Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96744
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇柏青zh_TW
dc.contributor.advisorBorching Suen
dc.contributor.author馬振洋zh_TW
dc.contributor.authorChen-Yang Maen
dc.date.accessioned2025-02-21T16:21:26Z-
dc.date.available2025-02-22-
dc.date.copyright2025-02-21-
dc.date.issued2024-
dc.date.submitted2024-12-19-
dc.identifier.citationC. Campo, M. Stefer, L. Bernard, S. Hengy, H. Boeglen, and J.-M. Paillot. Antenna weighting system for a uniform linear array based on software defined radio. In 2017 Mediterranean Microwave Symposium (MMS), pages 1–4. IEEE, 2017.
J. Dattorro. Convex Optimization & Euclidean Distance Geometry. Meboo Publishing USA, 2005.
X. Fan, J. Liang, Y. Zhang, H. So, and X. Zhao. Shaped power pattern synthesis with minimization of dynamic range ratio. IEEE Transactions on Antennas and Propagation, 67(5):3067–3078, 2019.
C. Fonteneau, M. Crussière, and B. Jahan. A systematic beam broadening method for large phased arrays. In 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), pages 7–12. IEEE, 2021.
B. Fuchs. Application of convex relaxation to array synthesis problems. IEEE Transactions on Antennas and Propagation, 62(2):634–640, 2013.
B. Fuchs and S. Rondineau. Array pattern synthesis with excitation control via norm minimization. IEEE Transactions on Antennas and Propagation, 64(10):4228–4234, 2016.
M. Grant and S. Boyd. Cvx: Matlab software for disciplined convex programming, version 2.1, 2014.
H. Huang, Y. Wang, Z. Chen, Y. Zhang, Y. Li, Z. Tang, W. Chu, J. Chen, W. Lin, and K.-K. Ma. Cmua-watermark: A cross-model universal adversarial watermark for combating deepfakes. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 989–997, 2022.
P. J. Kajenski. Phase only antenna pattern notching via a semidefinite programming relaxation. IEEE Transactions on Antennas and Propagation, 60(5):2562–2565, 2012.
O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B. Shankar, J. F. M. Montoya, J. C. M. Duncan, D. Spano, S. Chatzinotas, S. Kisseleff, et al. Satellite communications in the new space era: A survey and future challenges. IEEE Communications Surveys & Tutorials, 23(1):70–109, 2020.
E. G. Larsson and L. Van der Perre. Out-of-band radiation from antenna arrays clarified. IEEE wireless communications letters, 7(4):610–613, 2018.
S. Lei, W. Yang, Z. Lin, Z. He, H. Hu, Z. Zhao, and Y. Bao. An excitation-drr control approach for wide-beam power gain pattern synthesis. Signal Processing, 204:108858, 2023.
J. Liang, X. Fan, W. Fan, D. Zhou, and J. Li. Phase-only pattern synthesis for linear antenna arrays. IEEE Antennas and Wireless Propagation Letters, 16:3232–3235, 2017.
J. Liang, X. Fan, H. C. So, and D. Zhou. Array beampattern synthesis without specifying lobe level masks. IEEE Transactions on Antennas and Propagation, 68(6):4526–4539, 2020.
W. Lin, Y. Wu, and B. Su. Broadened-beam uniform rectangular array coefficient design in leo satcoms under quality of service and constant modulus constraints. arXiv preprint arXiv:2403.07435, 2024.
Y. Liu, J. Bai, K. Da Xu, Z. Xu, F. Han, Q. H. Liu, and Y. J. Guo. Linearly polarized shaped power pattern synthesis with sidelobe and cross-polarization control by using semidefinite relaxation. IEEE Transactions on Antennas and Propagation, 66(6):3207-3212, 2018.
Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang. Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing Magazine, 27(3):20–34, 2010.
S. Rajagopal. Beam broadening for phased antenna arrays using multi-beam subarrays. In 2012 IEEE International Conference on Communications (ICC), pages 3637–3642. IEEE, 2012.
M. A. Richards et al. Fundamentals of radar signal processing, volume 1. Mcgraw-hill New York, 2005.
F. Sabath, E. L. Mokole, and S. Samaddar. Definition and classification of ultra-wideband signals and devices. URSI Radio Science Bulletin, 2005(313):12–26, 2005.
N. Tervo, B. Khan, J. P. Aikio, O. Kursu, M. Jokinen, M. E. Leinonen, M. Sonkki, T. Rahkonen, and A. Pärssinen. Combined sidelobe reduction and omnidirectional linearization of phased array by using tapered power amplifier biasing and digital predistortion. IEEE Transactions on Microwave Theory and Techniques, 69(9):4284–4299, 2021.
T. Wei, B. Liao, P. Xiao, and Z. Cheng. Transmit beampattern synthesis for mimo radar with one-bit dacs. In 2020 28th European Signal Processing Conference (EUSIPCO), pages 1827–1830. IEEE, 2021.
H. Xu, J. Wang, J. Yuan, C. Jiang, and C. Zhang. Generalized rq minimization with applications in array transmit beamforming. IEEE Antennas and Wireless Propagation Letters, 16:177–180, 2016.
Z. Xu, Y. Liu, M. Li, and Y. Li. Linearly polarized shaped power pattern synthesis with dynamic range ratio control for arbitrary antenna arrays. IEEE Access, 7:53621–53628, 2019.
Y.-X. Zhang, Y.-C. Jiao, and L. Zhang. Antenna array directivity maximization with sidelobe level constraints using convex optimization. IEEE Transactions on Antennas and Propagation, 69(4):2041–2052, 2020.
B. Zheng, S. Lin, and R. Zhang. Intelligent reflecting surface-aided leo satellite communication: Cooperative passive beamforming and distributed channel estimation. IEEE Journal on Selected Areas in Communications, 40(10):3057–3070, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96744-
dc.description.abstract波束成形在衛星通信中至關重要,因為它在克服長距離傳輸所造成的巨大路徑損耗方面發揮了關鍵作用。為了在廣泛區域內同時為用戶終端提供服務並提高下行鏈路容量,衛星廣播應用中需要設計具有寬波束的波束成形器。另外,對於最小化發射波束的功率洩漏,從而防止對非目標用戶的干擾,在波束圖型合成中實現低峰值旁瓣位準也是至關重要。在衛星波束成形器的設計中,必須考慮恆定模量約束,以使功率放大器在接近飽和點的同時保持在線性區域運作,從而實現最大效率。本篇論文研究了均勻矩形陣列發射波束成形器設計問題,其目的是在滿足恆定模量約束的前提下,最小化發射波束圖型的低峰值旁瓣位準。本篇論文提出了稱為動態選點的新方法,通過找到局部峰值進行壓抑,以確保在連續空間域內抑制低峰值旁瓣位準。使用此方法可以減少約束的數量,縮短計算的時間,並獲得更低的低峰值旁瓣位準。針對非凸函數約束的問題,最佳化問題被重新制定為帶有秩等於一約束的半正定規劃,並通過凸函數迭代算法求解。模擬結果顯示了對比其他已存在方法,此方法在滿足恆定模量約束之下抑制低峰值旁瓣位準方面的優勢。zh_TW
dc.description.abstractBeamforming is essential in satellite communication (SatComs) since it plays a crucial role in overcoming great path loss caused by long-distance transmission. To achieve higher downlink capacity while simultaneously serving user terminals over wide areas, broadened beam beamformer design is desired in satellite (SAT) broadcast applications. Furthermore, achieving a low peak sidelobe level (PSL) in beampattern synthesis is essential to minimize power leakage from the transmitted beam, thereby preventing interference with non-target users. The constant modulus constants (CMCs) must be considered in SAT beamformer design to enable power amplifiers (PAs) to operate close to the saturation point while remaining in the linear region to achieve maximum efficiency. In this thesis, the uniform rectangular array (URA) beampattern synthesis design problem, formulated to minimize the PSL of the transmit beampattern while satisfying the CMC is studied. A new method called the dynamic points selection (DPS) method is proposed to ensure the suppression of PSL in the continuous spatial domain by finding the local peaks for suppression. The proposed method can reduce the number of constraints, decrease the computation time, and receive lower PSL. For the non-convex constraints, the optimization problem is reformulated to semidefinite programming (SDP) with a rank 1 constraint and is solved by a convex iterative algorithm. Simulation results reveal the advantages of the proposed method for suppressing the lower PSL under CMCs compared to existing methods.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:21:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-21T16:21:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xvii
Chapter 1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 System Model 5
2.1 Uniform Rectangular Array (URA) transmit beamformer system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Chapter 3 Problem Formulation 11
3.1 Definition of the continuous angle set and the discrete angle set . 12
3.1.1 Definition of the continuous angle sets . . . . . . . . . . . . . . 13
3.1.2 Definition of the discrete angle sets . . . . . . . . . . . . . . . . 14
3.2 Constant Modulus Constraint (CMC) . . . . . . . . . . . . . . . 15
3.3 Optimization Problem Formulation . . . . . . . . . . . . . . . . . 16
Chapter 4 Proposed Algorithm 19
4.1 Problem reformulation with semidefinite relaxation (SDR) with rank-1 constriant . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Relaxation of the problem from continuous angular domain to discrete angular domain . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Proposed Dattorro iterative algorithm . . . . . . . . . . . . . . . 21
4.3.1 Problem reformulation with Dattorro iterative algorithm . . . . 24
4.4 Proposed Dynamic Points Selection (DPS) with Dattorro iterative algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.1 Problem reformulation with DPS with Dattorro iterative algorithm 27
4.4.2 Definition of the discrete angle set with the union of the discrete angle sets from the previous iterations . . . . . . . . . . . . . . 29
Chapter 5 Simulation 31
5.1 Definition of peak sidelobe level (PSL) . . . . . . . . . . . . . . . 32
5.1.1 Definition of normalized peak sidelobe level (NPSL) . . . . . . . 32
5.1.2 Definition of normalized grid peak sidelobe level (NGPSL) . . . 32
5.2 Evaluation of the number of constraints . . . . . . . . . . . . . . 33
5.3 Simulation: Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 Simulation parameters: Case 1 . . . . . . . . . . . . . . . . . . . 34
5.3.2 Simulation results: Case 1 . . . . . . . . . . . . . . . . . . . . . 35
5.3.2.1 Simulation results of Case 1 (a) . . . . . . . . . . . . 37
5.3.2.2 Simulation results of Case 1 (b) . . . . . . . . . . . 44
5.3.2.3 Simulation results of Case 1 (c) . . . . . . . . . . . . 46
5.3.2.4 Simulation results of Case 1 (d) . . . . . . . . . . . 48
5.3.3 Comparison with simulation results: Case 1 . . . . . . . . . . . 50
5.4 Simulation: Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.1 Simulation parameters: Case 2 . . . . . . . . . . . . . . . . . . . 51
5.4.2 Simulation results: Case 2 . . . . . . . . . . . . . . . . . . . . . 53
5.4.2.1 Simulation results of Case 2 (a) . . . . . . . . . . . . 54
5.4.2.2 Simulation results of Case 2 (b) . . . . . . . . . . . 61
5.4.2.3 Simulation results of Case 2 (c) . . . . . . . . . . . . 63
5.4.2.4 Simulation results of Case 2 (d) . . . . . . . . . . . 65
5.4.3 Comparison with simulation results: Case 2 . . . . . . . . . . . 67
5.5 Simulation: Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.1 Simulation parameters: Case 3 . . . . . . . . . . . . . . . . . . . 68
5.5.2 Simulation results: Case 3 . . . . . . . . . . . . . . . . . . . . . 69
5.5.2.1 Simulation results of Case 3 (a) . . . . . . . . . . . . 71
5.5.2.2 Simulation results of Case 3 (b) . . . . . . . . . . . 78
5.5.2.3 Simulation results of Case 3 (c) . . . . . . . . . . . . 80
5.5.2.4 Simulation results of Case 3 (d) . . . . . . . . . . . 82
5.5.3 Comparison with simulation results: Case 3 . . . . . . . . . . . 84
5.6 Simulation: Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6.1 Simulation parameters: Case 4 . . . . . . . . . . . . . . . . . . . 85
5.6.2 Simulation results: Case 4 . . . . . . . . . . . . . . . . . . . . . 87
5.6.2.1 Simulation results of Case 4 (a) . . . . . . . . . . . . 88
5.6.2.2 Simulation results of Case 4 (b) . . . . . . . . . . . 95
5.6.2.3 Simulation results of Case 4 (c) . . . . . . . . . . . . 97
5.6.2.4 Simulation results of Case 4 (d) . . . . . . . . . . . 99
5.6.3 Comparison with simulation results: Case 4 . . . . . . . . . . . 101
Chapter 6 Conclusion and future work 103
6.1 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . 104
References 105
Appendix A — Definition of fractional bandwidth (FBW) 109
A.1 Fractional bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 109
Appendix B — Field of view (FoV) angle of the satellite 111
B.1 Field of view (FoV) angle of the satellite . . . . . . . . . . . . . . 111
Appendix C — Dynamic points selection (DPS) with Newton’s method 113
C.1 Dynamic points selection (DPS) with Newton’s method . . . . . 113
-
dc.language.isozh_TW-
dc.title在恆定模量約束下使用動態選點方法達到低峰值旁辦位準的均勻矩形陣列波束圖型合成zh_TW
dc.titleUniform Rectangular Array Beampattern Synthesis with Low Peak Sidelobe Level considering Constant Modulus Constraint using Dynamic Points Selection Methoden
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee馮世邁;林源倍zh_TW
dc.contributor.oralexamcommitteeSee-May Phoong;Yuan-Pei Linen
dc.subject.keyword波束成型器,波束圖型合成,恆定模量約束,均勻矩形陣列,動態選點,zh_TW
dc.subject.keywordBeamformer,Beampattern Synthesis,Constant Modulus Constraint (CMC),Uniform Rectangular Array (URA),Dynamic Points Selection,en
dc.relation.page118-
dc.identifier.doi10.6342/NTU202404750-
dc.rights.note未授權-
dc.date.accepted2024-12-19-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
151.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved