Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96734
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳瑞北zh_TW
dc.contributor.advisorRuey-Beei Wuen
dc.contributor.author洪子雯zh_TW
dc.contributor.authorTzu-Wen Hungen
dc.date.accessioned2025-02-21T16:18:46Z-
dc.date.available2025-02-22-
dc.date.copyright2025-02-21-
dc.date.issued2025-
dc.date.submitted2024-12-25-
dc.identifier.citation[1] 車載雷達CAE分析技術應用介紹,ARTC財團法人車輛研究測試中心
[2] 自駕車毫米波雷達技術發展探討,經濟部產業技術司
[3] 避開新規毫米波禁用頻段 工業雷達感測器邁向60GHz - 新通訊
[4] 相位陣列波束成形IC簡化天線設計,自動化SmartAuto
[5] C.-Y. Kim, J. G. Kim, J. H. Oum, J. R. Yang, D.-K. Kim, J. H. Choi, S.-W. Kwon, S.-H. Jeon, J.-W. Park, and S. Hong, "Tx leakage cancellers for 24 GHz and 77 GHz vehicular radar applications," in 2006 IEEE MTT-S Int. Microw. Symp., San Francisco, CA, USA, 2006, pp. 1402-1405
[6] A. B. Abdel-Rahman and M. Aboualalaa, "Improving isolation between antenna array elements using lossy microstrip resonators," in 2019 13th European Conf. Antennas Propagat. (EuCAP), Krakow, Poland, 2019, pp. 1-4.
[7] M. Mahdi, M. Darwish, H. Tork, and A. El-Tager, "An improved self-interference canceller for X-band radar transceivers, " IET Microwaves, Antennas Propag. 15, 1381, 2021
[8] X. Yang, Y. Liu, Y. -X. Xu and S. -x. Gong, "Isolation Enhancement in Patch Antenna Array With Fractal UC-EBG Structure and Cross Slot," in IEEE Antennas and Wireless Propagat. Letters, vol. 16, pp. 2175-2178, 2017
[9] B. Qian, X. Chen and A. A. Kishk, "Decoupling of Microstrip Antennas With Defected Ground Structure Using the Common/Differential Mode Theory," in IEEE Antennas and Wireless Propagat. Letters, vol. 20, no. 5, pp. 828-832, May 2021,
[10] D. Gao, Z. -X. Cao, S. -D. Fu, X. Quan and P. Chen, "A Novel Slot-Array Defected Ground Structure for Decoupling Microstrip Antenna Array," in IEEE Transactions on Antennas and Propagat., vol. 68, no. 10, pp. 7027-7038, Oct. 2020
[11] Z. Han, Y. Wu, M. Liang, Y. Ma and X. Li, "Summary of Transceiver Isolation Technology for CW Radar Microstrip Antenna," 2020 5th International Conf. on Electromechanical Control Technology and Transportation (ICECTT), Nanchang, China, 2020, pp. 167-171
[12] P. Garg and P. Jain, "Isolation Improvement of MIMO Antenna Using a Novel Flower Shaped Metamaterial Absorber at 5.5 GHz WiMAX Band," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 4, pp. 675-679, April 2020
[13] S. R. Sowmeeya, C. Poongodi and S. Vidhya, "Compact MIMO Antenna Design using Isolation Techniques," 2023 Third Int. Conf.e on Smart Technologies, Communication and Robotics (STCR), Sathyamangalam, India, 2023, pp. 1-4
[14] S. Sun, W. Li, W. Ye and H. Peng, "A High Isolation Antenna Array with Simple Feedings for Miniaturized 35GHz Radar Applications," 2021 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS), Urbana, IL, USA, 2021, pp. 1-3
[15] N. Gupta and M. Ramesh, "Method of improving isolation between co-located receive and transmit antennas in Portable Radars," 2018 IEEE MTT-S International Microwave and RF Conference (IMaRC), Kolkata, India, 2018, pp. 1-3
[16] Estévez, Ailyn, Noemí Pérez, Daniel Valderas, and Juan I. Sancho."Low-Profile FSS Design Methodology to Increase Isolation between Vehicle-Borne Multifrequency Antennas" Applied Sciences 13, no. 7: 4187, 2023
[17] G. Zhai, Z. N. Chen and X. Qing, "Enhanced Isolation of a Closely Spaced Four-Element MIMO Antenna System Using Metamaterial Mushroom," in IEEE Transactions on Antennas and Propagation, vol. 63, no. 8, pp. 3362-3370, Aug. 2015,
