Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96745
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳克強zh_TW
dc.contributor.advisorKeqiang Wuen
dc.contributor.author施元心zh_TW
dc.contributor.authorYuan-Hsin Shihen
dc.date.accessioned2025-02-21T16:21:42Z-
dc.date.available2025-02-22-
dc.date.copyright2025-02-21-
dc.date.issued2024-
dc.date.submitted2024-12-23-
dc.identifier.citationAngel, A., Song, J., Yang, H., Questa, J.I., Dean, C., and Howard, M. (2015). Vernalizing cold is registered digitally at FLC. Proc Natl Acad Sci U S A 112, 4146-4151.
Azad, T., Tashakor, A., and Hosseinkhani, S. (2014). Split-luciferase complementary assay: applications, recent developments, and future perspectives. Anal Bioanal Chem 406, 5541-5560.
Bakshi, M., and Oelmuller, R. (2014). WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav 9, e27700.
Balparda, M., Elsasser, M., Badia, M.B., Giese, J., Bovdilova, A., Hudig, M., Reinmuth, L., Eirich, J., Schwarzlander, M., Finkemeier, I., Schallenberg-Rudinger, M., and Maurino, V.G. (2022). Acetylation of conserved lysines fine-tunes mitochondrial malate dehydrogenase activity in land plants. Plant J 109, 92-111.
Bardou, F., Ariel, F., Simpson, C.G., Romero-Barrios, N., Laporte, P., Balzergue, S., Brown, J.W., and Crespi, M. (2014). Long noncoding RNA modulates alternative splicing regulators in Arabidopsis. Dev Cell 30, 166-176.
Bertrand, C., Bergounioux, C., Domenichini, S., Delarue, M., and Zhou, D.X. (2003). Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway. J Biol Chem 278, 28246-28251.
Bond, D.M., Dennis, E.S., Pogson, B.J., and Finnegan, E.J. (2009). Histone acetylation, VERNALIZATION INSENSITIVE 3, FLOWERING LOCUS C, and the vernalization response. Mol Plant 2, 724-737.
Bordoli, L., Netsch, M., Luthi, U., Lutz, W., and Eckner, R. (2001). Plant orthologs of p300/CBP: conservation of a core domain in metazoan p300/CBP acetyltransferase-related proteins. Nucleic Acids Res 29, 589-597.
Chen, C.-Y. (2016). The Protein Interactome and Gene Regulatory Network
of the Histone Deacetylase HDA15 in Arabidopsis. In National Taiwan University Institute of Plant Biology College of Life Science doi:10.6342/NTU201602661.
Chen, J.-S. (2024). moleculat functions and the interplay between WRKY63 and HDA15 (National Taiwan University Institute of Plant Biology College of Life Science doi:10.6342/NTU202400408).
Chen, L.T., Luo, M., Wang, Y.Y., and Wu, K. (2010). Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61, 3345-3353.
Chen, M., and Thelen, J.J. (2013). ACYL-LIPID DESATURASE2 is required for chilling and freezing tolerance in Arabidopsis. Plant Cell 25, 1430-1444.
Chen, Q., Xu, X., Xu, D., Zhang, H., Zhang, C., and Li, G. (2019). WRKY18 and WRKY53 Coordinate with HISTONE ACETYLTRANSFERASE1 to Regulate Rapid Responses to Sugar. Plant Physiol 180, 2212-2226.
Chen, Z.J., and Tian, L. (2007). Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim Biophys Acta 1769, 295-307.
Chen, Z.J., and Mas, P. (2019). Interactive roles of chromatin regulation and circadian clock function in plants. Genome Biol 20, 62.
Cheng, Z., Luan, Y., Meng, J., Sun, J., Tao, J., and Zhao, D. (2021). WRKY Transcription Factor Response to High-Temperature Stress. Plants (Basel) 10.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743.
Curtis, M.D., and Grossniklaus, U. (2003). A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133, 462-469.
De Lucia, F., Crevillen, P., Jones, A.M., Greb, T., and Dean, C. (2008). A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci U S A 105, 16831-16836.
de Ruijter, A.J., van Gennip, A.H., Caron, H.N., Kemp, S., and van Kuilenburg, A.B. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370, 737-749.
Delk, N.A., Johnson, K.A., Chowdhury, N.I., and Braam, J. (2005). CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol 139, 240-253.
Deslandes, L., Olivier, J., Peeters, N., Feng, D.X., Khounlotham, M., Boucher, C., Somssich, I., Genin, S., and Marco, Y. (2003). Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci U S A 100, 8024-8029.
Doll, J., Muth, M., Riester, L., Nebel, S., Bresson, J., Lee, H.C., and Zentgraf, U. (2019). Arabidopsis thaliana WRKY25 Transcription Factor Mediates Oxidative Stress Tolerance and Regulates Senescence in a Redox-Dependent Manner. Front Plant Sci 10, 1734.
Eulgem, T., Rushton, P.J., Robatzek, S., and Somssich, I.E. (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci 5, 199-206.
Fina, J.P., and Casati, P. (2015). HAG3, a Histone Acetyltransferase, Affects UV-B Responses by Negatively Regulating the Expression of DNA Repair Enzymes and Sunscreen Content in Arabidopsis thaliana. Plant Cell Physiol 56, 1388-1400.
Finnegan, E.J., and Dennis, E.S. (2007). Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr Biol 17, 1978-1983.
Forde, B.G., and Lea, P.J. (2007). Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58, 2339-2358.
Fornara, F., de Montaigu, A., Sanchez-Villarreal, A., Takahashi, Y., Ver Loren van Themaat, E., Huettel, B., Davis, S.J., and Coupland, G. (2015). The GI-CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering. Plant J 81, 695-706.
Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18, 4679-4688.
Friso, G., and van Wijk, K.J. (2015). Posttranslational Protein Modifications in Plant Metabolism. Plant Physiol 169, 1469-1487.
Gan, E.S., Xu, Y., Wong, J.Y., Goh, J.G., Sun, B., Wee, W.Y., Huang, J., and Ito, T. (2014). Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis. Nat Commun 5, 5098.
Gao, S., Zeng, X., Wang, J., Xu, Y., Yu, C., Huang, Y., Wang, F., Wu, K., and Yang, S. (2021). Arabidopsis SUMO E3 Ligase SIZ1 Interacts with HDA6 and Negatively Regulates HDA6 Function during Flowering. Cells 10.
Gazzani, S., Gendall, A.R., Lister, C., and Dean, C. (2003). Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol 132, 1107-1114.
Gendall, A.R., Levy, Y.Y., Wilson, A., and Dean, C. (2001). The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107, 525-535.
Gibbs, D.J., Tedds, H.M., Labandera, A.M., Bailey, M., White, M.D., Hartman, S., Sprigg, C., Mogg, S.L., Osborne, R., Dambire, C., Boeckx, T., Paling, Z., Voesenek, L., Flashman, E., and Holdsworth, M.J. (2018). Oxygen-dependent proteolysis regulates the stability of angiosperm polycomb repressive complex 2 subunit VERNALIZATION 2. Nat Commun 9, 5438.
Glozak, M.A., Sengupta, N., Zhang, X., and Seto, E. (2005). Acetylation and deacetylation of non-histone proteins. Gene 363, 15-23.
Gregoretti, I.V., Lee, Y.M., and Goodson, H.V. (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338, 17-31.
Guo, W., Ward, R.W., and Thomashow, M.F. (1992). Characterization of a Cold-Regulated Wheat Gene Related to Arabidopsis cor47. Plant Physiol 100, 915-922.
Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., and Zhang, J.Z. (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130, 639-648.
Hao, Y., Wang, H., Qiao, S., Leng, L., and Wang, X. (2016). Histone deacetylase HDA6 enhances brassinosteroid signaling by inhibiting the BIN2 kinase. Proc Natl Acad Sci U S A 113, 10418-10423.
Heo, J.B., and Sung, S. (2011). Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76-79.
Hou, X., Zhou, J., Liu, C., Liu, L., Shen, L., and Yu, H. (2014). Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat Commun 5, 4601.
Hu, X., Kong, X., Wang, C., Ma, L., Zhao, J., Wei, J., Zhang, X., Loake, G.J., Zhang, T., Huang, J., and Yang, Y. (2014). Proteasome-mediated degradation of FRIGIDA modulates flowering time in Arabidopsis during vernalization. Plant Cell 26, 4763-4781.
Hu, Z., Song, N., Zheng, M., Liu, X., Liu, Z., Xing, J., Ma, J., Guo, W., Yao, Y., Peng, H., Xin, M., Zhou, D.X., Ni, Z., and Sun, Q. (2015). Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. Plant J 84, 1178-1191.
Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57.
Hung, F.Y., Shih, Y.H., Lin, P.Y., Feng, Y.R., Li, C., and Wu, K. (2022). WRKY63 transcriptional activation of COOLAIR and COLDAIR regulates vernalization-induced flowering. Plant Physiol 190, 532-547.
Hung, F.Y., Chen, F.F., Li, C., Chen, C., Chen, J.H., Cui, Y., and Wu, K. (2019). The LDL1/2-HDA6 Histone Modification Complex Interacts With TOC1 and Regulates the Core Circadian Clock Components in Arabidopsis. Front Plant Sci 10, 233.
Hung, F.Y., Chen, F.F., Li, C., Chen, C., Lai, Y.C., Chen, J.H., Cui, Y., and Wu, K. (2018). The Arabidopsis LDL1/2-HDA6 histone modification complex is functionally associated with CCA1/LHY in regulation of circadian clock genes. Nucleic Acids Res 46, 10669-10681.
Hyun, Y., Richter, R., Vincent, C., Martinez-Gallegos, R., Porri, A., and Coupland, G. (2016). Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem. Dev Cell 37, 254-266.
Ishihama, N., and Yoshioka, H. (2012). Post-translational regulation of WRKY transcription factors in plant immunity. Curr Opin Plant Biol 15, 431-437.
Javed, T., and Gao, S.J. (2023). WRKY transcription factors in plant defense. Trends Genet 39, 787-801.
Jeong, J.H., Song, H.R., Ko, J.H., Jeong, Y.M., Kwon, Y.E., Seol, J.H., Amasino, R.M., Noh, B., and Noh, Y.S. (2009). Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One 4, e8033.
Jiang, J., Ding, A.B., Liu, F., and Zhong, X. (2020). Linking signaling pathways to histone acetylation dynamics in plants. J Exp Bot 71, 5179-5190.
Jones, M.A., Morohashi, K., Grotewold, E., and Harmer, S.L. (2019). Arabidopsis JMJD5/JMJ30 Acts Independently of LUX ARRHYTHMO Within the Plant Circadian Clock to Enable Temperature Compensation. Front Plant Sci 10, 57.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli, P., and Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589.
Kalde, M., Barth, M., Somssich, I.E., and Lippok, B. (2003). Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol Plant Microbe Interact 16, 295-305.
Karimi, M., Inze, D., and Depicker, A. (2002). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7, 193-195.
Kidokoro, S., Maruyama, K., Nakashima, K., Imura, Y., Narusaka, Y., Shinwari, Z.K., Osakabe, Y., Fujita, Y., Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2009). The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol 151, 2046-2057.
Kim, D.H., and Sung, S. (2013). Coordination of the vernalization response through a VIN3 and FLC gene family regulatory network in Arabidopsis. Plant Cell 25, 454-469.
Kim, D.H., Xi, Y., and Sung, S. (2017). Modular function of long noncoding RNA, COLDAIR, in the vernalization response. PLoS Genet 13, e1006939.
Kim, S., Piquerez, S.J.M., Ramirez-Prado, J.S., Mastorakis, E., Veluchamy, A., Latrasse, D., Manza-Mianza, D., Brik-Chaouche, R., Huang, Y., Rodriguez-Granados, N.Y., Concia, L., Blein, T., Citerne, S., Bendahmane, A., Bergounioux, C., Crespi, M., Mahfouz, M.M., Raynaud, C., Hirt, H., Ntoukakis, V., and Benhamed, M. (2020). GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5' and 3' ends of its target genes. Nucleic Acids Res 48, 5953-5966.
Knight, H., Trewavas, A.J., and Knight, M.R. (1996). Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8, 489-503.
Lamesch, P., Berardini, T.Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R., Dreher, K., Alexander, D.L., Garcia-Hernandez, M., Karthikeyan, A.S., Lee, C.H., Nelson, W.D., Ploetz, L., Singh, S., Wensel, A., and Huala, E. (2012). The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40, D1202-1210.
Lee, K., Park, O.S., and Seo, P.J. (2018). JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis. Plant J 95, 961-975.
Li, W., Wang, H., and Yu, D. (2016). Arabidopsis WRKY Transcription Factors WRKY12 and WRKY13 Oppositely Regulate Flowering under Short-Day Conditions. Mol Plant 9, 1492-1503.
Lim, C.J., Park, J., Shen, M., Park, H.J., Cheong, M.S., Park, K.S., Baek, D., Bae, M.J., Ali, A., Jan, M., Lee, S.Y., Lee, B.H., Kim, W.Y., Pardo, J.M., and Yun, D.J. (2020). The Histone-Modifying Complex PWR/HOS15/HD2C Epigenetically Regulates Cold Tolerance. Plant Physiol 184, 1097-1111.
Lin, P.-Y. (2017). WRKY63 interacts with the histone deacetylase HDA6 and regulates flowering time in Arabidopsis (Institution of Plant Biology, National Taiwan University (doi: 10.6342/NTU201800006)).
Liu, X., Hao, L., Li, D., Zhu, L., and Hu, S. (2015). Long non-coding RNAs and their biological roles in plants. Genomics Proteomics Bioinformatics 13, 137-147.
Liu, X., Yang, S., Zhao, M., Luo, M., Yu, C.W., Chen, C.Y., Tai, R., and Wu, K. (2014). Transcriptional repression by histone deacetylases in plants. Mol Plant 7, 764-772.
Liu, X., Wei, W., Zhu, W., Su, L., Xiong, Z., Zhou, M., Zheng, Y., and Zhou, D.X. (2017). Histone Deacetylase AtSRT1 Links Metabolic Flux and Stress Response in Arabidopsis. Mol Plant 10, 1510-1522.
Llorca, C.M., Potschin, M., and Zentgraf, U. (2014). bZIPs and WRKYs: two large transcription factor families executing two different functional strategies. Front Plant Sci 5, 169.
Lu, F., Cui, X., Zhang, S., Jenuwein, T., and Cao, X. (2011a). Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat Genet 43, 715-719.
Lu, F., Li, G., Cui, X., Liu, C., Wang, X.J., and Cao, X. (2008). Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice. J Integr Plant Biol 50, 886-896.
Lu, S.X., Knowles, S.M., Webb, C.J., Celaya, R.B., Cha, C., Siu, J.P., and Tobin, E.M. (2011b). The Jumonji C domain-containing protein JMJ30 regulates period length in the Arabidopsis circadian clock. Plant Physiol 155, 906-915.
Luo, M., Yu, C.W., Chen, F.F., Zhao, L., Tian, G., Liu, X., Cui, Y., Yang, J.Y., and Wu, K. (2012). Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in arabidopsis. PLoS Genet 8, e1003114.
Ma, Z., Li, W., Wang, H., and Yu, D. (2020). WRKY transcription factors WRKY12 and WRKY13 interact with SPL10 to modulate age-mediated flowering. J Integr Plant Biol 62, 1659-1673.
Machanick, P., and Bailey, T.L. (2011). MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27, 1696-1697.
Marquardt, S., Raitskin, O., Wu, Z., Liu, F., Sun, Q., and Dean, C. (2014). Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Mol Cell 54, 156-165.
Maruoka, T., Gan, E.S., Otsuka, N., Shirakawa, M., and Ito, T. (2022). Histone Demethylases JMJ30 and JMJ32 Modulate the Speed of Vernalization Through the Activation of FLOWERING LOCUS C in Arabidopsis thaliana. Front Plant Sci 13, 837831.
Millar, A.H., Heazlewood, J.L., Giglione, C., Holdsworth, M.J., Bachmair, A., and Schulze, W.X. (2019). The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. Annu Rev Plant Biol 70, 119-151.
Murfett, J., Wang, X.J., Hagen, G., and Guilfoyle, T.J. (2001). Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. Plant Cell 13, 1047-1061.
Nicolau, M., Picault, N., Descombin, J., Jami-Alahmadi, Y., Feng, S., Bucher, E., Jacobsen, S.E., Deragon, J.M., Wohlschlegel, J., and Moissiard, G. (2020). The plant mobile domain proteins MAIN and MAIL1 interact with the phosphatase PP7L to regulate gene expression and silence transposable elements in Arabidopsis thaliana. PLoS Genet 16, e1008324.
Pandey, R., Muller, A., Napoli, C.A., Selinger, D.A., Pikaard, C.S., Richards, E.J., Bender, J., Mount, D.W., and Jorgensen, R.A. (2002). Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30, 5036-5055.
Park, J., Lim, C.J., Shen, M., Park, H.J., Cha, J.Y., Iniesto, E., Rubio, V., Mengiste, T., Zhu, J.K., Bressan, R.A., Lee, S.Y., Lee, B.H., Jin, J.B., Pardo, J.M., Kim, W.Y., and Yun, D.J. (2018). Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proc Natl Acad Sci U S A 115, E5400-E5409.
Park, J.M., Jo, S.H., Kim, M.Y., Kim, T.H., and Ahn, Y.H. (2015). Role of transcription factor acetylation in the regulation of metabolic homeostasis. Protein Cell 6, 804-813.
Peserico, A., and Simone, C. (2011). Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol 2011, 371832.
Phukan, U.J., Jeena, G.S., and Shukla, R.K. (2016). WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. Front Plant Sci 7, 760.
Poulios, S., and Vlachonasios, K.E. (2016). Synergistic action of histone acetyltransferase GCN5 and receptor CLAVATA1 negatively affects ethylene responses in Arabidopsis thaliana. J Exp Bot 67, 905-918.
Poulios, S., and Vlachonasios, K.E. (2018). Synergistic action of GCN5 and CLAVATA1 in the regulation of gynoecium development in Arabidopsis thaliana. New Phytol 220, 593-608.
Ren, X., Chen, Z., Liu, Y., Zhang, H., Zhang, M., Liu, Q., Hong, X., Zhu, J.K., and Gong, Z. (2010). ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63, 417-429.
Riboni, M., Galbiati, M., Tonelli, C., and Conti, L. (2013). GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiol 162, 1706-1719.
Rushton, P.J., Somssich, I.E., Ringler, P., and Shen, Q.J. (2010). WRKY transcription factors. Trends Plant Sci 15, 247-258.
Rushton, P.J., Macdonald, H., Huttly, A.K., Lazarus, C.M., and Hooley, R. (1995). Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy2 genes. Plant Mol Biol 29, 691-702.
Santos-Rosa, H., Schneider, R., Bannister, A.J., Sherriff, J., Bernstein, B.E., Emre, N.C., Schreiber, S.L., Mellor, J., and Kouzarides, T. (2002). Active genes are tri-methylated at K4 of histone H3. Nature 419, 407-411.
Sarris, P.F., Duxbury, Z., Huh, S.U., Ma, Y., Segonzac, C., Sklenar, J., Derbyshire, P., Cevik, V., Rallapalli, G., Saucet, S.B., Wirthmueller, L., Menke, F.L.H., Sohn, K.H., and Jones, J.D.G. (2015). A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors. Cell 161, 1089-1100.
Seifi, H.S., Van Bockhaven, J., Angenon, G., and Hofte, M. (2013). Glutamate metabolism in plant disease and defense: friend or foe? Mol Plant Microbe Interact 26, 475-485.
Servet, C., Conde e Silva, N., and Zhou, D.X. (2010). Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis. Mol Plant 3, 670-677.
Sherman, B.T., Hao, M., Qiu, J., Jiao, X., Baseler, M.W., Lane, H.C., Imamichi, T., and Chang, W. (2022). DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 50, W216-W221.
Shih, W.-T. (2015). Functional analysis of Arabidopsis WRKY63 in salt stress response and flowering time control (Institution of Plant Biology, National Taiwan University ).
Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94, 1035-1040.
Sun, Q., Csorba, T., Skourti-Stathaki, K., Proudfoot, N.J., and Dean, C. (2013). R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 340, 619-621.
Swiezewski, S., Liu, F., Magusin, A., and Dean, C. (2009). Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462, 799-802.
Theillet, F.X., Smet-Nocca, C., Liokatis, S., Thongwichian, R., Kosten, J., Yoon, M.K., Kriwacki, R.W., Landrieu, I., Lippens, G., and Selenko, P. (2012). Cell signaling, post-translational protein modifications and NMR spectroscopy. J Biomol NMR 54, 217-236.
Thorvaldsdottir, H., Robinson, J.T., and Mesirov, J.P. (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14, 178-192.
Uhlken, C., Horvath, B., Stadler, R., Sauer, N., and Weingartner, M. (2014). MAIN-LIKE1 is a crucial factor for correct cell division and differentiation in Arabidopsis thaliana. Plant J 78, 107-120.
UniProt, C. (2023). UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res 51, D523-D531.
Van Aken, O., Zhang, B., Law, S., Narsai, R., and Whelan, J. (2013). AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins. Plant Physiol 162, 254-271.
Verdin, E., Dequiedt, F., and Kasler, H.G. (2003). Class II histone deacetylases: versatile regulators. Trends Genet 19, 286-293.
Wang, K.C., Yang, Y.W., Liu, B., Sanyal, A., Corces-Zimmerman, R., Chen, Y., Lajoie, B.R., Protacio, A., Flynn, R.A., Gupta, R.A., Wysocka, J., Lei, M., Dekker, J., Helms, J.A., and Chang, H.Y. (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120-124.
Wang, L., Yu, G., Macho, A.P., and Lozano-Duran, R. (2021). Split-luciferase Complementation Imaging Assay to Study Protein-protein Interactions in Nicotiana benthamiana. Bio Protoc 11, e4237.
Wang, T., Xing, J., Liu, Z., Zheng, M., Yao, Y., Hu, Z., Peng, H., Xin, M., Zhou, D., and Ni, Z. (2019). Histone acetyltransferase GCN5-mediated regulation of long non-coding RNA At4 contributes to phosphate starvation response in Arabidopsis. J Exp Bot 70, 6337-6348.
Wani, S.H., Anand, S., Singh, B., Bohra, A., and Joshi, R. (2021). WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Rep 40, 1071-1085.
Welin, B.V., Olson, A., Nylander, M., and Palva, E.T. (1994). Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol 26, 131-144.
Wood, C.C., Robertson, M., Tanner, G., Peacock, W.J., Dennis, E.S., and Helliwell, C.A. (2006). The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci U S A 103, 14631-14636.
Wu, J., Yamaguchi, N., and Ito, T. (2019). Histone demethylases control root elongation in response to stress-signaling hormone abscisic acid. Plant Signal Behav 14, 1604019.
Wu, K., Zhang, L., Zhou, C., Yu, C.W., and Chaikam, V. (2008). HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59, 225-234.
Xi, Y., Park, S.R., Kim, D.H., Kim, E.D., and Sung, S. (2020). Transcriptome and epigenome analyses of vernalization in Arabidopsis thaliana. Plant J 103, 1490-1502.
Xiao, J., Zhang, H., Xing, L., Xu, S., Liu, H., Chong, K., and Xu, Y. (2013). Requirement of histone acetyltransferases HAM1 and HAM2 for epigenetic modification of FLC in regulating flowering in Arabidopsis. J Plant Physiol 170, 444-451.
Xu, Y., Li, Q., Yuan, L., Huang, Y., Hung, F.Y., Wu, K., and Yang, S. (2022). MSI1 and HDA6 function interdependently to control flowering time via chromatin modifications. Plant J 109, 831-843.
Yamaguchi, N., and Ito, T. (2021). Expression profiling of H3K27me3 demethylase genes during plant development and in response to environmental stress in Arabidopsis. Plant Signal Behav 16, 1950445.
Yan, Y., Zhang, D., Zhou, P., Li, B., and Huang, S.Y. (2017). HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res 45, W365-W373.
Yan, Y., Shen, L., Chen, Y., Bao, S., Thong, Z., and Yu, H. (2014). A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis. Dev Cell 30, 437-448.
Yang, H., Howard, M., and Dean, C. (2016). Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC. Proc Natl Acad Sci U S A 113, 9369-9374.
Yang, H., Mo, H., Fan, D., Cao, Y., Cui, S., and Ma, L. (2012). Overexpression of a histone H3K4 demethylase, JMJ15, accelerates flowering time in Arabidopsis. Plant Cell Rep 31, 1297-1308.
Yang, J., Yuan, L., Yen, M.R., Zheng, F., Ji, R., Peng, T., Gu, D., Yang, S., Cui, Y., Chen, P.Y., Wu, K., and Liu, X. (2020). SWI3B and HDA6 interact and are required for transposon silencing in Arabidopsis. Plant J 102, 809-822.
Yu, C.-W. (2011). Function of HDA6 in controlling flowering time and leaf development in Arabidopsis thaliana. In National Taiwan University Institution of Plant Biology
Yu, C.W., Chang, K.Y., and Wu, K. (2016a). Genome-Wide Analysis of Gene Regulatory Networks of the FVE-HDA6-FLD Complex in Arabidopsis. Front Plant Sci 7, 555.
Yu, C.W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., and Wu, K. (2011). HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol 156, 173-184.
Yu, G., Wang, L.G., and He, Q.Y. (2015). ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382-2383.
Yu, Y., Liu, Z., Wang, L., Kim, S.G., Seo, P.J., Qiao, M., Wang, N., Li, S., Cao, X., Park, C.M., and Xiang, F. (2016b). WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana. Plant J 85, 96-106.
Zeng, X., Gao, Z., Jiang, C., Yang, Y., Liu, R., and He, Y. (2020). HISTONE DEACETYLASE 9 Functions with Polycomb Silencing to Repress FLOWERING LOCUS C Expression. Plant Physiol 182, 555-565.
Zhang, H., Zhao, Y., and Zhou, D.X. (2017). Rice NAD+-dependent histone deacetylase OsSRT1 represses glycolysis and regulates the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes. Nucleic Acids Res 45, 12241-12255.
Zhang, L., Chen, L., and Yu, D. (2018). Transcription Factor WRKY75 Interacts with DELLA Proteins to Affect Flowering. Plant Physiol 176, 790-803.
Zheng, M., Liu, X., Lin, J., Liu, X., Wang, Z., Xin, M., Yao, Y., Peng, H., Zhou, D.X., Ni, Z., Sun, Q., and Hu, Z. (2019). Histone acetyltransferase GCN5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes. Plant J 97, 587-602.
Zheng, Y., Ge, J., Bao, C., Chang, W., Liu, J., Shao, J., Liu, X., Su, L., Pan, L., and Zhou, D.X. (2020). Histone Deacetylase HDA9 and WRKY53 Transcription Factor Are Mutual Antagonists in Regulation of Plant Stress Response. Mol Plant 13, 598-611.
Zhong, W. (2023). Arabidopsis histone demethylase JMJ28 interacts with histone acetyltransferase GCN5 and is involved in ABA response (National Taiwan University Institution of Plant Biology (doi:10.6342/NTU202301336) ).
Zhou, X., Lei, Z., and An, P. (2024). Post-Translational Modification of WRKY Transcription Factors. Plants (Basel) 13.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96745-
dc.description.abstract植物的開花是生命週期中的一大重要環節,而開花時間的變化會藉由許多基因激活因子和抑制因子組成的複雜網絡進行調控。在阿拉伯芥(Arabidopsis thaliana)中,FLOWERING LOCUS C (FLC) 作為一個關鍵調控因子,透過抑制開花整合因子 FLOWERING LOCUS T (FT) 的表達,參與植物開花的調控。長時間的低溫處理(春化作用)能誘導非編碼長 RNA(lncRNAs)COOLAIR 和 COLDAIR 的表達量上升,間接抑制 FLC 表達來促使植物在春化條件下開花。然而,春化作用影響COOLAIR 和 COLDAIR 的轉錄調控機制尚不清楚。在本研究中,我們發現轉錄因子 WRKY63藉由活化FLC 的方式來調控植物的開花。在開花表型的研究中,wrky63突變體表現出早花的表型,且對春化作用不敏感,說明WRKY63的功能在非春化及春化作用中對植物開花的調控都扮演重要角色。在非春化條件下,WRKY63 可直接結合FLC啟動子區域,激活 FLC 的表達;然而在春化作用的影響下,WRKY63通過直接結合在COOLAIR 和 COLDAIR啟動子區域的方式,促進 COOLAIR 和 COLDAIR 的轉錄,而間接抑制 FLC的表達。全基因體結合分析顯示,春化作用會促進WRKY63 對春化誘導基因的結合程度,同時也伴隨抑制性組蛋白標誌 H3K27me3 水平的降低。綜上所述,這些研究結果證明 WRKY63是開花的關鍵調控因子,參與了春化作用影響下的基因轉錄調控。
蛋白質的轉譯後修飾(PTMs)在真核細胞中調節蛋白功能方面發揮著重要作用。在這些修飾中,蛋白質乙醯化作為一種進化上保守的 PTM,影響蛋白質的細胞位置、穩定性、蛋白質間相互作用、DNA 結合能力和酵素活性。近期的研究發現WRKY蛋白的功能可通過乙醯化進行調節,然而其分子機制並不清楚。在本研究中,我們鑑定出WRKY63的賴胺酸 31(K31)作為一個關鍵乙醯化位點,可以促進WRKY63的蛋白位置的改變及其活性與功能的調節。此外,WRKY63的乙醯化狀態改變,可以藉由組蛋白乙醯轉移酶 HAG1 (GCN5) 和組蛋白去乙醯酶 HDA6 的拮抗調節。我們的研究揭示了一種通過乙醯化調節 WRKY 蛋白功能的新機制。
zh_TW
dc.description.abstractFlowering time is a vital developmental process in plants, orchestrated by a complex network of gene activation and repression mechanisms. In Arabidopsis thaliana, FLOWERING LOCUS C (FLC) serves as a key regulator by repressing the expression of the floral integrator FLOWERING LOCUS T (FT). Prolonged cold exposure (vernalization) promotes flowering by downregulating FLC expression. The long noncoding RNAs (lncRNAs) COOLAIR and COLDAIR, transcribed from the 3' end and the first intron of FLC, respectively, play crucial roles in FLC repression during vernalization. However, the transcriptional activation mechanisms of COOLAIR and COLDAIR remain unclear. In this study, we identified the group-III WRKY transcription factor WRKY63 as a direct activator of FLC. wrky63 mutants exhibit an early flowering phenotype and reduced sensitivity to vernalization. WRKY63 directly binds to the promoters of COOLAIR and COLDAIR, activating their expression. Under non-vernalization conditions, WRKY63 directly activates the expression of FLC. During vernalization, it indirectly represses FLC by promoting COOLAIR and COLDAIR transcription. Genome-wide occupancy analysis revealed that WRKY63 binding to vernalization-induced genes increases following vernalization. Furthermore, WRKY63 binding correlates with reduced levels of the repressive histone marker H3K27me3. Collectively, these findings establish WRKY63 as a pivotal regulator of flowering, mediating transcriptional responses to vernalization.
Post-translational modifications (PTMs) play a critical role in modulating protein functions in eukaryotic cells. Among these, protein acetylation is an evolutionarily conserved PTM that influences various aspects of protein, including subcellular localization, stability, protein-protein interactions, DNA-binding capacity, and enzymatic activity. The members of the WRKY protein family have recently been shown to undergo functional and activity regulation through acetylation. However, the specific effects of WRKY acetylation on their functions and activities are still unclear. In this study, we identified lysine 31 (K31) as a key acetylation site on WRKY63 that enhances its nuclear localization and transcriptional activity. Furthermore, the acetylation status of WRKY63 is antagonistically regulated by the histone acetyltransferase HAG1 (GCN5) and the histone deacetylase HDA6. Together, our findings reveal a novel mechanism by which acetylation modulates WRKY protein function.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:21:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-21T16:21:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES x
LIST OF SUPPLEMENTARY FIGURES xiii
LIST OF TABLES xiv
LIST OF SUPPLEMENTARY TABLES xv
LIST OF APPENDIXES xvi
LIST OF ABBREVIATION xvii
Chapter 1 Introduction 1
1.1 WRKY transcription factors 1
1.2 Histone acetylation and deacetylation 1
1.3 Functions of histone acetyltransferases (HATs) 2
1.4 Functions of histone deacetylases (HDACs) 3
1.5 Acetylation and deacetylation of non-histone proteins 5
1.6 The specific aims of this study 6
Chapter 2 Materials and Methods 7
2.1 Plant materials 8
2.2 Plasmid construction and plant transformation 8
2.3 Root staining and Fluorescence imaging 9
2.4 Quick DNA extraction 9
2.5 RNA isolation 10
2.6 DNase treatment 11
2.7 Reverse transcription-PCR (RT-PCR) analysis 12
2.8 Real-time PCR analysis 12
2.9 Chromatin immunoprecipitation (ChIP) assay 13
2.10 Western blot and Co-immunoprecipitation (Co-IP) assay 14
2.11 Bimolecular fluorescence complementation (BiFC) assay 20
2.12 Split-luciferase complementation (Split-LUC) assay 22
2.13 Structural modeling of WRKY63 using AlphaFold 26
2.14 HDA6-GFP purification and histone deacetylase activity assay 27
2.15 Acetylation and deacetylation assay of recombinant proteins MBP-WRKY63-DB and MBP-WRKY63-N 28
2.16 Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis 29
2.17 ChIP-sequencing of WRKY63 targeting 30
2.18 Computational analysis for protein functions 33
Chapter 3 Results 36
3.1 WRKY63 regulates flowering time in Arabidopsis 36
3.1.1 WRKY63 regulates flowering by FLC induction 36
3.1.2 WRKY63 binds FLC and affects H3K27me3 36
3.1.3 WRKY63 is involved in vernalization-induced flowering 37
3.1.4 WRKY63 induces the lncRNAs COOLAIR and COLDAIR during vernalization 38
3.1.5 Vernalization increases the binding of WRKY63 to the COOLAIR/COLDAIR promoters 39
3.1.6 Genome-wide occupancy profile of WRKY63 40
3.1.7 WRKY63 is associated with vernalization-induced gene activation and decreased H3K27me3 41
3.2 Lysine acetylation regulates the function and activity of WRKY63 44
3.2.1 WRKY63 can be acetylated 44
3.2.2 K31 acetylation regulates the cellular localization of WRKY63 45
3.2.3 Acetylation affects the function and activity of WRKY63. 47
3.2.4 WRKY63 interacts with deacetylase HDA6 48
3.2.5 HDA6 reduces acetylation and affects localization of WRKY63 49
3.2.6 WRKY63 interacts with acetyltransferase HAG1 50
3.2.7 WRKY63 acts downstream of HAG1 in growth and flowering time regulation 51
3.2.8 HAG1 and HDA6 antagonistically regulate WRKY63 51
3.2.9 HAG1 and HDA6 antagonistically regulate WRKY63 acetylation 51
3.2.10 HAG1 and HDA6 antagonistically regulate subcellular localization of WRKY63 52
3.3 WRKY63 interacts with JMJ protein in flowering time control 53
3.3.1 Identification of the WRKY63 interacting proteins 53
3.3.2 Physical interaction of WRKY63 and JMJ30/32 53
3.3.3 Flowering phenotype of the jmj30/jmj32/abo3 triple mutant 55
3.3.4 Identification of the JMJ30 interacting proteins 55
3.3.5 Physical interaction of JMJ30 and MAIL3 56
3.3.6 Flowering phenotype of mail3-1 and mail3-2 mutant 58
Chapter 4 Discussion 59
4.1 WRKY63 is involved in vernalization-induced flowering in Arabidopsis 59
4.2 Lysine acetylation regulates the function and activity of WRKY63 62
4.3 WRKY63 interacts with JMJ30 and affects the H3K27me3 level of FLC 63
Chapter 5 REFERENCES 65
Figures 83
Supplementary figures 137
Tables 144
Supplementary Tables 155
Appendixes 164
-
dc.language.isoen-
dc.subjectWRKY63zh_TW
dc.subject春化作用zh_TW
dc.subject開花時間zh_TW
dc.subject賴氨酸乙醯化zh_TW
dc.subject組蛋白乙醯轉移酶zh_TW
dc.subject組蛋白去乙醯酶zh_TW
dc.subjecthistone deacetylaseen
dc.subjectWRKY63en
dc.subjectvernalizationen
dc.subjectflowering timeen
dc.subjectlysine acetylationen
dc.subjecthistone acetyltransferaseen
dc.title阿拉伯芥WRKY63參與開花時間調控之分子功能研究zh_TW
dc.titleDeciphering the molecular function of Arabidopsis WRKY63 in flowering time controlen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee謝旭亮;鄭貽生;游竣惟;陳柏仰zh_TW
dc.contributor.oralexamcommitteeHsu-Liang Hsieh;Yi-Sheng Cheng;Chun-Wei Yu;Pao-Yang Chenen
dc.subject.keywordWRKY63,春化作用,開花時間,賴氨酸乙醯化,組蛋白乙醯轉移酶,組蛋白去乙醯酶,zh_TW
dc.subject.keywordWRKY63,vernalization,flowering time,lysine acetylation,histone acetyltransferase,histone deacetylase,en
dc.relation.page200-
dc.identifier.doi10.6342/NTU202404726-
dc.rights.note未授權-
dc.date.accepted2024-12-23-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept植物科學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
141.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved