請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96718完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏宏宇 | zh_TW |
| dc.contributor.advisor | Hung-Yu Wei | en |
| dc.contributor.author | 鄭宇翔 | zh_TW |
| dc.contributor.author | Yu-Hsiang Cheng | en |
| dc.date.accessioned | 2025-02-21T16:14:30Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-19 | - |
| dc.identifier.citation | [1] Cisco, “Cisco annual internet report (2018–2023) white paper,” https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html, 2024/6/17.
[2] 3GPP, “Physical layer procedures for shared spectrum channel access,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 37.213, 03 2024, version 18.2.0. [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3435 [3] E. Pei, D. Meng, L. Li, and P. Zhang, “Performance analysis of listen before talk based coexistence scheme over the unlicensed spectrum in the scenario with multiple lte small bases,” IEEE Access, vol. 5, pp. 10 364–10 368, 2017. [4] M. Mehrnoush, V. Sathya, S. Roy, and M. Ghosh, “Analytical modeling of wifi and lte-laa coexistence: Throughput and impact of energy detection threshold,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp. 1990–2003, 2018. [5] M. Mehrnoush, S. Roy, V. Sathya, and M. Ghosh, “On the fairness of wi-fi and ltelaa coexistence,” IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 4, pp. 735–748, 2018. [6] N. Bitar, M. O. Al Kalaa, S. J. Seidman, and H. H. Refai, “On the coexistence of lte-laa in the unlicensed band: Modeling and performance analysis,” IEEE Access, vol. 6, pp. 52 668–52 681, 2018. 53 doi: 10.6342/NTU202404732 [7] G. Bianchi, “Performance analysis of the ieee 802.11 distributed coordination function,” IEEE Journal on selected areas in communications, vol. 18, no. 3, pp. 535– 547, 2000. [8] G. Naik, J.-M. Park, J. Ashdown, and W. Lehr, “Next generation wi-fi and 5g nr-u in the 6 ghz bands: Opportunities and challenges,” IEEE Access, vol. 8, pp. 153 027–153 056, 2020. [9] M. Hirzallah, M. Krunz, B. Kecicioglu, and B. Hamzeh, “5g new radio unlicensed: Challenges and evaluation,” IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 3, pp. 689–701, 2020. [10] H. Bao, Y. Huo, X. Dong, and C. Huang, “Joint time and power allocation for 5g nr unlicensed systems,” IEEE Transactions on Wireless Communications, vol. 20, no. 9, pp. 6195–6209, 2021. [11] S.-Y. Lien and H.-L. Tsai, “3gpp v2x on unlicensed spectrum: performance analysis and optimum channel access strategies,” IEEE Transactions on Vehicular Technology, vol. 70, no. 9, pp. 9230–9243, 2021. [12] Q. Chen, X. Xu, and H. Jiang, “Online green communication scheduling for sliced unlicensed heterogeneous networks,” IEEE Transactions on Vehicular Technology, vol. 70, no. 10, pp. 10 657–10 670, 2021. [13] A. Daraseliya, M. Korshykov, E. Sopin, D. Moltchanov, S. Andreev, and K. Samouylov, “Coexistence analysis of 5g nr unlicensed and wigig in millimeterwave spectrum,” IEEE Transactions on Vehicular Technology, vol. 70, no. 11, pp. 11 721–11 735, 2021. [14] V. Loginov, A. Troegubov, A. Lyakhov, and E. Khorov, “Enhanced collision resolution methods with mini-slot support for 5g nr-u,” IEEE Access, vol. 9, pp. 146 137– 146 152, 2021. 54 doi: 10.6342/NTU202404732 [15] V. Loginov, E. Khorov, A. Lyakhov, and I. F. Akyildiz, “Cr-lbt: Listen-before-talk with collision resolution for 5g nr-u networks,” IEEE Transactions on Mobile Computing, vol. 21, no. 9, pp. 3138–3149, 2021. [16] M. Zając and S. Szott, “Resolving 5g nr-u contention for gap-based channel access in shared sub-7 ghz bands,” IEEE Access, vol. 10, pp. 4031–4047, 2022. [17] Q. Ren, J. Zheng, B. Wang, and Y. Zhang, “Performance modeling of an nr-u and wifi coexistence system with nr-u type b multi-channel access procedure,” IEEE Internet of Things Journal, 2022. [18] L. B. Jiang and S. C. Liew, “Improving throughput and fairness by reducing exposed and hidden nodes in 802.11 networks,” IEEE Transactions on Mobile Computing, vol. 7, no. 1, pp. 34–49, 2007. [19] J. Lee and I. Yeom, “Avoiding collision with hidden nodes in ieee 802.11 wireless networks,” IEEE Communications letters, vol. 13, no. 10, pp. 743–745, 2009. [20] C.-Y. Huang, H.-Y. Chen, C.-H. Huang, S.-T. Sheu, T.-W. Chiang, T.-L. Cheng, and C.-C. Chang, “Listen before receive (lbr) assisted network access in laa and wifi heterogeneous networks,” IEEE Access, vol. 9, pp. 43 845–43 861, 2021. [21] F.-Y. Hung and I. Marsic, “Performance analysis of the ieee 802.11 dcf in the presence of the hidden stations,” Computer Networks, vol. 54, no. 15, pp. 2674–2687, 2010. [22] Q. Ren, B. Wang, J. Zheng, and Y. Zhang, “Performance modeling of an nr-u and wifi coexistence system using the nr-u category-4 lbt procedure and wifi dcf mechanism in the presence of hidden nodes,” IEEE Transactions on Vehicular Technology, vol. 72, no. 11, pp. 14 801–14 814, 2023. [23] A. Prasad, P. Lunden, Z. Li, and M. A. Uusitalo, “Enhancements for enabling pointto-multipoint communication using unlicensed spectrum,” in 2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 2018, pp. 1–5. 55 doi: 10.6342/NTU202404732 [24] 3GPP, “Architectural enhancements for 5g multicast-broadcast services,” 3rd Generation Partnership Project (3GPP), Technical specification (TS) 23.247, 03 2024, version 18.5.0. [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3854 [25] H.-H. Liu and H.-Y. Wei, “Towards nr mbms: A flexible partitioning method for sfn areas,” IEEE Transactions on Broadcasting, vol. 66, no. 2, pp. 416–427, 2020. [26] 3GPP, “Study on channel model for frequencies from 0.5 to 100 ghz,” 3rd Generation Partnership Project (3GPP), Technical report (TR) 38.901, 04 2024, version 18.0.0. [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3173 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96718 | - |
| dc.description.abstract | 隨著5G頻寬日益稀缺,尋找額外頻寬或提高使用效率已成為關鍵課題。為了應對這一挑戰,相關標準組織提出了新型無授權頻段(NR-U)來擴展5G頻寬,並引入多播與廣播服務(MBS)以提升頻寬利用效率。本文首次提出將NR-U與MBS結合的方案,並提供一套分析模型進行驗證。透過精密設計結合這兩個元素,我們的最佳解法在20個無線網路接取點的環境中,效能相較於現有技術提升達7.27倍。此外,我們的方法完全符合標準規範,效能也提升至現有技術的3.92倍。我們根據站點間距與頻率等參數進行多項模擬,並得出多項具有啟發性的結果。 | zh_TW |
| dc.description.abstract | With the increasing scarcity of 5G bandwidth, finding additional bandwidth or improving usage efficiency has become critical. The 3GPP proposed the New Radio Unlicensed (NR-U) band to expand 5G bandwidth and introduced Multicast and Broadcast Service (MBS) to enhance bandwidth utilization efficiency. This paper is the first to propose the integration of NR-U and MBS, along with an analytical model for validation. Through a sophisticated design combining these two elements, our optimal solution outperforms the state-of-the-art (SOTA) by a factor of 7.27 in an environment with 20 Wi-Fi APs. Furthermore, our fully 3GPP standard-compliant method achieves 3.92 times the performance of the SOTA. We conducted various simulations based on parameters such as inter-site distance (ISD) and frequency, deriving several insightful results. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:14:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:14:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書i
誌謝ii 摘要iii Abstract iv Chapter 1. Introduction 1 Chapter 2. Related Work 5 Chapter 3. Background 9 3.1 3GPP Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 NR-U (BS-initiated NR-U) . . . . . . . . . . . . . . . . . . . . . 9 3.1.2 UE-initiated NR-U . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.3 Multicast Broadcast Service (MBS) . . . . . . . . . . . . . . . . 12 3.2 Single frequency network (SFN) . . . . . . . . . . . . . . . . . . . . . . 12 Chapter 4. System Model 13 4.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Fully-listened and partially-listened . . . . . . . . . . . . . . . . . . . . . 13 4.3 BS state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.4 UE-initiated NR-U with MBS . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 5. Problem formulation 17 Chapter 6. Proposed solutions and state of the art 19 6.1 MCS-opt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.2 UE-initiated SFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Chapter 7. Analytical evaluation 23 7.1 Fully-listened . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.1.1 BS-initiated NR-U . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.1.2 UE-initiated NR-U . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.1.3 MBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.2 Partially-listened . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Chapter 8. Simulation Results and Discussion 33 8.1 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8.1.1 Modulation and Coding Scheme . . . . . . . . . . . . . . . . . . 33 8.2 Fully-listened . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.2.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.2.2 Comparison between Methods . . . . . . . . . . . . . . . . . . . 36 8.2.3 Central Frequency . . . . . . . . . . . . . . . . . . . . . . . . . 38 8.2.4 Inter-site distance (ISD) . . . . . . . . . . . . . . . . . . . . . . 39 8.2.5 Optimization of method MCS-opt . . . . . . . . . . . . . . . . . 41 8.3 Partially-listened . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Bibliography 53 | - |
| dc.language.iso | en | - |
| dc.subject | 用戶設備啟動 | zh_TW |
| dc.subject | 非授權頻帶 | zh_TW |
| dc.subject | 新空中介面技術 | zh_TW |
| dc.subject | 多播廣播服務 | zh_TW |
| dc.subject | 非授權新空中介面技術 | zh_TW |
| dc.subject | NR-U | en |
| dc.subject | MBS | en |
| dc.subject | Unlicensed band | en |
| dc.subject | New radio | en |
| dc.subject | UE-initiated | en |
| dc.title | 用戶設備啟動非授權新空中介面技術網路與多播廣播服務 | zh_TW |
| dc.title | UE-initiated New Radio Unlicensed Band network with MBS | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林光勛;巫芳璟;黃楚翔 | zh_TW |
| dc.contributor.oralexamcommittee | Kuang-Hsun Lin;Fang-Jing Wu;Chu-Hsiang Huang | en |
| dc.subject.keyword | 非授權頻帶,新空中介面技術,多播廣播服務,用戶設備啟動,非授權新空中介面技術, | zh_TW |
| dc.subject.keyword | Unlicensed band,New radio,MBS,UE-initiated,NR-U, | en |
| dc.relation.page | 56 | - |
| dc.identifier.doi | 10.6342/NTU202404732 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-12-19 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | 2025-02-22 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 2.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