[18] S. Hamid and D. Heberling, "Experimental Demonstration of Antenna Isolation Improvement using Planar Resonant Absorbers," 2019 International Symp. on Electromagnetic Compatibility - EMC EUROPE, Barcelona, Spain, 2019, pp. 351-354
[19] M. N. Rahman, M. A. Rahman, M. Hasan, M. A. Hossain, E. Nishiyama and I. Toyoda, "A Branch-Line Coupler Feed MIMO Antenna for Circular Polarization Diversity," 2023 IEEE International Conference on Telecommunications and Photonics (ICTP), Dhaka, Bangladesh, 2023, pp. 1-5
[20] Z. Wang, L. Zhao, Y. Cai and Y. Yin, "A simple printed MIMO antenna pair with high isolation performance," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi'an, China, 2017, pp. 1-3
[21] L. Ge, Y. Wang, M. Du, W. Liu and Y. Zhao, "A Dual-Band Dual-Polarized Base Station Antenna Array With Isolation Enhancement," in IEEE Open Journal of Antennas and Propagation, vol. 4, pp. 871-877, 2023
[22] V. Kumar and C. V. Bhasker, "Experimental Demonstration of Multi-stage Leakage Mitigation techniques in Ku-band CW Radar," 2023 IEEE Int. Conf. on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2023, pp. 1-5
[23] A. Ramos, T. Varum and J. N. Matos, "A Simple Technique to Maximize Isolation in Compact mmWaves Antenna Arrays," 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, United Kingdom, 2024, pp. 1-5
[24] Y. Zhao, Y. Li and G. Yang, "A G-Shaped Defected Isolation Wall for Mutual Coupling Reduction Between Patch Antenna and Microstrip Transmission Line," 2018 IEEE Asia-Pacific Conf. Antennas Propagat. (APCAP), Auckland, New Zealand, 2018, pp. 276-277
[25] A. Corucci, E. Canicattì, R. Flamini, P. Usai, C. Mazzucco and A. Monorchio, "An Efficient Ray-Tracing Approach for the Isolation Assessment of Co-Located Base Station Antennas at mmWave," in IEEE Transactions on Electromagnetic Compatibility, vol. 65, no. 6, pp. 1763-1772, Dec. 2023
[26] D. M. Pozar, “Microstrip antennas,” Proc. IEEE, vol. 80, no. 1, pp. 79–91, 1992.
[27] R. Vishwakarma and S. Tiwari, "Aperture coupled microstrip antenna for dual-band," Wireless Engineering Technol., Vol. 2 No. 2, 2011, pp. 93-101.
[28] B. C Wadell, Transmission line design handbook, Artech House, 1991
[29] M. S. Chavali1 and M. P. Nikolova, “Metal oxide nanoparticles and their applications in nanotechnology,” SN Appl. Sci., May 2019.
[30] C. Bergsrud, C. Freidig, M. Anderson, M. Clausing, Timothy Dito, and S. Noghanian, “Rectenna: Inset-fed and edge-fed “patch” antennas with rectifying circuit,” 2012
[31] 77 GHz 單晶片雷達感測器打造車身與底盤創新應用, Texas Instruments.
[32] MIMO演進 # 4G、5G、5G 高級和6G 目標
[33] F. Challita, Université de Lille Massive MIMO Channel Characterization and Propagation-based Antenna Selection strategies: Application to 5G and Industry 4.0, 2019.
[34] B. He, and H. Su, “Multiple power allocation game schemes for spectrum coexistence model between multistatic MIMO radar sensors and MU communication,” Sensors, 20, 6216, 2020.
[35] AiP/AoP 技術如何幫助實現 5G 等
[36] 車用市場潛力新星 毫米波雷達發展趨勢 – ARTC
[37] FCC Adopts New Rules for Unlicensed V-Band, Extending the Coverage to 57-71 GHz
[38] 如何利用單顆多功能60GHz雷達感測器設計車內手勢控制系統及更多功能- Texas Instruments
[39] 徐秉豐 (2022),”基於單毫米波雷達之精確人數計算”,元智大學
[40] 5G毫米波手機/基地台開發挑戰大 RF前端AiP/AiM設計當道- 新通訊
[41] PCB 射頻天線設計和版圖創建技巧 – Graser
[42] EMI Shielding and Thermal Management in Advanced Designs, Laird
[43] IWR6843 Single-Chip 60- to 64-GHz mmWave, Texas Instruments
[44] RO4835 laminates, Rogors Corporation
[45] EM-370(Z) / EM-37B(Z) datasheet, Elite material Co., Ltd.
[46] IWR6843ISK-ODS Specifications, Texas Instruments
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96734-
dc.description.abstract在現今高頻高速電路之發展下,電路講求在更小之尺寸以達到理想或更高之效能;而高頻之應用也使得電路愈做愈小。有鑑於雷達感測器之尺寸受限於天線布局而無法大幅地縮小,因而研究將雷達感測器 IC 晶片與天線設計於不同側的。儘管有助於大幅縮小尺寸,但結構中也產生了嚴重之雜訊干擾問題,致使雷達板接收端收到非預期之雜訊。本論文提出雜訊耦合關鍵路徑之分析方法,針對可能導致雷達測試板受到非預期干擾之雜訊耦合路徑,進行模擬與分析;並且,提出多因子寬頻分析法,以找到影響收發天線訊號隔離度之關鍵路徑及排序。此外,針對此類IC晶片與天線佈局於不同側結構之關鍵雜訊耦合路徑,而提出改善之結構,用饋入線換層結構抑制關鍵路徑之雜訊耦合,可以降低雜訊 18 dB,使收發天線間之干擾降到約 -70 dB,以達到雷達收發雜訊之需求,藉以協助雷達測試板之優化開發。zh_TW
dc.description.abstractWith the development of high-frequency and high-speed circuits, achieving optical or enhanced performance within compact dimensions has become crucial. The overall size of radar boards decreases as the operating frequency increases. However, the reduction in the radar board size is constrained by antenna layouts. This research focuses on a structure where the sensor IC and antennas are placed on opposite sides, enabling a significant size reduction. While this design offers substantial benefits in compactness, it also introduces severe electromagnetic interference issues. In radar transceiver systems, multiple coupling paths between the receiver and transmitter can lead unexpected coupling noise. To address this, this research proposes a multi-factor broadband analysis method to extract the magnitudes of individual coupling path by analyzing combined multi-path coupling. These coupling noises are then ranked based on their determined magnitudes to identify the primary coupling paths. Additionally, an improved isolation structure is introduced for the critical noise coupling path. The coupling noise can be suppressed by utilizing a layer-switching feedline structure. The interference level can be reduced by 18 dB, thereby lowering coupling noise to - 70 dB. This approach meets the noise requirements for radar sensors, and supports the optimized development of radar test boards.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:18:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-21T16:18:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目次 v
圖次 vii
表次 ix
Chapter 1 緒論 1
1.1 研究動機 1
1.2 文獻回顧 4
1.3 主要貢獻 7
1.4 章節內容概述 8
Chapter 2 理論背景 9
2.1 傳輸線理論 9
2.2 貼片天線之輻射原理及架構 13
2.3 MIMO雷達系統 16
2.4 60-GHz 毫米波雷達 19
2.5 天線集成技術與雷達板隔離度問題 22
Chapter 3 關鍵耦合路徑分析 25
3.1 不同側饋入訊號之雷達測試板 25
3.1.1 板材疊構與雷達測試板結構 25
3.1.2 不同側饋入訊號 28
3.2 PCB板內漏波分析 30
3.2.1 雷達板模型建構 30
3.2.2 板內隔離度分析 33
3.3 PCB 板外漏波之分析 38
Chapter 4 多因子寬頻分析法 46
4.1 主要耦合路徑辨識 46
4.2 無相位資訊之主要耦合路徑辨識 50
4.2.1 取中心頻率作計算 50
4.2.2 取寬頻範圍之最大值計算 52
4.3 二次驗證 57
Chapter 5 隔離度改善設計 60
5.1 饋入線換層干擾消除設計 60
5.1.1 饋入線換層結構之設計流程 60
5.1.2 同軸通孔與饋入線之連接方式 63
5.2 饋入線換層結果分析 65
5.2.1 僅考慮饋入線與同軸通孔 (CV) 之饋入線換層結構 65
5.2.2 包含天線之饋入線換層結構 66
5.2.3 S21 模擬結果中所出現之 Ripple 67
Chapter 6 結論 70
參考文獻 71
-
dc.language.isozh_TW-
dc.title用於雷達收發器間耦合路徑辨識之多因子寬頻分析法zh_TW
dc.titleMulti-factor Broadband Analysis Method for Coupling Paths Identification between Radar Transceiversen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃俊瑞;黃銘崇;林建民;吳宗霖zh_TW
dc.contributor.oralexamcommitteeJun-Rui Huang;Ming-Chung Huang;Chien-Min Lin;Tzong-Lin Wuen
dc.subject.keyword天線,同軸通孔,隔離度,關鍵耦合路徑,毫米波雷達,zh_TW
dc.subject.keywordAntenna,Coaxial via,Isolation,Critical Coupling-Path,Millimeter-Wave Radar,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202404764-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-12-25-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-02-22-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf5.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved