請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96737完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳希立 | zh_TW |
| dc.contributor.advisor | Sih-Li Chen | en |
| dc.contributor.author | 林哲宇 | zh_TW |
| dc.contributor.author | Che-Yu Lin | en |
| dc.date.accessioned | 2025-02-21T16:19:33Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-18 | - |
| dc.identifier.citation | [1] 經濟部能源署,能源統計手冊,2023.
[2] 經濟部能源署,電力消費年資料,2022. [3] Sadeghi, H. and R.M. Singh, Driven precast concrete geothermal energy piles: Current state of knowledge. Building and Environment, 2023. 228: p. 109790. [4] Luo, J., et al., Investigation of shallow geothermal potentials for different types of ground source heat pump systems (GSHP) of Wuhan city in China. Renewable energy, 2018. 118: p. 230-244. [5] 王賢斌,地源熱泵系統性能分析與最佳化設計,機械工程學研究所, 2015,國立臺灣大學,p. 1-62. [6] 黎錦鵬,多U型地埋管熱交換器應用於地源熱泵系統之分析,機械工程學研究所,2019,國立臺灣大學,p. 1-68. [7] Sarbu, I. and C. Sebarchievici, General review of ground-source heat pump systems for heating and cooling of buildings. Energy and buildings, 2014. 70: p. 441-454. [8] Handbook, A.F., American society of heating, refrigerating and air-conditioning engineers. Inc.: Atlanta, GA, USA, 2009. [9] Urchueguía, J., et al., Comparison between the energy performance of a ground coupled water to water heat pump system and an air to water heat pump system for heating and cooling in typical conditions of the European Mediterranean coast. Energy Conversion and Management, 2008. 49(10): p. 2917-2923. [10] Kim, E., et al., Performance evaluation under the actual operating condition of a vertical ground source heat pump system in a school building. Energy and Buildings, 2012. 50: p. 1-6. [11] Esen, H., M. Inalli, and M. Esen, Technoeconomic appraisal of a ground source heat pump system for a heating season in eastern Turkey. Energy Conversion and Management, 2006. 47(9-10): p. 1281-1297. [12] Hamada, Y., et al., Field performance of an energy pile system for space heating. Energy and Buildings, 2007. 39(5): p. 517-524. [13] Qiao, Z., et al., Performance assessment of ground-source heat pumps (GSHPs) in the Southwestern and Northwestern China: In situ measurement. Renewable Energy, 2020. 153: p. 214-227. [14] Sabiha, M., et al., Progress and latest developments of evacuated tube solar collectors. Renewable and Sustainable Energy Reviews, 2015. 51: p. 1038-1054. [15] Jamar, A., et al., A review of water heating system for solar energy applications. International Communications in Heat and Mass Transfer, 2016. 76: p. 178-187. [16] Zambolin, E. and D. Del Col, Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Solar Energy, 2010. 84(8): p. 1382-1396. [17] Sadhishkumar, S. and T. Balusamy, Performance improvement in solar water heating systems—A review. Renewable and Sustainable Energy Reviews, 2014. 37: p. 191-198. [18] Chow, T.-T., et al., Performance evaluation of evacuated tube solar domestic hot water systems in Hong Kong. Energy and Buildings, 2011. 43(12): p. 3467-3474. [19] Kakaza, M. and K. Folly, Effect of solar water heating system in reducing household energy consumption. IFAC-PapersOnLine, 2015. 48(30): p. 468-472. [20] Ozgener, O. and A. Hepbasli, Modeling and performance evaluation of ground source (geothermal) heat pump systems. Energy and Buildings, 2007. 39(1): p. 66-75. [21] Çağlar, A. and C. Yamalı, Performance analysis of a solar-assisted heat pump with an evacuated tubular collector for domestic heating. Energy and buildings, 2012. 54: p. 22-28. [22] Chopra, K., et al., Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications. Applied energy, 2018. 228: p. 351-389. [23] Badar, A.W., R. Buchholz, and F. Ziegler, Single and two-phase flow modeling and analysis of a coaxial vacuum tube solar collector. Solar Energy, 2012. 86(1): p. 175-189. [24] Zhang, X., et al., Thermal performance of direct-flow coaxial evacuated-tube solar collectors with and without a heat shield. Energy conversion and management, 2014. 84: p. 80-87. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96737 | - |
| dc.description.abstract | 本研究在宜蘭建立一實驗場域,並針對真空管太陽熱能集熱器與熱泵結合之高溫熱水系統進行性能與效益分析。實驗結果顯示,熱泵應用淺層溫能顯著降低了壓縮機的工作負荷,減少高低壓差,進一步降低系統的電功率消耗,實現節能效果。同時,太陽熱能作為免費的熱能來源,顯著提升了整體能源利用效率。
在熱泵性能分析中,雙效模式的製熱性能係數(COPh)為3.62±0.18,而具過冷器之雙效模式的製熱性能係數(COPh)則提升至4.10±0.20,性能提升約11.7%。製熱模式下的製熱性能係數(COPh)為5.13±0.22,而具過冷器之製熱模式的製熱性能係數(COPh)則為5.46±0.18,性能提升約6%。結果顯示,利用淺層溫能的製熱模式性能係數皆優於雙效模式。真空管太陽能集熱器在性能分析上,其平均集熱功率達到11.14 kW,平均熱效率為0.63。 在真空管太陽熱能集熱器與熱泵結合的高溫熱水系統中,採用熱泵的具過冷器之製熱模式與真空管太陽熱能集熱器搭配的方案表現最佳,綜合性能係數達到12.1。並針對不同熱水系統的進行比較。相較於傳統電熱鍋爐,本系統可節省約92.1%的能源費用;而與天然氣鍋爐相比,則可節省約80.6%的能源費用,展現出優異的節能效益與環境友好性。本研究顯示了結合真空管太陽熱能集熱器與熱泵之高溫熱水系統在提升能源效率與節能減排方面的潛力,為高溫熱水系統技術的發展提供新的參考方向。 | zh_TW |
| dc.description.abstract | This study established an experimental site in Yilan to analyze the performance of a high-temperature hot water system combining vacuum tube solar collectors and heat pump. The experimental results show that the heat pump's application of shallow geothermal energy significantly reduces the compressor's workload, minimizes the pressure difference between high and low sides, and further decreases the system's power consumption, achieving notable energy savings. Meanwhile, solar thermal energy, as a free heat source, significantly enhances overall energy utilization efficiency.
In the heat pump performance analysis, the coefficient of performance for heating (COPh) in dual-effect mode was 3.62 ± 0.18, which increased to 4.10 ± 0.20 in the dual-effect mode with a subcooler, representing a performance improvement of approximately 11.7%. In the heating mode, the COPh was 5.13 ± 0.22, which rose to 5.46 ± 0.18 with the inclusion of a subcooler, reflecting a performance improvement of about 6%. The results indicate that the COPh in the heating mode utilizing shallow geothermal energy is superior to that in the dual-effect mode. For the vacuum tube solar collectors, the average heat collection power reached 11.14 kW, with an average thermal efficiency of 0.63. In the high-temperature hot water system combining vacuum tube solar collectors and a heat pump, the configuration pairing the heat pump's heating mode with a subcooler and the vacuum tube solar collector exhibited the best performance, achieving a comprehensive coefficient of performance (COP) 12.1. Comparisons with different hot water systems were also conducted. Compared to traditional electric boilers, this system reduces energy costs by approximately 92.1%; compared to natural gas boilers, it achieves savings of around 80.6%, demonstrating excellent energy-saving benefits and environmental friendliness. This study highlights the potential of combining vacuum tube solar collectors and heat pumps to improve energy efficiency and reduce emissions, offering a new reference direction for the development of high-temperature hot water system technologies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:19:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:19:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
摘要 ii ABSTRACT iii 目次 v 圖次 viii 表次 xi 符號說明 xii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 淺層溫能應用 3 1.2.2 太陽熱能集熱器 9 1.2.3 太陽熱能系統結合熱泵 10 1.3 研究動機與目的 11 第二章 研究理論與方法 12 2.1 基本熱泵原理 12 2.1.1 理想蒸氣壓縮冷凍循環 12 2.1.2 實際蒸氣壓縮冷凍循環 14 2.1.3 蒸氣壓縮冷凍循環四大元件 15 2.2 蒸氣壓縮冷凍循環系統之性能係數 17 2.3 太陽能集熱器原理 18 2.3.1 熱管式真空管集熱器 18 2.3.2 同心套管式真空管集熱器 19 2.3.3 真空管太陽熱能集熱器性能分析 20 2.3.4 集熱器性能曲線 22 第三章 實驗設備與介紹 23 3.1 真空管太陽熱能集熱器與熱泵結合之高溫熱水實驗系統 23 3.1.1 實驗系統簡介 23 3.1.2 真空管太陽熱能集熱器 24 3.1.3 熱泵主機 27 3.1.4 水泵 28 3.2 實驗量測儀器 32 3.2.1 資料擷取器 32 3.2.2 電力分析儀 33 3.2.3 溫度感測器 33 3.2.4 流量計 34 第四章 實驗流程與步驟 37 4.1 太陽熱能結合雙效模式實驗流程 37 4.2 太陽熱能結合具過冷器之雙效模式實驗流程 41 4.3 太陽熱能結合製熱模式實驗流程 45 4.4 太陽熱能結合具過冷器之製熱模式實驗流程 49 第五章 實驗結果與討論 53 5.1 真空管太陽熱能集熱器性能分析 53 5.2 熱泵雙效模式性能分析 57 5.2.1 雙效模式實驗操作工況 57 5.2.2 溫度變化與能量分析 57 5.3 具過冷器之熱泵雙效模式性能分析 61 5.3.1 具過冷器之雙效模式實驗操作工況 61 5.3.2 溫度變化與能量分析 61 5.4 熱泵製熱模式性能分析 65 5.4.1 製熱模式實驗操作工況 65 5.4.2 溫度變化與能量分析 65 5.5 具過冷器之熱泵製熱模式性能分析 69 5.5.1 具過冷器之製熱模式實驗操作工況 69 5.5.2 溫度變化與能量分析 69 5.6 真空管太陽能集熱器與熱泵結合之高溫熱水系統性能分析 73 第六章 節能效益分析 75 6.1 真空管太陽能集熱器與熱泵結合之熱水系統節能效益分析 75 第七章 結論與建議 77 7.1 結論 77 7.2 建議 78 參考文獻 79 附錄 81 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 性能係數 | zh_TW |
| dc.subject | 節能率 | zh_TW |
| dc.subject | 熱泵 | zh_TW |
| dc.subject | 淺層溫能 | zh_TW |
| dc.subject | 太陽熱能 | zh_TW |
| dc.subject | Energy Saving Rate | en |
| dc.subject | Solar Energy | en |
| dc.subject | Shallow Geothermal Energy | en |
| dc.subject | Heat Pump | en |
| dc.subject | Coefficient of Performance(COP) | en |
| dc.title | 真空管太陽熱能集熱器與熱泵結合之高溫熱水系統性能分析 | zh_TW |
| dc.title | Performance Analysis of High Temperature Hot Water System Combining Solar Vacuum Tube Collector with Heat Pump | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江沅晉;簡國祥 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Chin Chiang;Kuo-Hsiang Chien | en |
| dc.subject.keyword | 太陽熱能,淺層溫能,熱泵,性能係數,節能率, | zh_TW |
| dc.subject.keyword | Solar Energy,Shallow Geothermal Energy,Heat Pump,Coefficient of Performance(COP),Energy Saving Rate, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202404746 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-12-19 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2029-12-17 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 6.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
