請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96729
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張育森 | zh_TW |
dc.contributor.advisor | Yu-Sen Chang | en |
dc.contributor.author | 鄭博蔚 | zh_TW |
dc.contributor.author | Bo-Wei Cheng | en |
dc.date.accessioned | 2025-02-21T16:17:25Z | - |
dc.date.available | 2025-02-22 | - |
dc.date.copyright | 2025-02-21 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-12-24 | - |
dc.identifier.citation | 全國法規資料庫. 2024. 食農教育法. https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=M0090039. [2024.11.11檢索].
利幸貞、賴永昌、陳一心. 1996. 栽培密度與氮素追肥施用量對葉用甘藷產量之影響.中華農業研究. 45:230-240. 利幸貞. 2005. 葉菜甘藷p.437-440. 行政院農業委員會台灣農家要覽增修訂三版策劃委員會. 台灣農家要覽農作篇(二). 行政院農業委員會. 臺北. 臺灣. 吳曉函. 2020. 國小教師推動食農教育策略之探究. 臺灣教育評論月刊. 9:128-131. 李良.1994. 甘藷. 雜糧作物各論 III 根及莖類. 台灣區雜糧發展基金會. 1329-1465。 林立婷. 2024. 食農教育果菜類栽培套裝組之研發與應用:以番茄為例. 國立臺灣大學生物資源暨農學院園藝暨景觀學系研究所碩士論文. 臺北. 林如萍. 2022. 食農教育的概念架構與推展策略. 臺中區農業改良場特刊. 145:82-94. 林保良. 2015. 食育在官田國民小學的實踐旅程. 台灣教育. 694:7-12. 林維和、辛仲文. 1996. 葉用甘藷栽培管理與利用. 桃園區農業專訊. 16:6-8. 侯金日、李瑞興、溫英源、黃啟鐘. 2011. 有機甘藷栽培技術 p.412-431. 台灣有機農業技術要覽(上冊). 財團法人豐年社編印出版. 臺北. 臺灣. 姜金龍、辛仲文、林維和、廖嘉信、賴永昌、張建生、詹平喜. 1994. 甘藷栽培技術改進. 根莖作物生產改進及加工利用研討會專刊. 45:171-196. 施錫彬. 2007. 甘藷蟲害管理. 桃園區農業專訊. 60. http://dx.doi.org/10.29566/XLZY.200706.000. 胡正榮、全中和. 2011. 營養管理對葉菜甘藷產量及抗氧化力之影響. 花蓮區農業改良場研究彙報. 29:1-12. http://dx.doi.org/10.6957/RBHDAIS.201112.0001. 張珈瑜. 2022. 食農教育融入領域內容之教學模組研究—以萵苣課程為例. 臺北市立大學地球環境暨生物資源學系環境教育碩士在職專班碩士論文. 臺北. 張惠真、曾康綺. 2017. 學校支援型食農教育推動模式之研究-以臺中地區為例. 臺中區農業改良場研究彙報. 137:73-87. 曹錦鳳、董時叡、蔡嫦娟. 2017. 食農教育對都市型學生農業素養與飲食習慣之影響. 農業推廣文彙. 62:1-14. 莊浚釗. 2018. 施用有機液肥對蔬菜產量及品質之影響. 桃園區農業改良場研究彙報. 83:37-51. 莊婉琪、張育森、林淑怡. 2018. 栽培容器型式對都市農園蔬菜生長之影響. 臺灣園藝. 64:1-10. 陳季呈、趙筱倩. 2019. 栽培介質、盆器及遮陰對綬草生長之影響. 花蓮區農業改良場研究彙報. 38:11-28. 陳鍾仁. 2020. 當前食農教育發展困境分析. 學校行政雙月刊. 125:210-223. https://doi.org/10.6423/HHHC.202001_(125).0008. 彭德昌. 2003. 花蓮地區芋仔甘藷之肥培管理. 花蓮區農業專訊. 46. http://dx.doi.org/10.29579/ZHWHGX.200312.0005. 曾宇良、顏建賢、莊翰華、吳璚. 2012. 食育之農業體驗活動對大學生影響之探究-以國立彰化師範大學地理系學生為例. 農業推廣文彙. 57:121-136. 曾康綺. 2018. 四健會作業組落實食農教育. 臺中區農業專訊. 103:20-22. 賀宏偉、王志軒. 2021. 教出學童好食力—國小推動食農教育之行動策略探究. 臺灣教育評論月刊. 10:171-179. 黃哲倫、賴永昌、利幸貞. 2015. 甘藷抗性澱粉之研究. 雜糧作物試驗研究年報. 104:5-10. 黃祥慶、王錦堂、陳鴻堂. 1987. 液體肥料對菠菜產量及品質之影響研究. 臺中區農業改良場研究彙報. 15:55-64. 農業部. 2023. 農業統計年報. https://agrstat.moa.gov.tw/sdweb/public/book/Book.aspx. [2024.01.09檢索]. 農業部資訊中心. 2018. 當農業大數據遇上資料科學─食農教育科技研發計畫成果發表. https://www.moa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=7311. [2024.11.15檢索]. 農業部農業試驗所. 2023. 病蟲害資料庫-甘藷猿金花蟲. 農業病蟲害智能管理決策系統. https://azai.tari.gov.tw/datasheet.aspx?id=995&type=0&term=%E7%94%98%E8%96%AF%E7%8C%BF%E8%91%89%E8%9F%B2. [2024.10.26檢索]. 農業部整合傳播部. 2019. 落實食農教育,全民動起來!. https://www.parenting.com.tw/article/5078940. [2024.11.17檢索]. 臺北市中正區公所. 2015. 認識田園城市-小田園. https://zzdo.gov.taipei/News_Content.aspx?n=85A1088D0ADABAAF&s=7BDBF59BA5C90E82#:~:text=%E5%B0%8F%E7%94%B0%E5%9C%92%E6%95%99%E8%82%B2%E8%A8%88%E7%95%AB,%E5%88%86%E4%BA%AB%E8%88%87%E7%99%82%E8%82%B2%E4%B9%8B%E6%95%88%E6%9E%9C%E3%80%82&text=%E6%8F%90%E5%8D%87%E5%AD%B8%E6%A0%A1%E5%B8%AB%E7%94%9F%E6%9C%89%E9%97%9C,%E9%A3%9F%E6%9D%90%EF%BC%8C%E5%88%86%E4%BA%AB%E7%94%B0%E5%9C%92%E6%AD%A1%E6%A8%82%E6%B0%A3%E6%81%AF%E3%80%82. [2024.11.15檢索]. 賴永昌、李忠田、鄭統隆、蔡武雄. 2008. 甘藷新品種台農73號之育成. 台灣農業研究. 57:279-294. 賴永昌、黃啓鐘. 2003. 收穫期對甘藷生產及品質之影響. 嘉義大學學報. 75:157-165. 賴永昌、廖嘉信. 1991. 收穫期對甘藷品質之影響Ⅱ.夏季甘藷在不同收穫期下對其品質的影響. 雜糧作物試驗研究年報. 80:13-21. 賴永昌、賴昭蓉、廖嘉信. 1990. 收穫期對不同甘藷品種品質之影響. 雜糧作物試驗研究年報. 79:17-24. 賴永昌. 2005. 甘藷 p.57-68. 行政院農業委員會台灣農家要覽增修訂三版策劃委員會. 台灣農家要覽農作篇(一). 行政院農業委員會. 臺北. 臺灣. 賴羿均. 2023. 食農教育栽培套裝模組之開發. 國立臺灣大學生物資源暨農學院園藝暨景觀學系研究所碩士論文. 臺北. 謝智如. 2022. 都市小學食農教育課程之素養實踐 從餐桌到土地的環境關懷.中等教育. 73:69-86. https://doi.org/10.6249/SE.202212_73(4).0029. 顏佩如、黃隆祥. 2022. 農事與勞動~臺中都會小型國小學校 食農教育課程發展之個案研究. 臺灣教育評論月刊. 11:172-178. 顏建賢、曾宇良、張瑋琦、陳美芬、謝亞庭. 2015. 我國食農教育推動策略之研究.農業推廣文彙. 60:69-86. 龔財立、姜金龍. 2007. 甘藷品種介紹. 桃園區農業專訊. 60:13-15. http://dx.doi.org/10.29566/XLZY.200706.0004. 龔財立、姜金龍. 2007. 甘藷栽培管理技術. 桃園區農業專訊. 60:16-19. 龔財立、蘇寄萍. 2005. 食用甘藷栽培與利用. 桃園區農技報導. 36:1-4. https://doi.org/10.29569/YYWYLL.200509.0003. Alam MK. 2011. A comprehensive review of sweet potato (Ipomoea batatas [L.] Lam): Revisiting the associated health benefits. Trends Food Sci Technol. 115: 512-529. https://doi.org/10.1016/j.tifs.2021.07.001. Alcoy AB, Garcia AG, Baldos DP, Robles RP, Cuyno RV. 1993. Influence of planting material and time of harvest on plant to plant yield variability of sweet potato (Ipomoea batatas (L.) Lam). Philippine J Crop Sci. 18:187-193. Alvaro A, Andrade MI, Makunde GS , Dango F, Idowu O, Grüneberg W. 2017. Yield, nutritional quality and stability of orange fleshed sweetpotato cultivars successively later harvesting periods in Mozambique. Open Agri. 2:464-468. https://doi.org/10.1515/opag-2017-0050. Ankumah RO, Khan V, Mwamba K, Kpomblekou-A K. 2003. The influence of source and timing of nitrogen fertilizers on yield and nitrogen use efficiency of four sweet potato cultivars. Agric Ecosyst Environ. 100:201-207. Balali GR, Hadi MR, Yavari P, Bidram H, Naderi AG, Eslami A. 2008. Effect of pot size, planting date and genotype on mini-tuber production of Marfona potato cultivar. Afr J Biotechnol. 7:1265-1270. Bedassa CB, Gelmesa D, Gebeyehu S, Neme G. 2024. Effect of harvesting time on root yield and nutritional composition of orange-fleshed sweet potato [Ipomoea batatas (L.) Lam] varieties in East Hararghe. Heliyon. 10:e37153. https://doi.org/10.1016/j.heliyon.2024.e37153. Bouzo CA, Favaro JC. 2015. Container size effect on the plant production and precocity in tomato (Solanum lycopersicum L.). Bulg J Agric Sci. Sci. 21:325-332. Burt KG, Luesse HB, Rakoff J, Ventura A, Burgermaster M. 2018. School gardens in the United States: Current barriers to integration and sustainability. Am J Publ Health. 108:1543-1549. https://doi.org/10.2105/AJPH.2018.304674. Byju G, Nedunchezhiyan M, Naskar SK. 2007. Sweet potato response to boron application on an alfisols in the subhumid tropical climate of India. Commun Soil Sci Plan Anal. 38:2347-2356. https://doi.org/10.1080/00103620701588460. Cakmak I. 2005. The role of potassium in alleviating detrimental effects of abiotic stressesin plant. J. Plant Nutr Soil Sci. 168:521-530. http://dx.doi.org/10.1002/jpln.200420485. Castañeda-Nava JJ, Santacruz-Ruvalcaba F, González JDS, Parra JR, Larios LD, Barba-González R. 2017. Shading and container effects on the weight of the Dioscorea sparsiflora tuber. Agron J. 109:33-38. https://doi.org/10.2134/agronj2015.0452. Chen H, Cheng Q, Chen Q, Ye X, Qu Y, Song W, Fahad S, Gao J, Saud S, Xu Y, Shen Y. 2022. Effects of selenium on growth and selenium content distribution of virus-free sweet potato seedlings in water culture. Front Plant Sci. 13:965649. https://doi.org/10.3389/fpls.2022.965649 Eigenbrod C, Gruda N. 2015. Urban vegetable for food security in cities. A review. Agron Sustain Dev. 35:483-498. https://doi.org/10.1007/s13593-014-0273-y. Etela I, Kalio G. 2011. Yields components and 48-h rumen dry matter degradation of three sweet potato varieties in N’dama steers as influenced by date of harvesting. J Agri Social Res. 11:15-21. Fageria NK, Moreira A. 2011. The role of mineral nutrition on root growth of crop plants. Adv Agron. 110:251-331. https://doi.org/10.1016/B978-0-12-385531-2.00004-9. Ferrante A, Spinardi A, Maggiore T, Testoni A, Gallina PM. 2008. Effect of nitrogen fertilization levels on melon fruit quality at the harvest time and during storage. J Sci Food Agri. 88:707-713. Gibbs L, Staiger PK, Johnson B, Block K, Macfarlane S, Gold L, Kulas J, Townsend M, Long C, Ukoumunne O. 2013. Expanding children’s food experiences: The impact of a school-based kitchen garden program. J Nutr Educ Behav. 45:137-146. Hara T, Sonoda Y. 1982. Cabbage head development as affected by nitrogen and temperature. Soil Sci Plant Nutr. 28:109-117. https://doi.org/10.1080/00380768.1982.10432376. Hill D, Nelson D, Hammond J, Bell L. 2021. Morphophysiology of potato (Solanum tuberosum) in response to drought stress: paving the way forward. Front Plant Sci. 11: 597554. https://doi.org/10.3389/fpls.2020.597554. Hoang CN, Chen CC, Lin KH, Chao PY, Lin HH, Huang MY. 2021. Bioactive compounds, antioxidants, and health benefits of sweet potato leaves. Molecules. 26(7): 1820. https://doi.org/10.3390/molecules26071820. Iersel MV. 1997. Root restriction effects on growth and development of salvia (Salvia splendens). HortScience. 32:1186-1190. https://doi.org/10.21273/HORTSCI.32.7.1186. Joko LB, Eiasu BK, Ngwenya SM. 2024. The impact of nitrogen levels on the growth, development, and yield of orange-fleshed sweet potatoes (Ipomoea batatas L.). HortScience. 59:1520-1523. https://doi.org/10.21273/HORTSCI17996-24. Kim HR, Kim SO, Park SA. 2021. The effects of horticultural activity program on vegetable preference of elementary school students. Int J Environ Res Publ Health. 18:1-17. Klemmer CD, Waliczek TM, Zajicek JM. 2005. Growing minds:the effect of a school gardening program on the science achievement of elementary students. HortTechnology. 15:448-452. Lai W, Lu L, Shang Y, Ran X, Liu Y, Fang Y. 2024. Can SPAD values and CIE L*a*b* scales predict chlorophyll and carotenoid concentrations in leaves and diagnose the growth potential of trees? an empirical study of four tree species. Horticulturae. 10(6):548. https://doi.org/10.3390/horticulturae10060548. Lee GB, Park HJ, Cheon CG, Choi JG, Seo JH, Im JS, Park YE, Cho JH, Chang DC. 2021. Effect of plant container type on seed potato (Solanum tuberosum L.) growth and yield in substrate culture. Potato Rese. 65:105–117. https://doi.org/10.1007/s11540-021-09511-2. MacKown CT, Sutton TG. 1998. Using early-season leaf traits to predict nitrogen sufficiency of burley tobacco. Agron J. 90:21-27. Marsh DB, Paul KB. 1988. Influence of container type and cell size on cabbage transplant development and field performance. HortScience. 23:310-311. McAleese JD, Rankin LL. 2007. Garden-based nutrition education affects fruit and vegetable consumption in sixth-grade adolescents. J Am Diet Assoc. 107:662-665. Nedunchezhiyan M, Byju G, Jata SK. 2012. Sweet potato agronomy. Fruit, Veg Cereal Sci Biotechnol. 6:1-10. NeSmith DS, Duval JR. 1998. The effect of container size. HortTechnology. 8(4). https://doi.org/10.21273/HORTTECH.8.4.495. Nguyen HC, Chen CC, Lin KH, Chao PY, Lin HH, Huang MY. 2021. Bioactive compounds, antioxidants, and health benefits of sweet potato leaves. Molecules. 26(7):1820. https://doi.org/10.3390/molecules26071820. Onunka, NA, Njoku JC, Ehisianya CN. 2017. Integrating agronomic practices for the mitigation of crack formation on sweet potato roots at Umudike, South Eastern Nigeria. Univers J Agri Res. 5:213-218. https://doi.org/10.13189/ujar.2017.050402. Relente F-A C, Asio LG. 2020. Nitrogen application improved the growth and yield performance of sweetpotato (Ipomoea batatas (L.) Lam.). Ann Trop Res. 42:45-55. https://doi.org/10.32945/atr4214.2020. Saito T, Fukuda N, Iikubo T, Inai S, Fujii T, Konishi C, Ezura H. 2008. Effects of root-volume restriction and salinity on the fruit yield and quality of processing tomato. J Japan Soc Hort Sci. 77:165–172. https://doi.org/10.2503/jjshs1.77.165. Shrestha A, Schindler C, Odermatt P, Gerold J, Erismann S, Sharma S, Koju R, Utzinger J, Cissé G. 2020. Nutritional and health status of children 15 months after integrated school garden, nutrition, and water, sanitation and hygiene interventions: a cluster-randomised controlled trial in Nepal. BMC Public Health 20:158. https://doi.org/10.1186/s12889-019-8027-z. Somerset S, Markwell K. 2009. Impact of a school-based food garden on attitudes and identification skills regarding vegetables and fruit: a 12-month intervention trial. Public Health Nutr. 12:214-221. https:// doi.org/10.1017/S1368980008003327. Tiffani S, Rahmawati N, H Setiado. 2020. Effect of the ridge size on the growth and production of several sweet potato clones (Ipomoea batatas L.). IOP Conf. Ser.: Earth Environ. Sci. 454:012175. https://doi.org/10.1088/1755-1315/454/1/012175. Wang S, Nie S, Zhu F. 2016. Chemical constituents and health effects of sweet potato. Food res int. 89:90-116. https://doi.org/10.1016/j.foodres.2016.08.032. Warner J, Zhang TQ, Hao X. 2004. Effects of nitrogen fertilization on fruit yield and quality of processing tomatoes. Can J Plant Sci. 84:865-871. Yeh DM, Chiang HH. 2001. Growth and flower initiation in hydrangea as affected by root restriction and defoliation. Sci Hortic. 91:123-132. Zelitch I. 1975. Improving the efficiency of photosynthesis. Science. 188:626-633. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96729 | - |
dc.description.abstract | 《食農教育法》在2022年5月4日正式立法實施,為促進人民對於食農教育素養的重視與認識,提升食農教育的效果。
國立臺灣大學園藝暨景觀學系研究團隊已於2023和2024年陸續完成單植型(香草植物)、群植型(葉菜)及果菜類栽培套裝組研發,為求栽培套裝組研發的完整性,本研究繼續研發根莖類蔬菜—甘藷栽培套裝組及開發甘藷食農教育教案。 本研究以甘藷(Ipomoea batatas (L.) Lam.)作為材料,進行盆器型式、甘藷種類和品種、肥料比較試驗,並依據試驗結果研發甘藷栽培套裝組與甘藷食農教育教案。 根用甘藷(‘台農66號’)盆器試驗,種植於三種不同尺寸的盆器:分別為小盆器(Small container, S。內徑尺寸:45x17x13 cm,容量9 L)、中盆器(Medium container, M。內徑尺寸:58x20x25 cm,容量29 L)和大盆器(Large container, L。內徑尺寸:63.5x35.5x21 cm,46 L)。結果顯示:種植於M盆器和L盆器的塊根,不論是平均重量(82.27和70.82 g)或長度(14.50和12.92 cm)皆無顯著差異,但顯著大於S盆器(31.56 g和8.13 cm);平均最大直徑則三盆器間無顯著差異;產量則是L盆器顯著高於其他兩盆器。綜合考量下,建議以M盆器作為根用甘藷栽培之容器。 根用甘藷品種(‘台農57號’、‘台農66號’和‘台農73號’)及收穫期(種植3、4和5個月)試驗結果顯示:塊根的平均重量與平均最大直徑,所有品種均以第5個月採收顯著高於第3個月採收;平均長度,除了‘台農73號’第5個月採收(18.30 cm)顯著高於第3個月採收(15.01 cm),其他兩品種則在不同收穫期間皆不具顯著差異;產量方面,‘台農57號’和‘台農66號’第5個月採收(2.97 kg和2.84 kg)顯著高於第4個月採收(1.82 kg和1.93 kg)又顯著高於第3個月採收(1.10 kg和0.92 kg);‘台農66號’第5個月採收(2.47 kg)顯著高於第3(1.20 kg)和第4個(1.59 kg)月採收。若在學校礙於教學時間有限,推薦可於種植3或4個月時就採收;時間充足可至5個月後採收。另外‘台農73號’在採收時無裂藷發生,推薦可優先種植此品種。 葉用甘藷(‘台農71號’)盆器試驗,其選用的盆器種類與根用甘藷盆器試驗同。結果顯示:每平方公尺可採收15 cm嫩梢的枝條數,在第1次和第2次採收,M盆器和S盆器間無顯著差異,在其他次採收則M盆器能採收的枝條數顯著高於S盆器。從第2次採收開始M盆器可採收的枝條數顯著高於L盆器;在每平方公尺產量,第1次採收,三種盆器皆無顯著差異。第2次採收則M盆器和S盆器顯著高於L盆器。其他次採收,則M盆器顯著高於其他兩盆器。綜合生長、產量調查及盆器移動便利性,建議M盆器作為栽培葉用甘藷之容器。 葉用甘藷(‘台農71號’)肥料試驗,有4種肥料處理:基肥組(以下稱Basal fertilizer, BF)、基肥+ Peters 30-10-10 [以下稱BF+(30-10-10)]、基肥+ Peters 20-20-20[以下稱BF+(20-20-20)]和基肥+ Peters 15-10-30[以下稱BF+(15-10-30)]。結果顯示:可採收15 cm枝條數, BF+(30-10-10)和BF+(15-10-30) 在第3次採收無顯著差異;其他次採收BF+(30-10-10)都顯著高於其他處理。產量方面,在第3次採收BF+(30-10-10)和BF+(15-10-30)間無顯著差異但顯著高於其他處理,在其他次採收則BF+(30-10-10)有最多的產量;BF除了第1次採收與其他處理無顯著差異外,其他次採收產量都是最少的。故推薦種植葉用甘藷時,能搭配施用Peters 30-10-10的速效肥配方。 以群植型栽培套裝組內容物為基礎,依據上述的研究結果調整物件內容,並收集甘藷相關文獻撰寫教案。甘藷栽培套裝組包含:盆器、介質、緩效肥、兩款速效肥、苦楝油、移植鏝、塑膠量杯、噴壺和標牌,共10樣物件;教案內容有6單元分別為《我藷誰》、《藷於我的生活》、《健康藷於我》、《現煮藷(一)》-圓來藷芋泥、《現煮藷(二)》-甘溫和《藷成了》。兩者相互配合教學使用,以利提升學生對甘藷的相關知識的認識、累積實際操作的經驗。 | zh_TW |
dc.description.abstract | The "Food and Agricultural Education Act" was officially enacted on May 4, 2022. In order to promote people's attention and understanding of food and agricultural education literacy and improve the effectiveness of food and agriculture education.
The research team from NTU Floriculture completed the development of cultivation kits for single planting (herbs), cluster planting (leafy vegetables), and fruit vegetables in 2023 and 2024. To ensure the completeness of the cultivation kit development, this research will continue to develop a tuberous root vegetable-sweet potato cultivation kit and a food and agricultural education lesson plan. This research used sweet potato (Ipomoea batatas (L.) Lam.) as the material to conduct experiments on container types, sweet potato cultivars, and fertilizers. Based on the results of these experiments, a sweet potato cultivation kit and a sweet potato food and agricultural education lesson plan were developed. In the tuberous root sweet potato (‘Tainung 66’) container experiment, planted in containers of three different sizes: small container (S: inner dimensions 45x17x13 cm, 9 L), medium container (M: inner dimensions 58x20x25 cm, 29 L), and large container (L: inner dimensions 63.5x35.5x21 cm, 46 L). The results showed that there was no significant difference in the average weight (82.27 and 70.82 g) or length (14.50 and 12.92 cm) of the tuberous roots planted in M and L container, but they were significantly larger than those in S container (31.56 g and 8.13 cm). There was no significant difference in the average maximum diameter among the three containers. Yield was significantly higher in L than in the other two containers. Considering all factors, the M is recommended as the optimal container for cultivating tuberous root sweet potato. The results of the sweet potato cultivars (‘Tainung 57’, ‘Tainung 66’, and ‘Tainung 73’) and harvest periods (3, 4, and 5 months after planting) experiments showed that for all cultivars, the average weight and maximum diameter of the tuberous roots were significantly higher in the 5th month than in the 3rd month. Regarding average length, ‘Tainung 73’ in the 5th month (18.30 cm) was significantly longer than in the 3rd month (15.01 cm), while there was no significant difference between the other two varieties in different harvest periods. In terms of yield, ‘Tainung 57’ and ‘Tainung 66’ in the 5th month (2.97 kg and 2.84 kg) were significantly higher than in the 4th month (1.82 kg and 1.93 kg), which were also significantly higher than in the 3rd month (1.10 kg and 0.92 kg). For ‘Tainung 66’, the yield in the 5th month (2.47 kg) was significantly higher than in the 3rd (1.20 kg) and 4th (1.59 kg) month. Considering the limited time available for teaching, it is recommended to harvest after 3 or 4 months of planting. If more time is available, harvesting after 5 months is preferable. Additionally, since ‘Tainung 73’ didn’t any cracked roots at harvest, this cultivar is recommended for priority planting. In the container experiment for leafy sweet potato (‘Tainung 71’), the same container types as those used in the tuberous root sweet potato experiment. The results showed that the number of 15 cm shoots harvested per square meter, there was no significant difference between M and S in the first and second harvests, but in the later harvests, M produced significantly more shoots than S. From the 2nd harvest, M also produced significantly more shoots than L. In terms of yield per square meter, there was no significant difference among the three containers in the 1st harvest, but in the 2nd harvest, M and S produced significantly more than L. In subsequent harvests, M produced significantly more than the other two containers. Considering overall growth, yield performance, and the ease of moving the containers, M is recommended as the optimal container for cultivating leafy sweet potato. In the fertilizer experiment for leafy sweet potato (‘Tainung 71’), 4 fertilizer treatments were tested: basal fertilizer (referred to as BF), basal fertilizer + Peters 30-10-10 [referred to as BF+(30-10-10)], basal fertilizer + Peters 20-20-20 [referred to as BF+(20-20-20)], and basal fertilizer + Peters 15-10-30 [referred to as BF+(15-10-30)]. The results showed that the number of 15 cm shoots harvested in the 3rd harvest had no significant difference between BF+(30-10-10) and BF+(15-10-30), but in other harvests, BF+(30-10-10) was significantly higher than the other treatments. In terms of yield, the 3rd harvest showed no significant difference between BF+(30-10-10) and BF+(15-10-30), but both were significantly higher than the other treatments. In other harvests, BF+(30-10-10) produced the highest yield. Except for the 1st harvest, where there was no significant difference between BF and the other treatments, BF consistently had the lowest yield in subsequent harvests. Therefore, Peters 30-10-10 is recommended use in the leafy sweet potato cultivation. Based on the contents of the group-planting cultivation kit, adjust the kit items according to above-mentioned results, and collect relevant literature on sweet potatoes to write a teaching plan. The sweet potato cultivation kit includes: pots, growing medium, slow-release fertilizer, two types of quick-acting fertilizers, neem oil, a transplant trowel, a plastic measuring cup, a spray bottle, and labels—a total of 10 items. The teaching plan consists of six units: "Sweet Potato Introduction", "Sweet Potatoes History and Management ", " Sweet Potatoes Benefit", " Cooking activity Ⅰ ", "Cooking activity Ⅱ ", and " Sweet Potato Harvest". Both of them helping to enhance students' knowledge of sweet potatoes and accumulate hands-on experience | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:17:25Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-21T16:17:25Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要及關鍵詞 ii Abstract and Key Words iv 目次 vii 圖次 x 表次 xi 第一章 前言 1 第二章 前人研究 3 第三章 不同盆器對根用甘藷生長之影響 8 第一節 前言 8 第二節 材料與方法 9 第三節 結果 11 第四節 討論 11 第五節 結論 12 第四章 不同品種及收穫期對塊根甘藷生長之影響 17 第一節 前言 17 第二節 材料與方法 18 第三節 結果 19 第四節 討論 20 第五節 結論 21 第五章 不同盆器對葉用甘藷生長之影響 30 第一節 前言 31 第二節 材料與方法 31 第三節 結果 33 第四節 討論 34 第五節 結論 35 第六章 不同肥料對葉用甘藷生長之影響 45 第一節 前言 46 第二節 材料與方法 46 第三節 結果 48 第四節 討論 49 第五節 結論 50 第七章 甘藷於食農教育之栽培套裝組及教案開發 60 第一節 前言 60 第二節 材料與方法 61 第三節 結果與討論 61 第四節 結論 63 第八章 結論 70 參考文獻 72 附錄 81 | - |
dc.language.iso | zh_TW | - |
dc.title | 甘藷於食農教育之套裝組開發與應用 | zh_TW |
dc.title | Development and Application of Sweet Potato Planting Kit for Food and Agricultural Education | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張允瓊;張育傑;林淑怡 | zh_TW |
dc.contributor.oralexamcommittee | Yung-Chiung Chang;Yu-Jie Chang;Shu-I Lin | en |
dc.subject.keyword | 食農教育,根用甘藷,葉用甘藷,栽培套裝組,教學教案,盆器,肥料, | zh_TW |
dc.subject.keyword | food and agricultural education,tuberous root sweet potato,leafy sweet potato,cultivation kit,teaching plan,container,fertilizer, | en |
dc.relation.page | 150 | - |
dc.identifier.doi | 10.6342/NTU202404769 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-12-24 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 園藝暨景觀學系 | - |
dc.date.embargo-lift | 2029-12-24 | - |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 此日期後於網路公開 2029-12-24 | 15.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。