請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96719完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周承復 | zh_TW |
| dc.contributor.advisor | Cheng-Fu Chou | en |
| dc.contributor.author | 李岳庭 | zh_TW |
| dc.contributor.author | Yueh-Ting Lee | en |
| dc.date.accessioned | 2025-02-21T16:14:46Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-23 | - |
| dc.identifier.citation | 英文文獻
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc. [2] Theodore S. Rappaport, Shu Sun, Rimma Mayzus, Hang Zhao, Yaniv Azar, Kevin Wang, George N. Wong, Jocelyn K. Schulz, Mathew Samimi, and Felix Gutierrez. Millimeter wave mobile communications for 5g cellular: It will work! IEEE Access, 1:335–349, 2013. [3] J. Winters. On the capacity of radio communication systems with diversity in a rayleigh fading environment. IEEE Journal on Selected Areas in Communications, 5(5):871–878, 1987. [4] Y. Li, L.J. Cimini, and N.R. Sollenberger. Robust channel estimation for ofdm systems with rapid dispersive fading channels. IEEE Transactions on Communications, 46(7):902–915, 1998. [5] Qingqing Wu, Shuowen Zhang, Beixiong Zheng, Changsheng You, and Rui Zhang. Intelligent reflecting surface-aided wireless communications: A tutorial. IEEE Transactions on Communications, 69(5):3313–3351, 2021. [6] Xiuhong Wei, Decai Shen, and Linglong Dai. Channel estimation for ris assisted wireless communications—part ii: An improved solution based on double-structured sparsity. IEEE Communications Letters, 25(5):1403–1407, 2021. [7] Xi Zheng, Peilan Wang, Jun Fang, and Hongbin Li. Compressed channel estimation for irs-assisted millimeter wave ofdm systems: A low-rank tensor decomposition-based approach. IEEE Wireless Communications Letters, 11(6):1258–1262, 2022. [8] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527–1554, 2006. [9] Robert W. Chang. Synthesis of band-limited orthogonal signals for multichannel data transmission. The Bell System Technical Journal, 45(10):1775–1796, 1966. [10] Peihao Dong, Hua Zhang, Geoffrey Ye Li, Ivan Simões Gaspar, and Navid Naderi-Alizadeh. Deep cnn-based channel estimation for mmwave massive mimo systems. IEEE Journal of Selected Topics in Signal Processing, 13(5):989–1000, 2019. [11] Hong-Yunn Chen, Meng-Hsun Wu, Ta-Wei Yang, Chih-Wei Huang, and Cheng-Fu Chou. Attention-aided autoencoder-based channel prediction for intelligent reflecting surface-assisted millimeter-wave communications. IEEE Transactions on Green Communications and Networking, 7(4):1906–1919, 2023. [12] Hong Yunn Chen, Meng Hsun Wu, Ta Wei Yang, Jia Wei Liao, Chih Wei Huang, and Cheng Fu Chou. Intelligent reflecting surface enhanced wireless communications with multihead-attention sparse autoencoder-based channel prediction. IEEE Communications Letters, 27(10):2757–2761, October 2023. Publisher Copyright:© 1997-2012 IEEE. [13] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 27268–27286. PMLR, 17–23 Jul 2022. [14] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse transformers. CoRR, abs/1904.10509, 2019. [15] Foad Sohrabi, Kareem M. Attiah, and Wei Yu. Deep learning for distributed channel feedback and multiuser precoding in fdd massive mimo. IEEE Transactions on Wireless Communications, 20(7):4044–4057, 2021. [16] Vaibhav Kumar, Rui Zhang, Marco Di Renzo, and Le-Nam Tran. A novel sca-based method for beamforming optimization in irs/ris-assisted mu-miso downlink. IEEE Wireless Communications Letters, 12(2):297–301, 2023. [17] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. AI Open, 2022. [18] Peng Xu, Jiangzhou Wang, Jinkuan Wang, and Feng Qi. Analysis and design of channel estimation in multicell multiuser mimo ofdm systems. IEEE Transactions on Vehicular Technology, 64(2):610–620, 2015. [19] Yongjin Kwon, Jihoon Chung, and Youngchul Sung. Hybrid beamformer design for mmwave wideband multi-user mimo-ofdm systems : (invited paper). In 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pages 1–5, 2017. [20] Jialai Weng, Xiaoming Tu, Zhihua Lai, S. Salous, and Jie Zhang. Indoor massive mimo channel modelling using ray-launching simulation. International Journal of Antennas and Propagation, 2014:1–13, 08 2014. [21] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architecture. In Proceedings of the 37th International Conference on Machine Learning, ICML’20. JMLR.org, 2020. [22] Peiyuan Liu, Beiliang Wu, Naiqi Li, Tao Dai, Fengmao Lei, Jigang Bao, Yong Jiang, and Shu-Tao Xia. Wftnet: Exploiting global and local periodicity in long-term time series forecasting. IEEE International Conference on Acoustics, Speech and Signal Processing, 2023. [23] Zhaorui Wang, Liang Liu, and Shuguang Cui. Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis. IEEE Transactions on Wireless Communications, 19(10):6607–6620, 2020. [24] Yudi Dong, Huaxia Wang, and Yu-Dong Yao. Channel estimation for one-bit multiuser massive mimo using conditional gan. IEEE Communications Letters, 25(3):854–858, 2021. [25] Sepideh Gherekhloo, Khaled Ardah, and Martin Haardt. Hybrid beamforming design for downlink mu-mimo-ofdm millimeter-wave systems. In 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), pages 1–5, 2020. [26] Seyed Hadi Mirfarshbafan, Mahdi Shabany, Seyed Nezamalhosseini, and Christoph Studer. Algorithm and vlsi design for 1-bit data detection in massive mimo-ofdm. IEEE Open Journal of Circuits and Systems, 1:170–184, 01 2020. [27] Hajar Emami, Xuan-Hong Dang, Yousaf Shah, and Petros Zerfos. Modality-aware transformer for financial time series forecasting, 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96719 | - |
| dc.description.abstract | 隨著高速無線網路的需求逐步增加,通道矩陣估計在提升網路傳輸效能方面具有重要意義。針對該需求,本研究集中探討 MIMO OFDM 系統的通道矩陣估計,並引入智慧反射面 (IRS) 技術,旨在通過調整無線訊號路徑來增強系統效率和克服障礙物的影響。面對日漸複雜的無線通訊場景,精確的通道估計面對更加嚴峻的挑戰,因此我們設計了一種基於 Transformer 的創新方法來優化。過往的通道矩陣估計, 都只關注時域上的通道矩陣,我們使用了 cross-attention 來同時捕捉時域與頻域上通道矩陣的特徵。再加上利用通道矩陣的空間相關性與實虛交錯特性,使用了不同種的 sparse-attention 方法,大幅降低了計算開銷,從而實現更高的運算效率。同時我們也使用了卷積層來取代全連接層, 這是因為通道矩陣具有空間相關性。實驗結果說明,我們的方法在傳輸速率和系統效能上明顯優於傳統技術,表明通道矩陣估計在提升未來無線通訊性能的潛在應用價值。 | zh_TW |
| dc.description.abstract | As the demand for rapid wireless communication networks continues to increase, channel matrix estimation has become increasingly critical for improving network transmission performance. This study focuses on channel matrix estimation for MIMO OFDM systems and introduces intelligent reflecting surface (IRS) technology to enhance system efficiency and overcome obstacles by adjusting wireless signal paths. In today’s increasingly complex wireless communication environments, accurate channel estimation presents greater challenges. In response, we introduce an innovative Transformer-based approach for optimizing channel estimation in IRS-assisted MIMO-OFDM systems. Unlike previous methods that primarily focus on time-domain channel matrices, we leverage cross-attention to capture characteristics of the channel matrix across both time and frequency domains. Additionally, by integrating the spatial correlation and complex interleaved characteristics of the channel matrix, we apply various sparse-attention methods to effectively reduce computational costs and achieve higher processing efficiency. We utilized convolutional layers in place of fully connected layers, as the spatial correlation in the channel matrix makes them more suitable. The experimental findings indicate that this approach significantly outperforms traditional techniques in terms of transmission rate and system performance, underscoring the potential application value of channel matrix estimation in enhancing the performance of future wireless networks. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:14:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:14:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 iv Abstract v Contents vii List of Figures ix List of Tables x Chapter 1 Introduction 1 Chapter 2 Related Work 4 2.1 Massive MIMO OFDM 4 2.2 Channel Estimation 5 2.2.1 Challenges in Channel Estimation 5 2.2.2 Benchmarks for Channel Estimation 5 2.3 Transformer 6 2.4 Sparse Attention 8 2.5 Summary of Related Work 9 Chapter 3 System Model 10 3.1 Channel Estimation MIMO OFDM system 10 Chapter 4 Method 13 4.1 Transformer-Based Channel Estimation Architecture 13 4.1.1 Overview 13 4.1.2 Encoder 16 4.1.3 Decoder 19 4.2 Sparse Attention 20 4.3 Optimal Segmentation Strategies for Channel Matrix 23 Chapter 5 Dataset and Experiments 26 5.1 Dataset 26 5.2 Benchmark Comparison 28 5.3 Multi-user Experiments 30 5.4 Ablation Experiment of Proposed Transformer 32 5.5 Sparse Attention 34 5.6 Time Efficiency 37 Chapter 6 Conclusion 39 References 40 | - |
| dc.language.iso | en | - |
| dc.subject | 正交分頻 | zh_TW |
| dc.subject | 深度學習模型 | zh_TW |
| dc.subject | 通道矩陣估計 | zh_TW |
| dc.subject | 傳輸速率 | zh_TW |
| dc.subject | 均方根誤差 | zh_TW |
| dc.subject | 稀疏注意力 | zh_TW |
| dc.subject | 注意力機制 | zh_TW |
| dc.subject | 多輸入多輸出 | zh_TW |
| dc.subject | Sum Rate | en |
| dc.subject | MIMO | en |
| dc.subject | OFDM | en |
| dc.subject | Channel Estimation | en |
| dc.subject | Transformer | en |
| dc.subject | Sparse Attention | en |
| dc.subject | NMSE | en |
| dc.title | 基於 Transformer 的 MIMO OFDM 系統的通道估計 | zh_TW |
| dc.title | Transformer-based Channel Estimation for MIMO OFDM Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃志煒;呂政修;蔡子傑;吳曉光 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Wei Huang;Jenq-Shiou Leu;Tzu-Chieh Tsai;Hsiao-kuang Wu | en |
| dc.subject.keyword | 多輸入多輸出,正交分頻,注意力機制,稀疏注意力,均方根誤差,傳輸速率,通道矩陣估計,深度學習模型, | zh_TW |
| dc.subject.keyword | MIMO,OFDM,Channel Estimation,Transformer,Sparse Attention,NMSE,Sum Rate, | en |
| dc.relation.page | 44 | - |
| dc.identifier.doi | 10.6342/NTU202404546 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-12-23 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | 2025-02-22 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
