Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96743
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor湯森林zh_TW
dc.contributor.advisorSen-Lin Tangen
dc.contributor.author陳默zh_TW
dc.contributor.authorMo Chenen
dc.date.accessioned2025-02-21T16:21:11Z-
dc.date.available2025-02-22-
dc.date.copyright2025-02-21-
dc.date.issued2024-
dc.date.submitted2024-12-26-
dc.identifier.citationAbedon, S. T. (2017). Multiplicity of Infection. In. Elsevier. https://doi.org/10.1016/b978-0-12-809633-8.06748-0
Agostini, S., Suzuki, Y., Higuchi, T., Casareto, B. E., Yoshinaga, K., Nakano, Y., & Fujimura, H. (2012). Biological and chemical characteristics of the coral gastric cavity. Coral Reefs, 31(1), 147-156. https://doi.org/10.1007/s00338-011-0831-6
Alfaleh, M. A., Alsaab, H. O., Mahmoud, A. B., Alkayyal, A. A., Jones, M. L., Mahler, S. M., & Hashem, A. M. (2020). Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01986
Anantharaman, V., Iyer, L. M., & Aravind, L. (2012). Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing. Molecular BioSystems, 8(12), 3142. https://doi.org/10.1039/c2mb25239b
Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Atad, I., Zvuloni, A., Loya, Y., & Rosenberg, E. (2012). Phage therapy of the white plague-like disease of Favia favus in the Red Sea. Coral Reefs, 31(3), 665-670. https://doi.org/10.1007/s00338-012-0900-5
Bateman, A., Martin, M.-J., Orchard, S., Magrane, M., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bye-A-Jee, H., Cukura, A., Denny, P., Dogan, T., Ebenezer, T., Fan, J., Garmiri, P., Da Costa Gonzales, L. J., Hatton-Ellis, E., Hussein, A., Ignatchenko, A., . . . Zhang, J. (2023). UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Research, 51(D1), D523-D531. https://doi.org/10.1093/nar/gkac1052
Betat, H., & Mörl, M. (2015). The CCA‐adding enzyme: A central scrutinizer in tRNA quality control. BioEssays, 37(9), 975-982. https://doi.org/10.1002/bies.201500043
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
Bourne, D. G., Morrow, K. M., & Webster, N. S. (2016). Insights into the Coral Microbiome: Underpinning the Health and Resilience of Reef Ecosystems. Annual Review of Microbiology, 70(1), 317-340. https://doi.org/10.1146/annurev-micro-102215-095440
Carlson, K., & Wiberg, J. S. (1983). In vivo cleavage of cytosine-containing bacteriophage T4 DNA to genetically distinct, discretely sized fragments. Journal of Virology, 48(1), 18-30. https://doi.org/10.1128/jvi.48.1.18-30.1983
Ceyssens, P. J., Minakhin, L., Van den Bossche, A., Yakunina, M., Klimuk, E., Blasdel, B., De Smet, J., Noben, J. P., Blasi, U., Severinov, K., & Lavigne, R. (2014). Development of giant bacteriophage varphiKZ is independent of the host transcription apparatus. J Virol, 88(18), 10501-10510. https://doi.org/10.1128/JVI.01347-14
Chaikeeratisak, V., Khanna, K., Nguyen, K. T., Sugie, J., Egan, M. E., Erb, M. L., Vavilina, A., Nonejuie, P., Nieweglowska, E., Pogliano, K., Agard, D. A., Villa, E., & Pogliano, J. (2019). Viral Capsid Trafficking along Treadmilling Tubulin Filaments in Bacteria. Cell, 177(7), 1771-+. https://doi.org/10.1016/j.cell.2019.05.032
Chan, P. P., & Lowe, T. M. (2019). tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. In (pp. 1-14). Springer New York. https://doi.org/10.1007/978-1-4939-9173-0_1
Cohen, Y., Joseph Pollock, F., Rosenberg, E., & Bourne, D. G. (2013). Phage therapy treatment of the coral pathogen Vibrio coralliilyticus. Microbiologyopen, 2(1), 64-74. https://doi.org/10.1002/mbo3.52
Davy, J., & Patten, N. (2007). Morphological diversity of virus-like particles within the surface microlayer of scleractinian corals. Aquatic Microbial Ecology, 47, 37-44. https://doi.org/10.3354/ame047037
De Smet, J., Zimmermann, M., Kogadeeva, M., Ceyssens, P.-J., Vermaelen, W., Blasdel, B., Bin Jang, H., Sauer, U., & Lavigne, R. (2016). High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection. The ISME Journal, 10(8), 1823-1835. https://doi.org/10.1038/ismej.2016.3
Deponte, M. (2013). Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(5), 3217-3266. https://doi.org/10.1016/j.bbagen.2012.09.018
Desjardins, P., & Conklin, D. (2010). NanoDrop Microvolume Quantitation of Nucleic Acids. Journal of Visualized Experiments(-1). https://doi.org/10.3791/2565
Ding, J.-Y., Shiu, J.-H., Chen, W.-M., Chiang, Y.-R., & Tang, S.-L. (2016). Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00251
Dyall-Smith, M., Tang, S.-L., Russ, B., Chiang, P.-W., & Pfeiffer, F. (2020). Comparative Genomics of Two New HF1-like Haloviruses. Genes, 11(4), 405. https://doi.org/10.3390/genes11040405
Ellis, E. L., & DelbrüCk, M. (1939). The Growth of Bacteriophage. Journal of General Physiology, 22(3), 365-384. https://doi.org/10.1085/jgp.22.3.365
Erez, Z., Steinberger-Levy, I., Shamir, M., Doron, S., Stokar-Avihail, A., Peleg, Y., Melamed, S., Leavitt, A., Savidor, A., Albeck, S., Amitai, G., & Sorek, R. (2017). Communication between viruses guides lysis-lysogeny decisions. Nature, 541(7638), 488-493. https://doi.org/10.1038/nature21049
Fernandes, A. P., & Holmgren, A. (2004). Glutaredoxins: Glutathione-Dependent Redox Enzymes with Functions Far Beyond a Simple Thioredoxin Backup System. Antioxidants & Redox Signaling, 6(1), 63-74. https://doi.org/10.1089/152308604771978354
Ge, S. X., Jung, D., & Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628-2629. https://doi.org/10.1093/bioinformatics/btz931
Grose, J. H., Belnap, D. M., Jensen, J. D., Mathis, A. D., Prince, J. T., Merrill, B. D., Burnett, S. H., & Breakwell, D. P. (2014). The Genomes, Proteomes, and Structures of Three Novel Phages That Infect the Bacillus cereus Group and Carry Putative Virulence Factors. Journal of Virology, 88(20), 11846-11860. https://doi.org/10.1128/jvi.01364-14
Hesketh-Best, P. J., Bosco-Santos, A., Garcia, S. L., O’Beirne, M. D., Werne, J. P., Gilhooly, W. P., & Silveira, C. B. (2023). Viruses of sulfur oxidizing phototrophs encode genes for pigment, carbon, and sulfur metabolisms. Communications Earth & Environment, 4(1). https://doi.org/10.1038/s43247-023-00796-4
Howard-Varona, C., Lindback, M. M., Bastien, G. E., Solonenko, N., Zayed, A. A., Jang, H., Andreopoulos, B., Brewer, H. M., Glavina Del Rio, T., Adkins, J. N., Paul, S., Sullivan, M. B., & Duhaime, M. B. (2020). Phage-specific metabolic reprogramming of virocells. The ISME Journal, 14(4), 881-895. https://doi.org/10.1038/s41396-019-0580-z
Howe-Kerr, L. I., Grupstra, C. G. B., Rabbitt, K. M., Conetta, D., Coy, S. R., Klinges, J. G., Maher, R. L., McConnell, K. M., Meiling, S. S., Messyasz, A., Schmeltzer, E. R., Seabrook, S., Sims, J. A., Veglia, A. J., Thurber, A. R., Thurber, R. L. V., & Correa, A. M. S. (2023). Viruses of a key coral symbiont exhibit temperature-driven productivity across a reefscape. ISME Communications, 3(1). https://doi.org/10.1038/s43705-023-00227-7
Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., Mende, D. R., Letunic, I., Rattei, T., Lars, Christian, & Bork, P. (2019). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research, 47(D1), D309-D314. https://doi.org/10.1093/nar/gky1085
Hyatt, D., Chen, G.-L., Locascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. Bmc Bioinformatics, 11(1), 119. https://doi.org/10.1186/1471-2105-11-119
Isaev, A. B., Musharova, O. S., & Severinov, K. V. (2021). Microbial Arsenal of Antiviral Defenses – Part I. Biochemistry (Moscow), 86(3), 319-337. https://doi.org/10.1134/s0006297921030081
Iyer, L. M., Koonin, E. V., & Aravind, L. (2002). Extensive domain shuffling in transcription regulators of DNA viruses and implications for the origin of fungal APSES transcription factors. Genome Biology, 3(3), research0012.0011. https://doi.org/10.1186/gb-2002-3-3-research0012
Kala, S., Cumby, N., Sadowski, P. D., Hyder, B. Z., Kanelis, V., Davidson, A. R., & Maxwell, K. L. (2014). HNH proteins are a widespread component of phage DNA packaging machines. Proceedings of the National Academy of Sciences, 111(16), 6022-6027. https://doi.org/10.1073/pnas.1320952111
Kammel, M., & Sawers, R. G. (2022). The Autonomous Glycyl Radical Protein GrcA Restores Activity to Inactive Full-Length Pyruvate Formate-Lyase In Vivo. Journal of Bacteriology, 204(5). https://doi.org/10.1128/jb.00070-22
Kanehisa, M. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1), 27-30. https://doi.org/10.1093/nar/28.1.27
Kieft, K., Zhou, Z., & Anantharaman, K. (2020). VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome, 8(1), 90. https://doi.org/10.1186/s40168-020-00867-0
Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8), 907-915. https://doi.org/10.1038/s41587-019-0201-4
Kurahashi, M., & Yokota, A. (2007). gen. nov., sp nov., a γ-proteobacterium isolated from the sea slug. Systematic and Applied Microbiology, 30(3), 202-206. https://doi.org/10.1016/j.syapm.2006.07.003
Lakshminarayan, M. I., Anantharaman, V., Krishnan, A., Burroughs, A. M., & Aravind, L. (2021). Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. Viruses, 13(1), 63. https://doi.org/10.3390/v13010063
Laughlin, T. G., Deep, A., Prichard, A. M., Seitz, C., Gu, Y., Enustun, E., Suslov, S., Khanna, K., Birkholz, E. A., Armbruster, E., McCammon, J. A., Amaro, R. E., Pogliano, J., Corbett, K. D., & Villa, E. (2022). Architecture and self-assembly of the jumbo bacteriophage nuclear shell. Nature, 608(7922), 429-435. https://doi.org/10.1038/s41586-022-05013-4
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923-930. https://doi.org/10.1093/bioinformatics/btt656
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). https://doi.org/10.1186/s13059-014-0550-8
Lu, T. K., & Collins, J. J. (2007). Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences, 104(27), 11197-11202. https://doi.org/10.1073/pnas.0704624104
McCutcheon, J. P., & Moran, N. A. (2012). Extreme genome reduction in symbiotic bacteria. Nature Reviews Microbiology, 10(1), 13-26. https://doi.org/10.1038/nrmicro2670
Miller, E. S., Kutter, E., Mosig, G., Arisaka, F., Kunisawa, T., & RüGer, W. (2003). Bacteriophage T4 Genome. Microbiology and Molecular Biology Reviews, 67(1), 86-156. https://doi.org/10.1128/mmbr.67.1.86-156.2003
Moynihan, M. A., Goodkin, N. F., Morgan, K. M., Kho, P. Y. Y., Lopes Dos Santos, A., Lauro, F. M., Baker, D. M., & Martin, P. (2022). Coral-associated nitrogen fixation rates and diazotrophic diversity on a nutrient-replete equatorial reef. The ISME Journal, 16(1), 233-246. https://doi.org/10.1038/s41396-021-01054-1
Neave, M. J., Michell, C. T., Apprill, A., & Voolstra, C. R. (2017). Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Scientific Reports, 7(1), 40579. https://doi.org/10.1038/srep40579
Neave, M. J., Rachmawati, R., Xun, L., Michell, C. T., Bourne, D. G., Apprill, A., & Voolstra, C. R. (2017). Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. The ISME Journal, 11(1), 186-200. https://doi.org/10.1038/ismej.2016.95
Nilsson, E., Li, K., Fridlund, J., Šulčius, S., Bunse, C., Karlsson, C. M. G., Lindh, M., Lundin, D., Pinhassi, J., & Holmfeldt, K. (2019). Genomic and Seasonal Variations among Aquatic Phages Infecting the Baltic Sea Gammaproteobacterium Rheinheimera sp. Strain BAL341. Applied and Environmental Microbiology, 85(18). https://doi.org/10.1128/aem.01003-19
Nilsson, E., Li, K., Hoetzinger, M., & Holmfeldt, K. (2022). Nutrient driven transcriptional changes during phage infection in an aquatic Gammaproteobacterium. Environmental Microbiology, 24(5), 2270-2281. https://doi.org/10.1111/1462-2920.15904
Nishijima, M., Adachi, K., Katsuta, A., Shizuri, Y., & Yamasato, K. (2013). Endozoicomonas numazuensis sp. nov., a gammaproteobacterium isolated from marine sponges, and emended description of the genus Endozoicomonas Kurahashi and Yokota 2007. International Journal of Systematic and Evolutionary Microbiology, 63(Pt_2), 709-714. https://doi.org/10.1099/ijs.0.042077-0
Nishimura, Y., Yoshida, T., Kuronishi, M., Uehara, H., Ogata, H., & Goto, S. (2017). ViPTree: the viral proteomic tree server. Bioinformatics, 33(15), 2379-2380. https://doi.org/10.1093/bioinformatics/btx157
Osterman, I., Samra, H., Rousset, F., Loseva, E., Itkin, M., Malitsky, S., Yirmiya, E., Millman, A., & Sorek, R. (2024). Phages reconstitute NAD+ to counter bacterial immunity. Nature, 634(8036), 1160-1167. https://doi.org/10.1038/s41586-024-07986-w
Pollenz, R. S., Bland, J., & Pope, W. H. (2022). Bioinformatic characterization of endolysins and holin-like membrane proteins in the lysis cassette of phages that infect Gordonia rubripertincta. PLoS ONE, 17(11), e0276603. https://doi.org/10.1371/journal.pone.0276603
Puck, T. T., & Lee, H. H. (1955). MECHANISM OF CELL WALL PENETRATION BY VIRUSES. The Journal of Experimental Medicine, 101(2), 151-175. https://doi.org/10.1084/jem.101.2.151
Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841-842. https://doi.org/10.1093/bioinformatics/btq033
Raina, J.-B., Tapiolas, D., Willis, B. L., & Bourne, D. G. (2009). Coral-Associated Bacteria and Their Role in the Biogeochemical Cycling of Sulfur. Applied and Environmental Microbiology, 75(11), 3492-3501. https://doi.org/10.1128/aem.02567-08
Reaka-Kudla, M. L., Wilson, D. E., & Wilson, E. O. (1997). Global biodiversity of coral reefs: a comparison with rainforests. In: Biodiversity II: Understanding and Protecting Our Biological Resources. . Joseph Henry Press.
Richardson, L. (1998). Coral diseases: what is really known? Trends in Ecology & Evolution, 13(11), 438-443. https://doi.org/10.1016/s0169-5347(98)01460-8
Rohwer, F., Seguritan, V., Azam, F., & Knowlton, N. (2002). Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series, 243, 1-10. https://doi.org/10.3354/meps243001
Roux, S., Brum, J. R., Dutilh, B. E., Sunagawa, S., Duhaime, M. B., Loy, A., Poulos, B. T., Solonenko, N., Lara, E., Poulain, J., Pesant, S., Kandels-Lewis, S., Dimier, C., Picheral, M., Searson, S., Cruaud, C., Alberti, A., Duarte, C. M., Gasol, J. M., . . . Sullivan, M. B. (2016). Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature, 537(7622), 689-693. https://doi.org/10.1038/nature19366
Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 39(21), 9275-9282. https://doi.org/10.1093/nar/gkr606
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. https://doi.org/10.1038/nmeth.2089
Seemann, T., & Booth, T. (2013). Barrnap 0.7: rapid ribosomal RNA prediction. https://github.com/tseemann/barrnap
Shiah, F.-K., Lai, C.-C., Chen, T.-Y., Ko, C.-Y., Tai, J.-H., & Chang, C.-W. (2022). Viral shunt in tropical oligotrophic ocean. Science Advances, 8(41). https://doi.org/10.1126/sciadv.abo2829
Shisler, K. A., & Broderick, J. B. (2014). Glycyl radical activating enzymes: Structure, mechanism, and substrate interactions. Archives of Biochemistry and Biophysics, 546, 64-71. https://doi.org/10.1016/j.abb.2014.01.020
Shiu, J.-H., Keshavmurthy, S., Chiang, P.-W., Chen, H.-J., Lou, S.-P., Tseng, C.-H., Justin Hsieh, H., Allen Chen, C., & Tang, S.-L. (2017). Dynamics of coral-associated bacterial communities acclimated to temperature stress based on recent thermal history. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-14927-3
Shiu, J.-H., & Tang, S.-L. (2019). The Bacteria Endozoicomonas: Community Dynamics, Diversity, Genomes, and Potential Impacts on Corals In: Li, Z. (eds) Symbiotic Microbiomes of Coral Reefs Sponges and Corals. . Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1612-1_5
Silveira, C. B., Luque, A., Haas, A. F., Roach, T. N. F., George, E. E., Knowles, B., Little, M., Sullivan, C. J., Varona, N. S., Wegley Kelly, L., Brainard, R., Rohwer, F., & Bailey, B. (2023). Viral predation pressure on coral reefs. BMC Biol, 21(1), 77. https://doi.org/10.1186/s12915-023-01571-9
Skliros, D., Kalatzis, P. G., Katharios, P., & Flemetakis, E. (2016). Comparative Functional Genomic Analysis of Two Vibrio Phages Reveals Complex Metabolic Interactions with the Host Cell. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01807
Sofia, H. J. (2001). Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Research, 29(5), 1097-1106. https://doi.org/10.1093/nar/29.5.1097
Sokolova, O. S., Shaburova, O. V., Pechnikova, E. V., Shaytan, A. K., Krylov, S. V., Kiselev, N. A., & Krylov, V. N. (2014). Genome packaging in EL and Lin68, two giant phiKZ-like bacteriophages of P. aeruginosa. Virology, 468-470, 472-478. https://doi.org/10.1016/j.virol.2014.09.002
Spalding, M. D., & Grenfell, A. M. (1997). New estimates of global and regional coral reef areas. Coral Reefs, 16(4), 225-230. https://doi.org/DOI 10.1007/s003380050078
Spizizen, J. (1957). The effect of virus infection on pyruvate metabolism. Biochimica et Biophysica Acta, 23, 333-341. https://doi.org/10.1016/0006-3002(57)90336-0
Sullivan, M. B., Huang, K. H., Ignacio‐Espinoza, J. C., Berlin, A. M., Kelly, L., Weigele, P. R., Defrancesco, A. S., Kern, S. E., Thompson, L. R., Young, S., Yandava, C., Fu, R., Krastins, B., Chase, M., Sarracino, D., Osburne, M. S., Henn, M. R., & Chisholm, S. W. (2010). Genomic analysis of oceanic cyanobacterial myoviruses compared with T4‐like myoviruses from diverse hosts and environments. Environmental Microbiology, 12(11), 3035-3056. https://doi.org/10.1111/j.1462-2920.2010.02280.x
Sussman, M., Mieog, J. C., Doyle, J., Victor, S., Willis, B. L., & Bourne, D. G. (2009). Vibrio Zinc-Metalloprotease Causes Photoinactivation of Coral Endosymbionts and Coral Tissue Lesions. PLoS ONE, 4(2), e4511. https://doi.org/10.1371/journal.pone.0004511
Tandon, K., Lu, C.-Y., Chiang, P.-W., Wada, N., Yang, S.-H., Chan, Y.-F., Chen, P.-Y., Chang, H.-Y., Chiou, Y.-J., Chou, M.-S., Chen, W.-M., & Tang, S.-L. (2020). Comparative genomics: Dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP). The ISME Journal, 14(5), 1290-1303. https://doi.org/10.1038/s41396-020-0610-x
Tang, S.-L. (2020). The Story for Coral Bacteria in Taiwan. Marine Research(trial issue), 101-108. https://doi.org/10.29677/MR.202012_(0).0009
team, R. c. (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Thomas, J. A., Hardies, S. C., Rolando, M., Hayes, S. J., Lieman, K., Carroll, C. A., Weintraub, S. T., & Serwer, P. (2007). Complete genomic sequence and mass spectrometric analysis of highly diverse, atypical Bacillus thuringiensis phage 0305ϕ8–36. Virology, 368(2), 405-421. https://doi.org/10.1016/j.virol.2007.06.043
Thompson, L. R., Zeng, Q., Kelly, L., Huang, K. H., Singer, A. U., Stubbe, J., & Chisholm, S. W. (2011). Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proceedings of the National Academy of Sciences, 108(39), E757-E764. https://doi.org/10.1073/pnas.1102164108
Thorvaldsdottir, H., Robinson, J. T., & Mesirov, J. P. (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics, 14(2), 178-192. https://doi.org/10.1093/bib/bbs017
Thurber, R. V., Payet, J. P., Thurber, A. R., & Correa, A. M. (2017). Virus-host interactions and their roles in coral reef health and disease. Nat Rev Microbiol, 15(4), 205-216. https://doi.org/10.1038/nrmicro.2016.176
Wagner, A. F. V., Schultz, S., Bomke, J., Pils, T., Lehmann, W. D., & Knappe, J. (2001). YfiD of Escherichia coli and Y06I of Bacteriophage T4 as Autonomous Glycyl Radical Cofactors Reconstituting the Catalytic Center of Oxygen-Fragmented Pyruvate Formate-Lyase. Biochemical and Biophysical Research Communications, 285(2), 456-462. https://doi.org/10.1006/bbrc.2001.5186
Wallace, B. A., Varona, N. S., Hesketh-Best, P. J., Stiffler, A. K., & Silveira, C. B. (2024). Globally distributed bacteriophage genomes reveal mechanisms of tripartite phage–bacteria–coral interactions. The ISME Journal, 18(1). https://doi.org/10.1093/ismejo/wrae132
Wang, F.-Q. (2020). Isolation and Characterization of Two Novel Endozoicomonas montiporae Bacteriophages Soochow University, Taipei Taiwan. https://hdl.handle.net/11296/d9uknq
Weinheimer, A. R., & Aylward, F. O. (2022). Infection strategy and biogeography distinguish cosmopolitan groups of marine jumbo bacteriophages. The ISME Journal, 16(6), 1657-1667. https://doi.org/10.1038/s41396-022-01214-x
Wilson, W. H., & Chapman, D. M. (2001). Observation of virus-like particles in thin sections of the plumose anemone, Metridium senile. Journal of the Marine Biological Association of the United Kingdom, 81(5), 879-880. https://doi.org/10.1017/s0025315401004726
Wilson, W. H., Dale, A. L., Davy, J. E., & Davy, S. K. (2005). An enemy within? Observations of virus-like particles in reef corals. Coral Reefs, 24(1), 145-148. https://doi.org/10.1007/s00338-004-0448-0
Xu, J., Hendrix, R. W., & Duda, R. L. (2013). A Balanced Ratio of Proteins from Gene G and Frameshift-Extended Gene GT Is Required for Phage Lambda Tail Assembly. Journal of Molecular Biology, 425(18), 3476-3487. https://doi.org/10.1016/j.jmb.2013.07.002
Yang, C.-S., Chen, M.-H., Arun, A. B., Chen, C. A., Wang, J.-T., & Chen, W.-M. (2010). Endozoicomonas montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata. International Journal of Systematic and Evolutionary Microbiology, 60(5), 1158-1162. https://doi.org/10.1099/ijs.0.014357-0
Yang, S.-H., Tandon, K., Lu, C.-Y., Wada, N., Shih, C.-J., Hsiao, S. S.-Y., Jane, W.-N., Lee, T.-C., Yang, C.-M., Liu, C.-T., Denis, V., Wu, Y.-T., Wang, L.-T., Huang, L., Lee, D.-C., Wu, Y.-W., Yamashiro, H., & Tang, S.-L. (2019). Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. Microbiome, 7(1). https://doi.org/10.1186/s40168-018-0616-z
Yu, G., Wang, L.-G., Han, Y., & He, Q.-Y. (2012). clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. OMICS: A Journal of Integrative Biology, 16(5), 284-287. https://doi.org/10.1089/omi.2011.0118
Yuan, Y., & Gao, M. (2017). Jumbo Bacteriophages: An Overview. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00403
Zeng, Z., Liu, X., Yao, J., Guo, Y., Li, B., Li, Y., Jiao, N., & Wang, X. (2016). Cold adaptation regulated by cryptic prophage excision in Shewanella oneidensis. The ISME Journal, 10(12), 2787-2800. https://doi.org/10.1038/ismej.2016.85
Zhao, X., Shen, M., Jiang, X., Shen, W., Zhong, Q., Yang, Y., Tan, Y., Agnello, M., He, X., Hu, F., & Le, S. (2017). Transcriptomic and Metabolomics Profiling of Phage–Host Interactions between Phage PaP1 and Pseudomonas aeruginosa. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00548
Zhu, A., Ibrahim, J. G., & Love, M. I. (2019). Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics, 35(12), 2084-2092. https://doi.org/10.1093/bioinformatics/bty895
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96743-
dc.description.abstract  病毒能夠主導珊瑚礁生態系碳循環、增加珊瑚礁內微生物基因多樣性,並控制病原菌數量使珊瑚免於疾病侵擾。然而當珊瑚礁生態系面臨環境壓力,會使珊瑚病毒多樣性組成改變造成疾病。隨著對於珊瑚礁微生物研究增加,學者也發現細菌對珊瑚礁生態系有諸多益處。其中內生桿菌屬(Endozoicomonas)備受矚目,他們能減少營養源自珊瑚礁生物體流失,或是提供幫助對抗熱逆境物質。表孔珊瑚內生桿菌(Endozoicomonas montiporae CL-33T, CL-33),是第一個自珊瑚礁中分離出內生桿菌物種(Yang et al., 2010),其基因體帶有數個噬菌體相關基因,且具有能對抗噬菌體的回文重複序列叢集關聯蛋白系統(Clustered Regularly Interspaced Short Palindromic Repeat, CRISPR)。這些發現人們好奇是否有能感染CL-33噬菌體,從而發現了噬菌體EmPhiS。噬菌體EmPhiS來自墾丁出水口,萼形柱珊瑚(Stylophora pistillata)周圍海水。本研究透過形態、基因註解、生理及轉錄體學研究,分析噬菌體EmPhiS。實驗結果發現,以形態上來看,EmPhiS屬於肌尾噬菌體科(Myoviridae),並具有巨型噬菌體(Jumbo phage)特徵。基因註解結果發現EmPhiS具有大量核苷酸代謝相關基因,其餘功能如感染與裂解、能量調控及結構相關基因數量則相互接近。生理實驗結果顯示EmPhiS為裂解性噬菌體,在不同感染比例下會顯現出不同病毒動態。轉錄體實驗結果發現噬菌體基因表現能夠分為前、中、後等不同時期,同時宿主在前期受影響基因數量也為最多。感染前期,噬菌體表現許多感染相關基因,並啟動核苷酸複製與調控宿主代謝,宿主則產生壓力表現基因應對入侵活動;感染中期,噬菌體抑制宿主胺基酸代謝及壓力反應,避免噬菌體表現蛋白質被降解,並逐漸開始製造結構蛋白;感染後期,噬菌體著重於結構組裝,進一步增加能量需求,細菌內部環境逐漸無法維持穩定,隨著宿主裂解完成感染循環。本研究為第一個與珊瑚有益細菌噬菌體轉錄體分析,透過此研究,可增加對珊瑚礁共生體中病毒所扮演角色及生態意義認知。zh_TW
dc.description.abstract  Viruses play a crucial role in coral reef ecosystems by regulating carbon cycling, enhancing microbial genetic diversity, and controlling pathogen populations to protect corals from diseases. However, environmental stress can alter the diversity and composition of coral-associated viruses, leading to disease outbreaks. As research on coral reef microbiomes progresses, scientists have discovered numerous benefits of bacteria to coral reef ecosystems. Among these, the genus Endozoicomonas has gained significant attention for its ability to reduce nutrient loss from coral organisms and provide substances that help corals cope with thermal stress. Endozoicomonas montiporae CL-33T, the first species of Endozoicomonas isolated from coral reefs (Yang et al., 2010), possesses a genome with numerous phage-related genes and a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) system that provides resistance against phages. This discovery led researchers to investigate whether phages capable of infecting CL-33 exist, resulting in the identification of the phage EmPhiS. EmPhiS was isolated from the seawater surrounding Stylophora pistillata corals in Kenting. This study analyzed EmPhiS through morphological, genomic, physiological, and transcriptomic approaches. Morphologically, EmPhiS belongs to the family Myoviridae and exhibits characteristics of jumbo phages. Genomic annotation revealed that EmPhiS contains numerous genes related to nucleotide metabolism, with similar numbers of genes involved in infection and lysis, energy regulation, and structural functions. Physiological experiments demonstrated that EmPhiS is a lytic phage, displaying different viral dynamics at varying infection ratios. Transcriptomic analysis showed that phage gene expression occurs in distinct early, middle, and late stages of infection, with the highest number of host genes affected during the early stage. During the early stage, EmPhiS expresses many infection-related genes, initiates nucleotide replication, and regulates host metabolism, while the host responds with stress-related genes. In the middle stage, EmPhiS suppresses host amino acid metabolism and stress responses to prevent degradation of phage proteins and begins producing structural proteins. In the late stage, EmPhiS focuses on structural assembly, increasing energy demands, and leading to the eventual lysis of the host cell, completing the infection cycle. This study represents the first transcriptomic analysis of a phage infecting beneficial coral-associated bacteria, providing insights into the role and ecological significance of viruses within coral holobiont.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:21:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-21T16:21:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目次 v
圖次 x
表次 xii
壹、 緒論 1
1 珊瑚礁病毒 1
1.1 病毒生態角色 1
1.2 珊瑚礁病毒相關研究 1
1.3 噬菌體療法 2
1.4 珊瑚礁細菌 3
2 內生桿菌屬 3
2.1 表孔珊瑚內生桿菌基因特性 4
2.2 表孔珊瑚內生桿菌與噬菌體相關基因 4
3 內生桿菌噬菌體EmPhiS 5
3.1 巨型噬菌體 5
3.2 噬菌體生命週期 6
3.3 噬菌體功能基因 6
3.4 噬菌體轉錄體學相關研究 7
貳、 研究目的 9
參、 實驗材料及方法 10
1 噬菌體宿主來源 10
2 細菌培養及保存 10
3 噬菌體來源 10
4 噬菌體富集與保存 11
5 病毒效價測量 11
6 病毒形態觀察 12
6.1 電子顯微鏡負染色法 12
6.2 利用穿透式電子顯微鏡鏡檢偵測細胞內噬菌體 13
6.3 化學固定 13
6.4 冷凍固定 14
6.5 超薄切片 14
7 噬菌體基因註解 14
8 一步生長曲線測定 15
9 病毒感染宿主轉錄體分析實驗 16
9.1 轉錄體分析實驗 16
9.2 一步生長曲線測定 17
9.3 宿主與病毒轉錄體樣本收集 17
10 核醣核酸萃取與定序 17
10.1 核醣核酸萃取 17
10.2 洋菜凝膠電泳 18
10.3 樣本品質分析 18
10.4 樣本庫製備及定序 18
11 定序資料處理及分析流程 19
11.1 序列原始資料品質評估 19
11.2 去除轉接子 19
11.3 基因體比對 20
11.4 計算基因表現量。 20
11.5 基因表現差異量分析 20
11.6 基因表現富集分析 21
肆、 實驗結果 22
1 病毒形態觀察 22
1.1 噬菌體形態 22
1.2 噬菌體複製過程 22
2 噬菌體基因註解 22
2.1 感染與裂解相關基因 23
2.2 核苷酸代謝、重組與複製相關基因 23
2.3 能量代謝相關基因 25
2.4 組裝與形態發生相關基因 26
3 一步生長曲線 27
3.1 高感染比例實驗結果 27
3.2 低感染比例實驗結果 27
3.3 轉錄體實驗前測試 28
4 轉錄體實驗結果 28
4.1 轉錄體一步生長曲線 28
4.2 核醣核酸萃取及洋菜凝膠電泳結果 29
4.3 核糖核酸品質檢測結果 29
5 定序結果資料分析 30
5.1 定序資料報告與資料品質評估 30
5.1 基因體比對 30
5.2 基因表現計量 30
5.3 噬菌體與宿主樣本組別分佈結果 31
6 噬菌體與宿主轉錄體表現 31
6.1 噬菌體轉錄體表現 31
6.2 宿主轉錄體表現 32
7 病毒表現基因時序與宿主基因表現富集分析 32
7.1 前期表現基因與宿主富集功能類群 33
7.2 中期表現基因與宿主富集功能類群 34
7.3 後期表現基因與宿主富集功能類群 35
伍、 討論 37
1 噬菌體基因註解 37
1.1 感染與裂解相關基因 37
1.2 核苷酸代謝、重組與複製相關基因 37
1.3 能量代謝相關基因 38
1.4 組裝與形態發生相關基因 38
2 感染比例與一步生長曲線關係 39
2.1 高感染比例一步生長曲線 39
2.2 低感染比例一步生長曲線 39
2.3 轉錄體實驗前測試與正式實驗一步生長曲線 39
3 噬菌體感染轉錄體模式 40
3.1 感染前期 40
3.2 感染中期 41
3.3 感染後期 41
3.4 硫相關代謝物調控 41
3.5 噬菌體未分類時序基因 42
4 未來研究方向 42
4.1 噬菌體蛋白研究 42
4.2 噬菌體展示技術 43
陸、 結論與展望 44
圖與表 45
參考文獻 97
-
dc.language.isozh_TW-
dc.subject基因體分析zh_TW
dc.subject內生桿菌zh_TW
dc.subject轉錄體分析zh_TW
dc.subject噬菌體zh_TW
dc.subjectEndozoicomonasen
dc.subjectphageen
dc.subjectgenomic analysisen
dc.subjecttranscriptomic analysisen
dc.title噬菌體EmPhiS感染表孔珊瑚內生桿菌之轉錄體時序變化zh_TW
dc.titleTranscriptome analysis of Endozoicomonas montiporae under EmPhiS infectionen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.coadvisor謝志豪zh_TW
dc.contributor.coadvisorChih-hao Hsiehen
dc.contributor.oralexamcommittee林梅芳;王亮鈞;詹雅帆zh_TW
dc.contributor.oralexamcommitteeMei-Fang Lin;Liang-Chun Wang;Ya-Fan Chanen
dc.subject.keyword內生桿菌,噬菌體,基因體分析,轉錄體分析,zh_TW
dc.subject.keywordEndozoicomonas,phage,genomic analysis,transcriptomic analysis,en
dc.relation.page106-
dc.identifier.doi10.6342/NTU202404776-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-12-27-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2029-12-25-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  此日期後於網路公開 2029-12-25
6.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved