Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96797
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡zh_TW
dc.contributor.advisorChing-I Huangen
dc.contributor.author李浩廷zh_TW
dc.contributor.authorHao-Ting Leeen
dc.date.accessioned2025-02-21T16:35:46Z-
dc.date.available2025-02-22-
dc.date.copyright2025-02-21-
dc.date.issued2024-
dc.date.submitted2025-01-02-
dc.identifier.citation[1] Tonnelé, C.;Stroet, M.;Caron, B.;Clulow, A. J.;Nagiri, R. C. R.;Malde, A. K.;Burn, P. L.;Gentle, I. R.;Mark, A. E.Powell, B. J. Elucidating the Spatial Arrangement of Emitter Molecules in Organic Light-Emitting Diode Films. Angewandte Chemie International Edition 56, 8402-8406 (2017).

[2] Tenopala-Carmona, F.;Lee, O. S.;Crovini, E.;Neferu, A. M.;Murawski, C.;Olivier, Y.;Zysman-Colman, E.Gather, M. C. Identification of the Key Parameters for Horizontal Transition Dipole Orientation in Fluorescent and TADF Organic Light-Emitting Diodes. Advanced Materials 33, 2100677 (2021).

[3] Han, J.-H.;Kim, T.-Y.;Kim, D.-Y.;Yang, H. L.Park, J.-S. Water vapor and hydrogen gas diffusion barrier characteristics of Al2O3–alucone multi-layer structures for flexible OLED display applications. Dalton Transactions 50, 15841-15848 (2021).

[4] Giovanella, U.;Pasini, M.Botta, C. in Applied Photochemistry: When Light Meets Molecules (eds Giacomo BergaminiSerena Silvi) 145-196 (Springer International Publishing, 2016).

[5] Yang, Z.;Mao, Z.;Xie, Z.;Zhang, Y.;Liu, S.;Zhao, J.;Xu, J.;Chi, Z.Aldred, M. P. Recent advances in organic thermally activated delayed fluorescence materials. Chemical Society Reviews 46, 915-1016 (2017).

[6] Uoyama, H.;Goushi, K.;Shizu, K.;Nomura, H.Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234-238 (2012).

[7] Evans, E. W.;Olivier, Y.;Puttisong, Y.;Myers, W. K.;Hele, T. J. H.;Menke, S. M.;Thomas, T. H.;Credgington, D.;Beljonne, D.;Friend, R. H.Greenham, N. C. Vibrationally Assisted Intersystem Crossing in Benchmark Thermally Activated Delayed Fluorescence Molecules. The Journal of Physical Chemistry Letters 9, 4053-4058 (2018).

[8] Pope, M.;Kallmann, H. P.Magnante, P. Electroluminescence in Organic Crystals. The Journal of Chemical Physics 38, 2042-2043 (1963).

[9] Kim, K.-H.;Moon, C.-K.;Lee, J.-H.;Kim, S.-Y.Kim, J.-J. Highly Efficient Organic Light-Emitting Diodes with Phosphorescent Emitters Having High Quantum Yield and Horizontal Orientation of Transition Dipole Moments. Advanced Materials 26, 3844-3847 (2014).

[10] Gibson, J.;Monkman, A. P.Penfold, T. J. The Importance of Vibronic Coupling for Efficient Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence Molecules. ChemPhysChem 17, 2956-2961 (2016).

[11] Parker, C. A.Hatchard, C. G. Triplet-singlet emission in fluid solutions. Phosphorescence of eosin. Transactions of the Faraday Society 57, 1894-1904 (1961).

[12] Berberan-Santos, M. N.Garcia, J. M. M. Unusually Strong Delayed Fluorescence of C70. Journal of the American Chemical Society 118, 9391-9394 (1996).

[13] Endo, A.;Ogasawara, M.;Takahashi, A.;Yokoyama, D.;Kato, Y.Adachi, C. Thermally activated delayed fluorescence from Sn(4+)-porphyrin complexes and their application to organic light emitting diodes--a novel mechanism for electroluminescence. Adv Mater 21, 4802-4806 (2009).

[14] Hirai, H.;Nakajima, K.;Nakatsuka, S.;Shiren, K.;Ni, J.;Nomura, S.;Ikuta, T.Hatakeyama, T. One-Step Borylation of 1,3-Diaryloxybenzenes Towards Efficient Materials for Organic Light-Emitting Diodes. Angewandte Chemie International Edition 54, 13581-13585 (2015).

[15] Chen, W.-C.;Lee, C.-S.Tong, Q.-X. Blue-emitting organic electrofluorescence materials: progress and prospective. Journal of Materials Chemistry C 3, 10957-10963 (2015).

[16] Zhang, Q.;Li, B.;Huang, S.;Nomura, H.;Tanaka, H.Adachi, C. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photonics 8, 326-332 (2014).

[17] Kondo, Y.;Yoshiura, K.;Kitera, S.;Nishi, H.;Oda, S.;Gotoh, H.;Sasada, Y.;Yanai, M.Hatakeyama, T. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter. Nature Photonics 13, 678-682 (2019).

[18] Kumar, A.;Shin, H. Y.;Lee, T.;Jung, J.;Jung, B. J.Lee, M. H. Doubly Boron-Doped TADF Emitters Decorated with ortho-Donor Groups for Highly Efficient Green to Red OLEDs. Chemistry – A European Journal 26, 16793-16801 (2020).

[19] Chen, Z.-P.;Wang, D.-Q.;Zhang, M.;Wang, K.;Shi, Y.-Z.;Chen, J.-X.;Tao, W.-W.;Zheng, C.-J.;Tao, S.-L.Zhang, X.-H. Optimization on Molecular Restriction for Highly Efficient Thermally Activated Delayed Fluorescence Emitters. Advanced Optical Materials 6, 1800935 (2018).

[20] Zhou, D.;Ryoo, C. H.;Liu, D.;Wang, S.;Qian, G.;Zheng, Y.;Park, S. Y.;Zhu, W.Wang, Y. Cruciform Molecules Bearing Bis(phenylsulfonyl)benzene Moieties for High-Efficiency Solution Processable OLEDs: When Thermally Activated Delayed Fluorescence Meets Mechanochromic Luminescence. Advanced Optical Materials 8, 1901021 (2020).

[21] Wu, K.;Zhang, T.;Zhan, L.;Zhong, C.;Gong, S.;Jiang, N.;Lu, Z.-H.Yang, C. Optimizing Optoelectronic Properties of Pyrimidine-Based TADF Emitters by Changing the Substituent for Organic Light-Emitting Diodes with External Quantum Efficiency Close to 25 % and Slow Efficiency Roll-Off. Chemistry – A European Journal 22, 10860-10866 (2016).

[22] Hu, D.;Zhu, M.;Shi, C.;Yuan, W.;Sun, N.;Huang, B.Tao, Y. Manipulating peripheral non-conjugated substituents in carbazole/oxadiazole hybrid TADF emitters towards high-efficiency OLEDs. Journal of Materials Chemistry C 9, 13384-13391 (2021).

[23] Ahn, D. H.;Kim, S. W.;Lee, H.;Ko, I. J.;Karthik, D.;Lee, J. Y.Kwon, J. H. Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors. Nature Photonics 13, 540-546 (2019).

[24] Liang, J.;Li, C.;Zhuang, X.;Ye, K.;Liu, Y.Wang, Y. Novel Blue Bipolar Thermally Activated Delayed Fluorescence Material as Host Emitter for High-Efficiency Hybrid Warm-White OLEDs with Stable High Color-Rendering Index. Advanced Functional Materials 28, 1707002 (2018).

[25] Kim, J. H.;Lee, D. R.;Han, S. H.Lee, J. Y. Over 20% external quantum efficiency in red thermally activated delayed fluorescence organic light-emitting diodes using a reverse intersystem crossing activating host. Journal of Materials Chemistry C 6, 5363-5368 (2018).

[26] Tao, Y.;Yuan, K.;Chen, T.;Xu, P.;Li, H.;Chen, R.;Zheng, C.;Zhang, L.Huang, W. Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics. Advanced Materials 26, 7931-7958 (2014).

[27] Masui, K.;Nakanotani, H.Adachi, C. Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence. Organic Electronics 14, 2721-2726 (2013).

[28] Karthik, D.;Jung, Y. H.;Lee, H.;Hwang, S.;Seo, B.-M.;Kim, J.-Y.;Han, C. W.Kwon, J. H. Acceptor–Donor–Acceptor-Type Orange–Red Thermally Activated Delayed Fluorescence Materials Realizing External Quantum Efficiency Over 30% with Low Efficiency Roll-Off. Advanced Materials 33, 2007724 (2021).

[29] Naqvi, B. A.;Schmid, M.;Crovini, E.;Sahay, P.;Naujoks, T.;Rodella, F.;Zhang, Z.;Strohriegl, P.;Bräse, S.;Zysman-Colman, E.Brütting, W. What Controls the Orientation of TADF Emitters? Frontiers in Chemistry 8 (2020).

[30] Song, J.;Kim, K.-H.;Kim, E.;Moon, C.-K.;Kim, Y.-H.;Kim, J.-J.Yoo, S. Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters. Nature Communications 9, 3207 (2018).

[31] Komino, T.;Nomura, H.;Koyanagi, T.Adachi, C. Suppression of Efficiency Roll-Off Characteristics in Thermally Activated Delayed Fluorescence Based Organic Light-Emitting Diodes Using Randomly Oriented Host Molecules. Chemistry of Materials 25, 3038-3047 (2013).

[32] Nayak, A.;Panda, A. R.;Pal, D.;Jana, S.Mishra, M. K. in 2023 OITS International Conference on Information Technology (OCIT). 732-737.

[33] Varoquaux, G.Cheplygina, V. Machine learning for medical imaging: methodological failures and recommendations for the future. npj Digital Medicine 5, 48 (2022).

[34] Ghoddusi, H.;Creamer, G. G.Rafizadeh, N. Machine learning in energy economics and finance: A review. Energy Economics 81, 709-727 (2019).

[35] Kim, J.-M.;Lee, K. H.Lee, J. Y. Extracting Polaron Recombination from Electroluminescence in Organic Light-Emitting Diodes by Artificial Intelligence. Advanced Materials 35, 2209953 (2023).

[36] Yan, W.;Lin, S.;Kafka, O. L.;Yu, C.;Liu, Z.;Lian, Y.;Wolff, S.;Cao, J.;Wagner, G. J.Liu, W. K. Modeling process-structure-property relationships for additive manufacturing. Frontiers of Mechanical Engineering 13, 482-492 (2018).

[37] Gomez-Bombarelli, R.;Aguilera-Iparraguirre, J.;Hirzel, T. D.;Duvenaud, D.;Maclaurin, D.;Blood-Forsythe, M. A.;Chae, H. S.;Einzinger, M.;Ha, D. G.;Wu, T.;Markopoulos, G.;Jeon, S.;Kang, H.;Miyazaki, H.;Numata, M.;Kim, S.;Huang, W.;Hong, S. I.;Baldo, M.;Adams, R. P.Aspuru-Guzik, A. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat Mater 15, 1120-1127 (2016).

[38] Lee, M.-H. Identification of host–guest systems in green TADF-based OLEDs with energy level matching based on a machine-learning study. Physical Chemistry Chemical Physics 22, 16378-16386 (2020).

[39] Shi, H.;Jing, W.;Liu, W.;Li, Y.;Li, Z.;Qiao, B.;Zhao, S.;Xu, Z.Song, D. Key Factors Governing the External Quantum Efficiency of Thermally Activated Delayed Fluorescence Organic Light-Emitting Devices: Evidence from Machine Learning. ACS Omega 7, 7893-7900 (2022).

[40] Li, P.;Wang, Z.;Li, W.;Yuan, J.Chen, R. Design of Thermally Activated Delayed Fluorescence Materials with High Intersystem Crossing Efficiencies by Machine Learning-Assisted Virtual Screening. J Phys Chem Lett 13, 9910-9918 (2022).

[41] Friedman, J. H. Greedy function approximation: A gradient boosting machine. Annals of Statistics 29, 1189-1232 (2001).

[42] Rogers, D.Hahn, M. Extended-Connectivity Fingerprints. Journal of Chemical Information and Modeling 50, 742-754 (2010).

[43] Yang, L.Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 415, 295-316 (2020).

[44] Yu, Y.;Tan, X.;Ning, S.Wu, Y. Machine Learning for Understanding Compatibility of Organic–Inorganic Hybrid Perovskites with Post-Treatment Amines. ACS Energy Letters 4, 397-404 (2019).

[45] Hu, J.;Zhu, K.;Cheng, S.;Kovalchuk, N. M.;Soulsby, A.;Simmons, M. J. H.;Matar, O. K.Arcucci, R. Explainable AI models for predicting drop coalescence in microfluidics device. Chemical Engineering Journal 481, 148465 (2024).

[46] Im, J.;Lee, S.;Ko, T.-W.;Kim, H. W.;Hyon, Y.Chang, H. Identifying Pb-free perovskites for solar cells by machine learning. npj Computational Materials 5, 37 (2019).

[47] Lundberg, S. M.Lee, S.-I. in Proceedings of the 31st International Conference on Neural Information Processing Systems 4768–4777 (Curran Associates Inc., Long Beach, California, USA, 2017).

[48] Adachi, C. Third-generation organic electroluminescence materials. Japanese Journal of Applied Physics 53, 060101 (2014).

[49] Yang, T.;Liang, J.;Cui, Y.;Li, Z.;Peng, X.;Su, S.-J.;Wang, Y.Li, C. Achieving 34.3% External Quantum Efficiency for Red Thermally Activated Delayed Fluorescence Organic Light-Emitting Diode by Molecular Isomer Engineering. Advanced Optical Materials 11, 2201191 (2023).

[50] Bui, T.-T.;Goubard, F.;Ibrahim-Ouali, M.;Gigmes, D.Dumur, F. Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs). Beilstein Journal of Organic Chemistry 14, 282-308 (2018).

[51] Madayanad Suresh, S.;Hall, D.;Beljonne, D.;Olivier, Y.Zysman-Colman, E. Multiresonant Thermally Activated Delayed Fluorescence Emitters Based on Heteroatom-Doped Nanographenes: Recent Advances and Prospects for Organic Light-Emitting Diodes. Advanced Functional Materials 30, 1908677 (2020).

[52] Yang, M.;Shikita, S.;Min, H.;Park, I. S.;Shibata, H.;Amanokura, N.Yasuda, T. Wide-Range Color Tuning of Narrowband Emission in Multi-resonance Organoboron Delayed Fluorescence Materials through Rational Imine/Amine Functionalization. Angewandte Chemie International Edition 60, 23142-23147 (2021).

[53] Liu, F.;Cheng, Z.;Jiang, Y.;Gao, L.;Liu, H.;Liu, H.;Feng, Z.;Lu, P.Yang, W. Highly Efficient Asymmetric Multiple Resonance Thermally Activated Delayed Fluorescence Emitter with EQE of 32.8 % and Extremely Low Efficiency Roll-Off. Angewandte Chemie International Edition 61, e202116927 (2022).

[54] Oda, S.;Kawakami, B.;Kawasumi, R.;Okita, R.Hatakeyama, T. Multiple Resonance Effect-Induced Sky-Blue Thermally Activated Delayed Fluorescence with a Narrow Emission Band. Organic Letters 21, 9311-9314 (2019).

[55] Xu, S.;Yang, Q.;Zhang, Y.;Li, H.;Xue, Q.;Xie, G.;Gu, M.;Jin, J.;Huang, L.Chen, R. Solution-processed multi-resonance organic light-emitting diodes with high efficiency and narrowband emission. Chinese Chemical Letters 32, 1372-1376 (2021).

[56] Matsuo, K.Yasuda, T. Boronate- and borinate-based π-systems for blue thermally activated delayed fluorescence materials. Chemical Communications 55, 2501-2504 (2019).

[57] Nasu, K.;Nakagawa, T.;Nomura, H.;Lin, C.-J.;Cheng, C.-H.;Tseng, M.-R.;Yasuda, T.Adachi, C. A highly luminescent spiro-anthracenone-based organic light-emitting diode exhibiting thermally activated delayed fluorescence. Chemical Communications 49, 10385-10387 (2013).

[58] Gan, L.;Xu, Z.;Wang, Z.;Li, B.;Li, W.;Cai, X.;Liu, K.;Liang, Q.Su, S.-J. Utilizing a Spiro TADF Moiety as a Functional Electron Donor in TADF Molecular Design toward Efficient “Multichannel” Reverse Intersystem Crossing. Advanced Functional Materials 29, 1808088 (2019).

[59] Huang, Z.;Lei, B.;Yang, D.;Ma, D.;Bin, Z.You, J. Modified Intramolecular-Lock Strategy Enables Efficient Thermally Activated Delayed Fluorescence Emitters for Non-Doped OLEDs. Angewandte Chemie International Edition 61, e202213157 (2022).

[60] Wu, L.;Wang, K.;Wang, C.;Fan, X.-C.;Shi, Y.-Z.;Zhang, X.;Zhang, S.-L.;Ye, J.;Zheng, C.-J.;Li, Y.-Q.;Yu, J.;Ou, X.-M.Zhang, X.-H. Using fluorene to lock electronically active moieties in thermally activated delayed fluorescence emitters for high-performance non-doped organic light-emitting diodes with suppressed roll-off. Chemical Science 12, 1495-1502 (2021).

[61] Yang, D.;Huh, J.-S.Hong, J.-I. Spiro−type TADF emitters based on acridine donors and anthracenone acceptor. Dyes and Pigments 197, 109873 (2022).

[62] Wang, Y.-Y.;Tong, K.-N.;Zhang, K.;Lu, C.-H.;Chen, X.;Liang, J.-X.;Wang, C.-K.;Wu, C.-C.;Fung, M.-K.Fan, J. Positive impact of chromophore flexibility on the efficiency of red thermally activated delayed fluorescence materials. Materials Horizons 8, 1297-1303 (2021).

[63] Zhang, Y.-L.;Ran, Q.;Wang, Q.;Liu, Y.;Hänisch, C.;Reineke, S.;Fan, J.Liao, L.-S. High-Efficiency Red Organic Light-Emitting Diodes with External Quantum Efficiency Close to 30% Based on a Novel Thermally Activated Delayed Fluorescence Emitter. Advanced Materials 31, 1902368 (2019).

[64] Jiang, R.;Wu, X.;Liu, H.;Guo, J.;Zou, D.;Zhao, Z.Tang, B. Z. High-Performance Orange–Red Organic Light-Emitting Diodes with External Quantum Efficiencies Reaching 33.5% based on Carbonyl-Containing Delayed Fluorescence Molecules. Advanced Science 9, 2104435 (2022).

[65] Maeng, J. H.;Braveenth, R.;Jung, Y. H.;Hwang, S. J.;Lee, H.;Min, H. L.;Kim, J. Y.;Han, C. W.Kwon, J. H. Efficiency enhancement in orange red thermally activated delayed fluorescence OLEDs by using a rigid di-indolocarbazole donor moiety. Dyes and Pigments 194, 109580 (2021).

[66] Ji, S.-C.;Zhao, T.;Wei, Z.;Meng, L.;Tao, X.-D.;Yang, M.;Chen, X.-L.Lu, C.-Z. Manipulating excited states via Lock/Unlock strategy for realizing efficient thermally activated delayed fluorescence emitters. Chemical Engineering Journal 435, 134868 (2022).

[67] Data, P.;Zassowski, P.;Lapkowski, M.;Grazulevicius, J. V.;Kukhta, N. A.Reghu, R. R. Electrochromic behaviour of triazine based ambipolar compounds. Electrochimica Acta 192, 283-295 (2016).

[68] Zhang, W.;Zhu, C.;Huang, Z.;Gong, C.;Tang, Q.Fu, X. Electrochromic 2,4,6-triphenyl-1,3,5-triazine based esters with electron donor-acceptor structure. Organic Electronics 67, 302-310 (2019).

[69] Varga, Z.;Müller, C.Nyulászi, L. Significant π-stacking effect between 2,4,6-triphenyl-1-phosphabenzenes. Structural Chemistry 28, 1243-1253 (2017).

[70] Kang, Y. J.;Yun, J. H.;Han, S. H.Lee, J. Y. Benzofuroacridine and benzothienoacridine as new donor moieties for emission color management of thermally activated delayed fluorescent emitters. Journal of Materials Chemistry C 7, 4573-4580 (2019).

[71] Lee, Y.;Woo, S.-J.;Kim, J.-J.Hong, J.-I. Blue thermally activated delayed fluorescence emitter using modulated triazines as electron acceptors. Dyes and Pigments 172, 107864 (2020).

[72] Lim, J.;Choi, D.-Y.;Jang, W.;Choi, H.-H.;Kim, Y.-H.Wang, D. H. Tris(4-(1-phenyl-1H-benzo[d]imidazole)phenyl)phosphine oxide for enhanced mobility and restricted traps in photovoltaic interlayers. Journal of Materials Chemistry C 9, 3642-3651 (2021).

[73] Kuroiwa, T.;Asai, D.;Hashimoto, S.Tahara, K. Linear π-conjugated polycyclic compounds consisting of four-, five-, and six-membered rings: benzo[1′′,2′′:3,4;4′′,5′′:3′,4′]bis(cyclobuta[1,2-c]thiophene). RSC Advances 13, 4578-4583 (2023).

[74] Kim, J. U.;Reddy, S. S.;Cui, L.-S.;Nomura, H.;Hwang, S.;Kim, D. H.;Nakanotani, H.;Jin, S. H.Adachi, C. Thermally activated delayed fluorescence of Bis(9,9-dimethyl-9,10-dihydroacridine) dibenzo[b,d]thiophene 5,5-dioxide derivatives for organic light-emitting diodes. Journal of Luminescence 190, 485-491 (2017).

[75] Kong, J.;Zhang, W.;Zhang, X.;Liu, B.;Li, Y.Xia, A. Conformation-related excited-state charge transfer/separation of donor-π-acceptor chromophores. The Journal of Chemical Physics 156, 174902 (2022).

[76] Bibi, S.Zhang, J. The ratio and topology effects of benzodithiophene donor-benzooxadiazole acceptor fragments on the optoelectronic properties of donor molecules toward solar cell materials. Phys Chem Chem Phys 17, 7986-7999 (2015).

[77] Wei, X.;Li, Z.;Hu, T.;Duan, R.;Liu, J.;Wang, R.;Liu, Y.;Hu, X.;Yi, Y.;Wang, P.Wang, Y. Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters. Advanced Optical Materials 7, 1801767 (2019).

[78] Tanaka, H.;Shizu, K.;Miyazaki, H.Adachi, C. Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine–triphenyltriazine (PXZ–TRZ) derivative. Chemical Communications 48, 11392-11394 (2012).

[79] Lee, Y.-T.;Tseng, P.-C.;Komino, T.;Mamada, M.;Ortiz, R. J.;Leung, M.-k.;Chiu, T.-L.;Lin, C.-F.;Lee, J.-H.;Adachi, C.;Chen, C.-T.Chen, C.-T. Simple Molecular-Engineering Approach for Enhancing Orientation and Outcoupling Efficiency of Thermally Activated Delayed Fluorescent Emitters without Red-Shifting Emission. ACS Applied Materials & Interfaces 10, 43842-43849 (2018).

[80] Yuan, W.;Yang, H.;Zhang, M.;Hu, D.;Wan, S.;Li, Z.;Shi, C.;Sun, N.;Tao, Y.Huang, W. Molecular engineering on all ortho-linked carbazole/oxadiazole hybrids toward highly-efficient thermally activated delayed fluorescence materials in OLEDs. Chinese Chemical Letters 30, 1955-1958 (2019).

[81] Zhao, T.;Jiang, S.;Tao, X.-D.;Yang, M.;Meng, L.;Chen, X.-L.Lu, C.-Z. Dihydrophenazine-derived thermally activated delayed fluorescence emitters for highly efficient orange and red organic light-emitting diodes. Dyes and Pigments 211, 111065 (2023).

[82] Feng, Q.;Qian, Y.;Wang, H.;Hou, W.;Peng, X.;Xie, S.;Wang, S.Xie, L. Donor Arylmethylation toward Horizontally Oriented TADF Emitters for Efficient Electroluminescence with 37% External Quantum Efficiency. Advanced Optical Materials 10, 2102441 (2022).

[83] Nakao, K.;Sasabe, H.;Komatsu, R.;Hayasaka, Y.;Ohsawa, T.Kido, J. Significant Enhancement of Blue OLED Performances through Molecular Engineering of Pyrimidine-Based Emitter. Advanced Optical Materials 5, 1600843 (2017).

[84] Qiu, W.;Liu, D.;Li, M.;Cai, X.;Chen, Z.;He, Y.;Liang, B.;Peng, X.;Qiao, Z.;Chen, J.;Li, W.;Pu, J.;Xie, W.;Wang, Z.;Li, D.;Gan, Y.;Jiao, Y.;Gu, Q.Su, S.-J. Confining donor conformation distributions for efficient thermally activated delayed fluorescence with fast spin-flipping. Nature Communications 14, 2564 (2023).

[85] Cho, Y. J.;Yook, K. S.Lee, J. Y. High Efficiency in a Solution-Processed Thermally Activated Delayed-Fluorescence Device Using a Delayed-Fluorescence Emitting Material with Improved Solubility. Advanced Materials 26, 6642-6646 (2014).

[86] Turro, N. J. Modern Molecular Photochemistry. (University Science Books, 1991).

[87] Hao, X.-L.;Ren, A.-M.;Zhou, L.Zhang, H. Theoretical Research and Photodynamic Simulation of Aggregation-Induced Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. The Journal of Physical Chemistry A 127, 9771-9780 (2023).

[88] Wu, Y.;Ni, F.;Chen, Z.;Yang, W.;Xiang, Y.;Gong, S.;Cao, X.Yang, C. Aggregation-Dependent Thermally Activated Delayed Fluorescence Emitters: AIE or ACQ? Advanced Optical Materials 11, 2300186 (2023).

[89] Li, L.;Kamal, S.;Polgar, A. M.Hudson, Z. M. Triplet–Triplet Annihilation Upconversion from Red to Blue Light Using a TADF Sensitizer Based Polymer. The Journal of Physical Chemistry B 128, 8997-9004 (2024).

[90] Lee, H. L.;Jeon, S. O.;Kim, I.;Kim, S. C.;Lim, J.;Kim, J.;Park, S.;Chwae, J.;Son, W.-J.;Choi, H.Lee, J. Y. Multiple-Resonance Extension and Spin-Vibronic-Coupling-Based Narrowband Blue Organic Fluorescence Emitters with Over 30% Quantum Efficiency. Advanced Materials 34, 2202464 (2022).

[91] Lee, Y. H.;Lee, D.;Lee, T.;Lee, J.;Jung, J.;Yoo, S.Lee, M. H. Impact of boryl acceptors in para-acridine-appended triarylboron emitters on blue thermally activated delayed fluorescence OLEDs. Dyes and Pigments 188, 109224 (2021).

[92] Yun, J. H.;Lee, K. H.Lee, J. Y. Propeller type dibenzofurocarbazole as a new rigid donor moiety for highly efficient and long living thermally activated delayed fluorescence emitters. Chemical Engineering Journal 400, 125940 (2020).

[93] Dey, S.;Hasan, M.;Shukla, A.;Acharya, N.;Upadhyay, M.;Lo, S.-C.;Namdas, E. B.Ray, D. Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence in Asymmetric Phenoxazine-Quinoline (D2–A) Conjugates and Dual Electroluminescence. The Journal of Physical Chemistry C 126, 5649-5657 (2022).

[94] Zhao, L.;Duan, C.;Ding, D.;Liu, S.;Xia, D.;Guo, Y.;Xu, H.Baumgarten, M. Super rigid tris-spirobifluorenes: Syntheses and properties. Chinese Chemical Letters 32, 397-400 (2021).

[95] Braveenth, R.;Lee, H.;Park, J. D.;Yang, K. J.;Hwang, S. J.;Naveen, K. R.;Lampande, R.Kwon, J. H. Achieving Narrow FWHM and High EQE Over 38% in Blue OLEDs Using Rigid Heteroatom-Based Deep Blue TADF Sensitized Host. Advanced Functional Materials 31, 2105805 (2021).

[96] Hwang, J.;Koh, C. W.;Ha, J. M.;Woo, H. Y.;Park, S.;Cho, M. J.Choi, D. H. Aryl-Annulated [3,2-a] Carbazole-Based Deep-Blue Soluble Emitters for High-Efficiency Solution-Processed Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes with CIEy <0.1. ACS Applied Materials & Interfaces 13, 61454-61462 (2021).

[97] Tu, Z.-L.;Lu, J.-J.;Luo, X.-F.;Hu, J.-J.;Li, S.;Wang, Y.;Zheng, Y.-X.;Zuo, J.-L.Pan, Y. Blue Axially Chiral Biphenyl Based Thermally Activated Delayed Fluorescence Materials for Efficient Circularly Polarized OLEDs. Advanced Optical Materials 9, 2100596 (2021).

[98] Wu, K.;Zhang, T.;Zhan, L.;Zhong, C.;Gong, S.;Lu, Z.-H.Yang, C. Tailoring Optoelectronic Properties of Phenanthroline-Based Thermally Activated Delayed Fluorescence Emitters through Isomer Engineering. Advanced Optical Materials 4, 1558-1566 (2016).

[99] Xie, F.-M.;Li, H.-Z.;Zhang, K.;Wang, H.-Y.;Li, Y.-Q.Tang, J.-X. Rational Multidimensional Shielded Multiple Resonance Emitter Suppresses Concentration Quenching and Spectral Broadening for Solution-Processed Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces 15, 39669-39676 (2023).

[100] Di, K.;Guo, R.;Wang, Y.;Lv, Y.;Su, H.;Zhang, Q.;Yang, B.Wang, L. Achieving high-performance narrowband blue MR-TADF emitters by suppressing isomer formation and extending π-conjugate skeletons. Journal of Materials Chemistry C 11, 6429-6437 (2023).

[101] Feng, Z.-Q.;Yang, S.-Y.;Kong, F.-C.;Qu, Y.-K.;Meng, X.-Y.;Yu, Y.-J.;Zhou, D.-Y.;Jiang, Z.-Q.Liao, L.-S. Indirect Control of Donor/Acceptor Interactions for Highly Efficient Space-Confined Thermally Activated Delayed Fluorescence Emitters. Advanced Functional Materials 33, 2209708 (2023).

[102] Chen, J.-X.;Xiao, Y.-F.;Wang, K.;Sun, D.;Fan, X.-C.;Zhang, X.;Zhang, M.;Shi, Y.-Z.;Yu, J.;Geng, F.-X.;Lee, C.-S.Zhang, X.-H. Managing Locally Excited and Charge-Transfer Triplet States to Facilitate Up-Conversion in Red TADF Emitters That Are Available for Both Vacuum- and Solution-Processes. Angewandte Chemie International Edition 60, 2478-2484 (2021).

[103] Lee, Y. H.;Park, S.;Oh, J.;Shin, J. W.;Jung, J.;Yoo, S.Lee, M. H. Rigidity-Induced Delayed Fluorescence by Ortho Donor-Appended Triarylboron Compounds: Record-High Efficiency in Pure Blue Fluorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces 9, 24035-24042 (2017).

[104] Yi, C.-L.;Lin, C.-Y.;Tang, Y.;Wang, C.-Y.;Huang, C.-W.;Gong, X.;Gong, S.;Wu, C.-C.Wong, K.-T. A Rational Molecular Design Strategy of TADF Emitter for Achieving Device Efficiency Exceeding 36%. Advanced Optical Materials 10, 2101791 (2022).

[105] Jung, M.;Lee, K. H.Lee, J. Y. Molecular Engineering of Isomeric Benzofurocarbazole Donors for Photophysical Management of Thermally Activated Delayed Fluorescence Emitters. Chemistry – A European Journal 26, 4816-4821 (2020).

[106] Bian, C.;Wang, Q.;Ran, Q.;Liu, X.-Y.;Fan, J.Liao, L.-S. New carbazole-based bipolar hosts for efficient blue phosphorescent organic light-emitting diodes. Organic Electronics 52, 138-145 (2018).

[107] Liang, Q.;Han, C.;Duan, C.Xu, H. Blue Thermally Activated Delayed Fluorescence-Emitting Phosphine Oxide Hosts for Ultrasimple and Highly Efficient White Organic Light-Emitting Diodes. Advanced Optical Materials 6, 1800020 (2018).

[108] Yang, Y.;Li, K.;Wang, C.;Zhan, H.Cheng, Y. Effect of a Pendant Acceptor on Thermally Activated Delayed Fluorescence Properties of Conjugated Polymers with Backbone-Donor/Pendant-Acceptor Architecture. Chemistry – An Asian Journal 14, 574-581 (2019).

[109] Wang, Y.;Zhu, Y.;Xie, G.;Zhan, H.;Yang, C.Cheng, Y. Bright white electroluminescence from a single polymer containing a thermally activated delayed fluorescence unit and a solution-processed orange OLED approaching 20% external quantum efficiency. Journal of Materials Chemistry C 5, 10715-10720 (2017).

[110] Kothavale, S.;Lee, K. H.Lee, J. Y. CN-Modified Imidazopyridine as a New Electron Accepting Unit of Thermally Activated Delayed Fluorescent Emitters. Chemistry – A European Journal 26, 845-852 (2020).

[111] Liu, Y.;Xiao, X.;Huang, Z.;Yang, D.;Ma, D.;Liu, J.;Lei, B.;Bin, Z.You, J. Space-Confined Donor-Acceptor Strategy Enables Fast Spin-Flip of Multiple Resonance Emitters for Suppressing Efficiency Roll-Off. Angewandte Chemie International Edition 61, e202210210 (2022).

[112] Lee, H. L.;Chung, W. J.Lee, J. Y. Selective efficiency boosting in thermally activated delayed fluorescence emitters by a secondary donor. Chemical Engineering Journal 408, 127293 (2021).

[113] Salehi, A.;Fu, X.;Shin, D.-H.So, F. Recent Advances in OLED Optical Design. Advanced Functional Materials 29, 1808803 (2019).

[114] Liu, M.;Komatsu, R.;Cai, X.;Hotta, K.;Sato, S.;Liu, K.;Chen, D.;Kato, Y.;Sasabe, H.;Ohisa, S.;Suzuri, Y.;Yokoyama, D.;Su, S.-J.Kido, J. Horizontally Orientated Sticklike Emitters: Enhancement of Intrinsic Out-Coupling Factor and Electroluminescence Performance. Chemistry of Materials 29, 8630-8636 (2017).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96797-
dc.description.abstract本研究針對有機發光二極體(OLED)中的熱激活延遲螢光(TADF)材料進行深入探討以提升元件的外部量子效率(EQE),傳統的TADF材料開發方法主要依賴於合成實驗,耗時且成本高,因此本研究引入機器學習技術輔助材料開發,提供更高效且系統化的策略。本研究建構了涵蓋2000年至2023年期間TADF材料數據的資料庫,包括材料結構、光電性質(如激發態能階、速率常數等)及元件表現等數據,並基於此資料庫採用梯度提升回歸演算法分別建立三種模型,首先是性質特徵與元件表現的預測模型,基於光電性質數據建立了EQE的預測模型,並通過特徵重要性分析找出影響EQE的關鍵性質,研究結果顯示光致發光量子產率(ηPL)是影響 EQE 最顯著的性質,顯示出提升ηPL對於優化OLED效率的重大意義。接著是分子結構與性質特徵的預測模型,由於前述模型篩選出ηPL做為關鍵特徵,因此透過結構描述符將材料導入模型進行訓練,並進行關鍵片段的篩選,篩選出影響輻射衰變與非輻射衰變的關鍵結構片段,例如B_Aromatic、Spiro 與 Triazine 等正向片段,為設計高效能的放光材料提供了指導。最後是分子結構與元件表現的關係模型,為了建立更加直觀的模型,我們進一步將結構導入模型並建立 EQE 預測模型,最終不僅重點分析了正向片段如 B_Aromatic、
Spiro 與 Triazine 等對於分子間的正向影響,也探討如 Methyl_Group 與 tButyl_Group 對分子間激子猝滅現象的抑制作用,並且分析負向片段的劣勢及其修飾策略,為提升整體元件效率提供了解決方案。本研究系統性分析了TADF材料結構、光電性質與元件表現之間的關聯,並提供了準確的預測工具和高表現的材料設計策略,為實驗端提供快速且可靠的材料篩選和優化指南。
zh_TW
dc.description.abstractThis study investigates thermally activated delayed fluorescence (TADF) materials in organic light-emitting diodes (OLEDs) to enhance external quantum efficiency (EQE). Traditional development methods often rely on costly and time-consuming synthesis experiments, limiting efficiency and scalability. To address this, the research integrates machine learning techniques to create a more systematic and effective approach to material development. Database was established, covering TADF material data from 2000 to 2023. This database includes structures, optoelectronic properties and device performance metrics like EQE. Using gradient boosting regression algorithms, predictive models were developed to analyze and optimize the relationship between these variables. The results highlight photoluminescence quantum yield (ηPL) as the most critical factor influencing EQE, underscoring its significance in improving OLED efficiency. Further analysis using structure descriptors identified key structural fragments, such as B_Aromatic, Spiro, and Triazine, that enhance radiative efficiency and suppress non-radiative decay, providing actionable guidance for designing high-performance emissive materials. By directly linking molecular structures to EQE performance, the study also revealed the positive impact of structural fragments like B_Aromatic and Triazine on device performance. In addition, it examined the inhibitory effects of fragments such as Methyl_Group and t-Butyl_Group on exciton quenching, proposing modification strategies to mitigate the influence of negative fragments. This study systematically analyzes the relationships between TADF material structure, optoelectronic properties, and device performance. It offers predictive tools and actionable insights, providing a rapid and reliable guide for material screening and optimization in experimental research.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:35:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-21T16:35:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 II
摘要 III
Abstract IV
目次 V
圖次 VI
表次 VII
第一章 前言 1
第二章 研究方法 9
2.1 機器學習模型 9
2.1.1 梯度提升回歸演算法 [41] 10
2.2 損失函數與加權損失函數 10
2.3 相關係數與均方根誤差 11
2.4 特徵重要性 12
2.5 結構描述符 13
2.6 SHAP解釋性分析 14
第三章 結果與討論 15
3.1 資料庫蒐集與相關係數矩陣 15
3.2 性質特徵與元件表現之預測結果 17
3.3 分子結構與性質特徵之預測結果 22
3.4 分子結構與元件表現之預測結果 38
第四章 結論 55
第五章 參考文獻 57
附錄 68
-
dc.language.isozh_TW-
dc.subject有機發光二極體zh_TW
dc.subject熱激活延遲螢光zh_TW
dc.subject機器學習zh_TW
dc.subjectTADFen
dc.subjectMachine learningen
dc.subjectOLEDen
dc.title運用機器學習輔助熱激活延遲螢光材料開發zh_TW
dc.titleAssisting the Development of Thermally Activated Delayed Fluorescence Materials via Machine Learningen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳錦文;李旻軒zh_TW
dc.contributor.oralexamcommitteeChin-Wen Chen;Min-Hsuan Leeen
dc.subject.keyword機器學習,有機發光二極體,熱激活延遲螢光,zh_TW
dc.subject.keywordMachine learning,OLED,TADF,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202404808-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-01-02-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
dc.date.embargo-lift2025-02-22-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf4.5 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved