrainte, Lausanne, Switzerland, pp. 201. [148] CEB, (1999), “Structural Concrete-Textbook on Behavior, Design and Performance. Updated Knowledge of the CEB/FIP Model Code 1990”, fib Bulletin 2, Vol. 2, Federation Internationale du Beton, Lausanne, Switzerland, pp. 37-52. [149] Walraven, J., (2010), “fib Model Code 2010”, Vol. 1, First Draft, fib bulletin 66.CEB, (2010), “fib Model Code for Concrete Structures”, International Federation for Structural Concrete. Lausanne, Switzerland. [150] Branson, D.E., Christiason, M.L. (1971), “Time Dependent Concrete Properties Related to Design-Strength and Elastic Properties, Creep and Shrinkage” Creep, Shrinkage and Temperature Effects, SP-27, American Concrete Institute, Farmington Hills, MI, pp. 257-277. [151] ACI Committee 209, (1982), “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures”, Designing for Creep and shrinkage in Concrete Structures, A Tribute to Adrian Pauw, SP-76, American Concrete Institute, Farmington Hills, MI, pp. 193-300. [152] ACI Committee 209, (1992), “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures (ACI 209R-92)”, American Concrete Institute, Farmington Hills, MI, pp. 47. [153] Gardner, N.J., Lockman, M.J. (2001), “Design provisions for drying shrinkage and creep of normal strength concrete”, ACI Material. Journal. Vol. 98, No.2, pp. 159-167. [154] Yoo, D.Y., Kim, M.J., Kim, S. et al. (2018), “Effects of mix proportion and curing condition on shrinkage behavior of HPFRCCs with silica fume and blast furnace slag”, Constr. Build. Mater. Vol. 166, pp. 241-256. [155] ASTM C1074, (2011), “Standard Practice for Estimating Concrete Strength by the Maturity Method”, ASTM International, West Conshohocken, PA. [156] NRMCA, (2006), “CIP 39-Maturity Methods to Estimate Concrete Strength”. National Ready Mix Concrete Association. [157] Jonasson, J. Hedlund, H., (2000), “An engineering model for creep and shrinkage in high performance concrete, in: Proceedings of the International RILEM Workshop on Shrinkage of Concrete, Shrinkage”, RILEM, Paris, Bagneux, France, pp. 173-178. [158] Lee, K.M., Lee, H.K., Lee, S.H. et al. (2006), “Autogenous shrinkage of concrete containing granulated blast-furnace slag”, Cem. Concr. Res. Vol. 36, pp. 1279-1285. [159] 中國建築材料工業協會. (2007), “通用矽酸鹽水泥”. 中華人民共和國國家標準. 中國標準出版社. [160] 中國建築材料聯合會. (2011), “建築用砂”. 中華人民共和國國家標準. 中國標準出版社. [161] 中國建築材料聯合會. (2011), “建築用卵石、碎石”. 中華人民共和國國家標準. 中國標準出版社. [162] 中國人民共和國住房和城鄉建設部. (2013), “混凝土外加劑應用技術規範”. 中華人民共和國國家標準. 中國建築工業出版社. [163] 中國工程建設標準化協會. (2006), “高性能混凝土應用技術規程”. 中國工程建設標準化協會標準. 中國計劃出版社. [164] 中國人民共和國住房和城鄉建設部. (2016), “普通混凝土拌合物性能試驗方法標準”. 中華人民共和國國家標準. 中國建築工業出版社. [165] 中國工程建設標準化協會. (2020), “超高性能混凝土(UHPC)技術要求”. 中國工程建設標準化協會團體標準. 中國標準出版社. [166] 中國人民共和國住房和城鄉建設部. (2019), “混凝土物理力學性能試驗方法標準”. 中華人民共和國國家標準, 中國建築工業出版社. [167] Yoo, D.Y., Kim, S.H., Kim, M.J. (2018), “Comparative shrinkage behavior of ultra-high-performance fiber-reinforced concrete under ambient and heat curing conditions”, Constr. Build. Mater. Vol. 162, pp. 406-419. [168] 中國人民共和國住房和城鄉建設部. (2009), “普通混凝土長期性能和耐久性能試驗方法標準”. 中華人民共和國國家標準. 中國建築工業出版社. [169] Liu, G.F., Kan, D.Y., Cao, S.C. et al. (2022), “Effect of multi-walled carbon nanotube on reactive powder concrete (RPC) performance in sulfate dry-wet cycling environment”, Constr. Build. Mater. Vol. 342, pp. 128075. [170] Zhu, X.H., Kang, X.J., Yang, K. et al. (2017), “Effect of graphene oxide on the mechanical properties and the formation of layered double hydroxides (LDHs) in alkali-activated slag cement”, Constr. Build. Mater. Vol. 132, pp. 290-295. [171] Zhou, Y., Huang, J.L., Yang, X. et al. (2021), “Enhancing the PVA fiber-matrix interface properties in ultra high performance concrete: An experimental and molecular dynamics study.”, Constr. Build. Mater. Vol. 285, pp. 122862. [172] Washburn, E. (1921), “Note on a method of determining the distribution of pore sizes in a porous material”, Proc. Natl. Acad. Sci. Vol. 7, pp. 115-116. [173] He, R., Lu, N. (2023), “Unveiling the dielectric property change of concrete during hardening process by ground penetrating radar with the antenna frequency of 1.6 GHz and 2.6 GHz”, Cem. Concr. Compos. Vol. 144, pp. 105279. [174] Weng, J.R., Liao, W.C. (2021), “Microstructure and shrinkage behavior of high-performance concrete containing supplementary cementitious materials”, Constr. Build. Mater. Vol. 308, pp. 125045. [175] He, R., Lu, N. (2023), “Air void system and freezing-thawing resistance of concrete composite with the incorporation of thermo-expansive polymeric microspheres”, Constr. Build. Mater. Vol. 419, pp. 135535. [176] Zou, D.H., Wang, D.M. Zhang, S.Y. et al. (2022), “Influence of self-dispersing particles on workability, hydration and strength of ultra-high-performance concrete”, Constr. Build. Mater. Vol. 326, pp. 126727. [177] Li, L.F., Wang, B.N., Hubler, M.H. (2022), “Carbon nanofibers (CNFs) dispersed in ultra-high performance concrete (UHPC): Mechanical property, workability and permeability investigation”, Cem. Concr. Compos. Vol. 131, pp. 104592. [178] Zhou, X.M., Slater, J.R., Wavell, S.E. et al. (2012), “Effects of PFA and GGBS onEarly-Ages Engineering Properties of Portland Cement Systems”, J. Adv. Concr.Technol. Vol. 10, pp. 74-85. [179] Lim, J.S., Cheah, C.B., Ramli, M.B. (2019), “The setting behavior, mechanical propertiesand drying shrinkage of ternary blended concrete containing granite quarry dust and processed steel slag aggregate”, Constr. Build. Mater. Vol. 215, pp. 447-461. [180] Dave, N., Misra, A.K., Srivastava, A. et al. (2017), “Setting time and standard consistency ofquaternary binders: The influence of cementitious material addition and mixing”, Int. J. Sust. Built. Environ. Vol. 1, pp. 30-36. [181] Mehta, P.K., Monteiro, P.J. 欧阳东(译). (2016), “混凝土微观结构、性能和材料(原著第四版) ”. 中国建筑工业出版社. [182] Taylor, H.F.W. (1997), Cement Chemistry (2nd ed), McGraw-Hill Companies, New York, USA. [183] Ma, R., Guo, L.P., Ye, S.X. et al. (2019), “Influence of Hybrid Fiber Reinforcement on Mechanical Properties and Autogenous Shrinkage of an Ecological UHPFRCC”, J. Mater. Civ. Eng. Vol. 31, pp. 04019032. [184] Yan, P., Chen, B., Afgan, S. et al. (2021), “Experimental research on ductility enhancement of ultra-high performance concrete incorporation with basalt fibre, polypropylene fibre and glass fibre”, Constr. Build. Mater. Vol. 279, pp. 122489. [185] Kosmatka, S.H., Kerkhoff, B., Panarese, W.C. et al. (2002), “Design and Control of Concrete Mixtures”, 7th Canadian ed. Cement Association of Canada, Ottawa, Canada. [186] Tan, H.B., Nie, K.J., He, X.Y. et al. (2019), “Effect of organic alkali on compressive strength and hydration of wet-grinded granulated blast-furnace slag containing Portland cement”, Constr. Build. Mater. Vol. 206, pp. 10-18. [187] Shi, H.S. Xu, B.W. Zhou, X.C. (2009), “Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete”, Constr. Build. Mater. Vol. 23, pp. 1980-1985. [188] Güneyisi, E., Gesoğlu, M., Karaoğlu, S. et al. (2012), “Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes”, Constr. Build. Mater. Vol. 34, pp. 120-130. [189] Wang, Y.Y., Shui, Z.H., Sun, T. et al. (2018), “Effect of fly ash, sinking beads and metakaolin on the workability, strength, free shrinkage and chloride resistance of concretes: a comparative study”, Arab. J. Sci. Eng. Vol. 43, pp. 5243-5254. [190] Jin, X.Y., Li, Z.J. (2003), “Effects of Mineral Admixture on Properties of Young Concrete”, J. Mater. Civil. Eng. Vol. 15, pp. 435-442. [191] Li, S.K., Mo, L.W., Deng, M. et al. (2021), “Mitigation on the autogenous shrinkage of ultra-high performance concrete via using MgO expansive agent”, Constr. Build. Mater. Vol. 312, pp. 125422. [192] Shen, P.L., Lu, L.N., He, Y.J. et al. (2020), “Investigation on expansion effect of the expansive agents in ultra-high performance concrete”, Cem. Concr. Compos.Vol. 105, pp. 103425. [193] Lee, N.K., Jang, J.G., Lee, H.K. (2014), “Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages”. Cem. Concr. Compos. Vol. 53, pp. 239-248. [194] Wang, Y.L., He, F.X, Wang, J.J. et al. (2019), “Comparison of Effects of Sodium Bicarbonate and Sodium Carbonate on the Hydration and Properties of Portland Cement Paste”. Mater. Vol. 12, pp. 1033. [195] Zhu, X.H., Tang, D.S., Yang, K. et al. (2018), “Effect of Ca(OH)2 on shrinkage characteristics and microstructures of alkali-activated slag concrete”. Constr. Build. Mater. Vol. 175, pp. 467-482. [196] Wang, S.D., Scrivener, K.L. (1995), “Hydration products of alkali activated slag cement”. Cem. Concr. Res. Vol. 25, pp. 561-571. [197] Puertas, F., Torres, M. (2014), “Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation”. Cem. Concr. Res. Vol. 57, pp. 95-104. [198] Yılmaz, B., Olgun, A. (2008), “Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic limestone”. Cem. Concr. Compos. Vol. 30, pp. 194-201. [199] Man, X.Y., Aminul Haque, M., Chen, B. (2019), “Engineering properties and microstructure analysis of magnesium phosphate cement mortar containing bentonite clay”. Constr. Build. Mater. Vol. 227, pp. 116656. [200] Ye, Q., Zhang, Z.N., Kong, D.Y. et al. (2007), “Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume”. Constr. Build. Mater. Vol. 21, pp. 539-545. [201] Chindaprasirt, P., Jaturapitakkul, C., Sinsiri, T. (2007), “Effect of fly ash fineness on microstructure of blended cement paste”. Constr. Build. Mater. Vol. 21, pp. 1534-1541. [202] Zheng, D.D., Ji, T., Wang, C.Q. et al. (2016), “Effect of the combination of fly ash and silica fume on water resistance of Magnesium-Potassium Phosphate Cement”. Constr. Build. Mater. Vol. 106, pp. 415-421. [203] Li, H., Xiao, H.G., Yuan, J. et al. (2004), “Microstructure of cement mortar with nano-particles”. Compos. Part B Eng. Vol. 35, pp. 185-189. [204] Xiong, X., Wu, M.M., Shen, W.G. et al. (2022), “Performance and microstructure of ultra-high-performance concrete (UHPC) with silica fume replaced by inert mineral powders”. Constr. Build. Mater. Vol. 327, pp. 126996. [205] Xu, S.C., Yuan, P.C., Liu, J. et al. (2022), “Development and preliminary mix design of ultra-high-performance concrete based on geopolymer”. Constr. Build. Mater. Vol. 308, pp. 125110. [206] Wu, H.S., Shen, A.Q., Cai, Y.X. et al. (2023), “Interfacial bond properties and pullout behaviors of steel fibers embedded in ultra-high-performance concrete: A review”. Mater. Tod. Comm. Vol. 35, pp. 106081. [207] Wu, Z.M., Khayat, K.H., Shi, C.J. et al. (2021), “Mechanisms underlying the strength enhancement of UHPC modified with nano-SiO2 and nano-CaCO3”. Cem. Concr. Compos. Vol. 119, pp. 103992. [208] Nagataki, S., Gomi, H. (1998), “Expansive admixtures (mainly ettringite)”. Cem. Concr. Compos. Vol. 20, pp. 163-170. [209] Zhou, X., Hou, D., Chen, T. et al. (2023), “The development of concrete filled steel tube with enhanced performance via the use of expansive ultra high performance concrete.”. J. Build. Eng. Vol. 79, pp. 107793. [210] Wang, X. P., Wu, D., Geng, Q. H. et al. (2021), “Characterization of sustainable ultra-high performance concrete (UHPC) including expanded perlite”. Constr. Build. Mater. Vol. 303, pp. 124245. [211] Jia, Z., Zhang. Z., Jia, L. et al. (2023), “Effect of different expansive agents on the early age structural build-up process of cement paste”. Cem. Concr. Compos. Vol. 144, pp. 105282. [212] Wang, J.L., Wang, X.Y., Ding, S.Q. et al. (2023), “Micro-nano scale pore structure and fractal dimension of ultra-high performance cementitious composites modified with nanofillers”. Cem. Concr. Compos. Vol. 141, pp. 105129. [213] Li, Q.F., Zhang, Q.Y. (2019), “Experimental study on the compressive strength and shrinkage of concrete containing fly ash and ground granulated blast-furnace slag”. Struct. Concr. Vol. 20, pp. 1-10. [214] Nath, P., Sarker, P.K., Yuan, J. et al. (2013), “Effect of Mixture Proportions on the Drying Shrinkage and Permeation Properties of High Strength Concrete Containing Class F Fly Ash”. KSCE. J. Civ. Eng. Vol. 17, pp. 1437-1445. [215] Güneyisi, E., Gesoğlu, M., Mermerdaş, K. (2008), “Improving strength, drying shrinkage, and pore structure of concrete using metakaolin”. Mater. Struct. Vol. 41, pp. 937-949. [216] Nežerka, V., Bílý, P., Hrbek, V. et al. (2019), “Impact of silica fume, fly ash, and metakaolin on the thickness and strength of the ITZ in concrete”. Cem. Concr. Compos.Vol. 103, pp. 252-262. [217] Brooks, J.J., Megat, M.A. (2001), “Effect of metakaolin on creep and shrinkage of concrete”. Cem. Concr. Compos. Vol. 23, pp. 495-502. [218] Dönmez, A., Bažant, Z.P. (2016), “Shape factors for concrete shrinkage and drying creep in model B4 refined by nonlinear diffusion analysis”. Mater. Struct. Vol. 49, pp. 4779-4784. [219] Afroughsabet, V., Biolzi, L., Monteiro, P.J. (2018), “The effect of steel and polypropylene fibers on the chloride diffusivity and drying shrinkage of high-strength concrete”. Compos. Part B Eng. Vol. 139, pp. 84-96. [220] Akcay, B., Tasdemir, M.A. (2019), “Autogenous Shrinkage, Pozzolanic Activity and Mechanical Properties of Metakaolin Blended Cementitious Materials”. KSCE. J. Civ. Eng. Vol. 23, pp. 4727-4734. [221] Zhao, Y.H., Gong, J.X., Zhao, S.M. (2017), “Experimental study on shrinkage of HPC containing fly ash and ground granulated blast-furnace slag”. Constr. Build. Mater. Vol. 155, pp. 145-153. [222] Graybeal, B.A. (2006), “Material property characterization of ultra-high performance concrete”, No. FHWA-HRT-06-103. [223] Dilger, W.H., Wang, C. (2000), “Creep and shrinkage of high-performance concrete”, ACI. Spec. Publ. Vol. 194, pp. 361-380. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96815 | - |
dc.description.abstract | 良好的混凝土工程設計應統籌考慮強度、變形與耐久性三個方面,但在工程設計中,混凝土的體積穩定性和耐久性問題常常被忽視,大壩、橋樑、道路路面等工程由於收縮變形過大而導致結構開裂影響結構的安全性和耐久性。由於對混凝土強度的需求和強塑劑的發展,高性能混凝土(HPC)和超高性能混凝土(UHPC)中水膠比不斷減小、水泥用量不斷增加,混凝土的收縮過大成為制約混凝土工程發展的瓶頸之一。飛灰、高爐石粉等屬於工業生產過程中的副產物,在HPC中使用飛灰等礦物摻料,有利於環境保護、節能減碳。單摻或複摻膨脹劑和鋼纖維對UHPC的物理性能、力學性能、收縮行為的影響也是本研究的重要內容。
本研究以單摻或複摻0~40%的飛灰、0~20%的高爐石粉或偏高嶺土為參數,進行了HPC的工作性能、力學性能、自體收縮、乾燥收縮等宏觀性能實驗和粉末衍射實驗(XRD)、掃描電鏡實驗(SEM)等微觀性能實驗。研究表明隨著礦物摻料摻量的增加,HPC的凝結時間變長、坍落度增加、乾燥收縮減小、Ca(OH)2的衍射峰強度減小、界面過渡區更緻密。隨著飛灰摻量的減小、高爐石粉和偏高嶺土摻量的增加,HPC的抗壓強度逐漸提高。摻入飛灰和高爐石粉有助於減小HPC的自體收縮,但摻入細度較大的偏高嶺土則增加了HPC的自體收縮。複摻高爐石粉和飛灰HPC、複摻偏高嶺土和飛灰HPC的乾燥收縮低於單摻同摻量飛灰HPC,單摻偏高嶺土HPC的乾燥收縮稍少於同摻量高爐石粉HPC。複摻高爐石粉和飛灰HPC、複摻偏高嶺土和飛灰HPC的自體收縮高於單摻同摻量飛灰HPC。單摻偏高嶺土HPC的自體收縮顯著高於同摻量高爐石粉HPC。 本研究以單摻或複摻0~6%的膨脹劑摻量、0~3%的鋼纖維體積摻量為參數,進行了UHPC的工作性能、力學性能、自體收縮、乾燥收縮等宏觀性能實驗和XRD實驗、SEM實驗、熱重分析實驗、孔結構分析實驗等微觀性能實驗,研究表明隨著膨脹劑摻量的增加,UHPC可以在保持較好工作性能和力學性能的情況下,顯著減小自體收縮,Ca(OH)2的衍射峰強度、吸熱峰強度、10nm~50nm孔隙體積均下降或減少,增加C-S-H凝膠、鈣礬石等生成物結晶的數量。摻入鋼纖維會增強UHPC的抗壓強度、降低流動性、減少UHPC的自體收縮和乾燥收縮。複摻膨脹劑和鋼纖維可不同程度地減少UHPC的自體收縮和乾燥收縮。 本研究採用B4 TW2020、Eurocode 2、JSCE、CEB MC10、ACI 209R、B4、GL2000等收縮預測模型(其中7種用於乾燥收縮,4種用於自體收縮)以及礦物摻料修正係數kSCM、相對誤差RE、擬合度R2new等參數對13組HPC的乾燥收縮、自體收縮進行了預測分析。採用B4 TW2020、Eurocode 2、JSCE、CEB MC10、FHWA、Yoo、Lee、JonassonH、DilgerW等收縮預測模型(其中4種用於乾燥收縮,9種用於自體收縮)結合膨脹劑和鋼纖維修正係數kEF、相對誤差RE、擬合度R2new對11組UHPC的乾燥收縮、自體收縮進行了預測分析。kSCM*B4和GL2000對HPC乾燥收縮的預測誤差、kSCM*CEB和B4 TW2020對HPC自體收縮的預測誤差相對較小。kEF*B4 TW2020和JSCE對UHPC乾燥收縮的預測誤差、kEF*B4 TW2020等5種模型對UHPC自體收縮的預測誤差相對較小。 | zh_TW |
dc.description.abstract | Suitable engineering design of concrete should coordinately consider strength, deformation, and durability. However, in engineering design, the volume stability and durability of concrete are often overlooked, leading to structural cracking in projects such as dams, bridges, and road surfaces due to excessive shrinkage deformation, which affects the safety and durability of the structure. Due to the demand for concrete strength and the development of superplasticizer, the water cement ratio in high-performance concrete (HPC) and ultra-high performance concrete (UHPC) continues to decrease, and the amount of cement used in these concrete continues to increase. The excessive shrinkage of concrete has become one of the bottlenecks restricting the development of concrete engineering. Fly ash, ground granulated blast-furnace slag (GGBS), and other waste materials in industrial production processes are beneficial for environmental protection, energy conservation, and carbon reduction when used in HPC. The influence of single or binary addition of an expansive agent and steel fibers on the physical properties, mechanical properties and shrinkage behavior of ultra-high performance concrete is also an important topic that needs to be studied.
This study conducted macroscopic performance experiments on HPC with single or binary content of 0~40% fly ash, 0~20% GGBS or metakaolin, including workability, mechanical properties, autogenous shrinkage, and drying shrinkage, as well as microstructural experiments of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that with the content of supplementary cementitious materials, the setting time of HPC increased, slump of HPC increased, drying shrinkage of HPC decreased, the diffraction peak intensity of Ca(OH)2 decreased, and the interface transition zone became denser. With the decrease content of fly ash and the increase content of GGBS and metakaolin, the compressive strength of HPC gradually increased. The addition of fly ash and GGBS helps to reduce the autogenous shrinkage of HPC, but the addition of finer metakaolin increased the autogenous shrinkage of HPC. The drying shrinkage of HPC mixed with GGBS and fly ash, as well as HPC mixed with metakaolin and fly ash, was lower than that of HPC mixed with the same content of fly ash. The drying shrinkage of HPC mixed with single metakaolin was slightly lower than that of HPC mixed with the same content of GGBS. The autogenous shrinkage of HPC with mixed GGBS and fly ash, mixed metakaolin and fly ash was higher than that of HPC with the same content of fly ash. The autogenous shrinkage of HPC with single metakaolin was significantly higher than that of HPC with the same content of GGBS. In this study, the macro performance experiments such as workability, mechanical properties, autogenous shrinkage, dry shrinkage, XRD experiments, SEM experiments, TG analysis experiments, and Mercury intrusion porosimetry experiments, etc. of UHPC were carried out with the expansion agent dosage of 0%-6%, and the steel fibers dosage of single or binary addition of 0%-3%. The research shows that with the increase of expansion agent dosage, UHPC could significantly reduce autogenous shrinkage while maintaining good workability and mechanical properties, the diffraction peak of Ca(OH)2, endothermic peak of Ca(OH)2, and 10nm ~50nm pore volume all decreased, and the quantity of C-S-H gel and ettringite crystals was increased. Adding steel fibers enhanced the compressive strength of UHPC and reduced its flowability, drying shrinkage and autogenous shrinakge. The addition of expansion agents and steel fibers could decrease drying shrinkage and autogenous shrinakge of UHPC. This study predicted and analyzed the drying shrinkage and autogenous shrinkage of 13 groups of HPC using several shrinkage prediction models, including B4 TW2020, Eurocode 2, JSCE, CEB MC10, ACI 209R, B4, GL2000 (7 models for drying shrinkage, 4 models for autogenous shrinkage), as well as parameters such as kSCM coefficient, relative error RE, and fitting degree R2new. Several shrinkage prediction models, including B4 TW2020, Eurocode 2, JSCE, CEB MC10, FHWA, Yoo, Lee, JonassonH, and DilgerW (4 models for drying shrinkage, 9 models for autogenous shrinkage), as well as parameters such as kEF coefficient, relative error RE, and fitting degree R2new, were used to predict and analyze the drying shrinkage and autogenous shrinkage of 11 groups of UHPC. The shrinkage prediction results could provide reference for predicting drying shrinkage and autogenous shrinkage in HPC and UHPC related engineering. The prediction errors of kSCM*B4 and GL2000 for HPC drying shrinkage, kSCM*CEB and B4 TW2020 for HPC autogenous shrinkage were relatively small. The prediction errors of kEF*B4 TW2020 and JSCE for UHPC drying shrinkage, kEF*B4 TW2020 and other 4 models for UHPC autogenous shrinkage were relatively small. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:40:34Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-21T16:40:34Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract IV 目次 VII 圖次 XI 表次 XIV 符號 XVI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容 2 1.2.1 HPC及UHPC工作性能、力學性能研究 2 1.2.2 HPC及UHPC微觀結構研究 2 1.2.3 HPC及UHPC收縮行為之實驗研究 2 1.2.4 HPC及UHPC收縮之預測分析 3 1.3 研究流程圖 4 第二章 文獻回顧 5 2.1 混凝土收縮行為之種類 5 2.1.1 化學收縮 5 2.1.2 自體收縮 6 2.1.3 乾燥收縮 9 2.1.4 溫度收縮 10 2.1.5 塑性收縮 11 2.2 混凝土收縮行為之影響因素 12 2.2.1 水泥 12 2.2.2 水膠比 13 2.2.3 礦物摻料 14 2.2.4 粒料 15 2.2.5 纖維 16 2.2.6 外加劑 18 2.2.7 環境因素 19 2.2.8 養護方式 20 2.3 混凝土收縮行為之作用機理 21 2.3.1 毛細管張力學說 21 2.3.2 表面張力學說 23 2.3.3 拆開壓力學說 24 2.3.4 層間水遷移學說 24 2.3.5 Powers收縮學說 24 2.4 混凝土收縮預測模型 25 2.4.1 Model B4TW2020 25 2.4.2 Eurocode 2 Model 31 2.4.3 JSCE Model 34 2.4.4 CEB MC10 Model 37 2.4.5 ACI 209R Model 39 2.4.6 GL2000 Model 40 2.4.7 FHWA Model 41 2.4.8 DilgerW Model 42 2.4.9 Yoo Model 43 2.4.10 JonassonH Model 44 2.4.11 Lee Model 45 第三章 實驗計畫 47 3.1 實驗背景 47 3.2 實驗材料、配比 47 3.2.1 實驗材料 47 3.2.2 實驗配比 51 3.3 試體製作與養護 54 3.3.1 HPC的試體製作與養護 54 3.3.2 UHPC的試體製作與養護 55 3.4 實驗方法 56 3.4.1 工作性能 56 3.4.2 力學性能 56 3.4.3 自體收縮 58 3.4.4 乾燥收縮 59 3.4.5 SEM分析 60 3.4.6 XRD分析 60 3.4.7 熱重分析 60 3.4.8 孔結構分析 61 第四章 HPC及UHPC物理力學性能之實驗研究 63 4.1 HPC及UHPC工作性能 63 4.1.1 礦物摻料對HPC工作性能的影響 63 4.1.2 膨脹劑對UHPC工作性的影響 68 4.1.3 鋼纖維對UHPC工作性能的影響 70 4.2 HPC及UHPC的力學性能 71 4.2.1 礦物摻料對HPC力學性能的影響 71 4.2.2 膨脹劑對UHPC力學性能的影響 74 4.2.3 鋼纖維對UHPC力學性能的影響 76 第五章 HPC及UHPC之微觀結構研究 78 5.1 礦物摻料對HPC微觀結構的影響 78 5.1.1 XRD分析 78 5.1.2 SEM分析 79 5.2 膨脹劑、鋼纖維對UHPC微觀結構的影響 82 5.2.1 XRD分析 82 5.2.2 SEM分析 83 5.2.3 孔結構分析 84 5.2.4 熱重分析 85 第六章 HPC及UHPC收縮行為之實驗研究及預測分析 87 6.1 HPC乾燥收縮之實驗研究 87 6.1.1 礦物摻料對HPC乾燥收縮的影響 87 6.2 各收縮模型對HPC乾燥收縮的預測分析 89 6.3 UHPC乾燥收縮之實驗研究 98 6.3.1 膨脹劑對UHPC乾燥收縮的影響 98 6.3.2 鋼纖維對UHPC乾燥收縮的影響 99 6.4 各收縮模型對UHPC乾燥收縮的預測分析 101 6.5 HPC自體收縮之實驗研究 107 6.5.1 礦物摻料對HPC自體收縮的影響 107 6.6 各收縮模型對HPC自體收縮的預測分析 110 6.7 UHPC的自體收縮之實驗研究 117 6.7.1 膨脹劑對UHPC自體收縮的影響 117 6.7.2 鋼纖維對UHPC自體收縮的影響 118 6.8 各收縮模型對UHPC自體收縮的預測分析 120 第七章 結論與建議 129 7.1 結論 129 7.2 建議 136 參考文獻 137 | - |
dc.language.iso | zh_TW | - |
dc.title | HPC與UHPC收縮行為之實驗研究 | zh_TW |
dc.title | Experimental Study on the Shrinkage Behavior of HPC and UHPC | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 詹穎雯;楊仲家;劉玉雯;王韡蒨 | zh_TW |
dc.contributor.oralexamcommittee | Yin-Wen Chan;Chung-Chia Yang;Yu-Wen Liu;Wei-Chien Wang | en |
dc.subject.keyword | HPC,UHPC,收縮行為,微觀結構,收縮預測模型, | zh_TW |
dc.subject.keyword | HPC,UHPC,Shrinkage behavior,Microstructure,Shrinkage prediction model, | en |
dc.relation.page | 156 | - |
dc.identifier.doi | 10.6342/NTU202404624 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-12-24 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 土木工程學系 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 25.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。