Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96716
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝昇峯zh_TW
dc.contributor.advisorSheng-Feng Hsiehen
dc.contributor.author陳思瑄zh_TW
dc.contributor.authorSz-Shiuan Chenen
dc.date.accessioned2025-02-21T16:13:57Z-
dc.date.available2025-02-22-
dc.date.copyright2025-02-21-
dc.date.issued2024-
dc.date.submitted2024-12-21-
dc.identifier.citationAdadi, A., and M. Berrada. 2018. Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE access 6:52138-52160.
AICPA. 2020. The Data-driven audit: How automation and AI are changing the audit and the role of the auditor. Available at: https://us.aicpa.org/content/dam/aicpa/interestareas/frc/assuranceadvisoryservices/downloadabledocuments/the-data-driven-audit.pdf.
Aobdia, D. 2019. Do practitioner assessments agree with academic proxies for audit quality? Evidence from PCAOB and internal inspections. Journal of Accounting and Economics 67(1): 144-174.
Ashbaugh, H., R. LaFond, and B. W. Mayhew. 2003. Do nonaudit services compromise auditor independence? Further evidence. The Accounting Review 78(3): 611-639.
Asthana, S. C., and J. P. Boone. 2012. Abnormal audit fee and audit quality. Auditing: A Journal of Practice & Theory 31(3): 1-22.
Ball, R., and L. Shivakumar. 2006. The role of accruals in asymmetrically timely gain and loss recognition. Journal of Accounting Research 44(2): 207-242.
Bao, Y., B. Ke, B. Li, Y. J. Yu, and J. Zhang. 2020. Detecting accounting fraud in publicly traded US firms using a machine learning approach. Journal of Accounting Research 58(1): 199-235.
Barboza, F., H. Kimura, and E. Altman. 2017. Machine learning models and bankruptcy prediction. Expert Systems with Applications 83: 405-417.
Bertomeu, J., E. Cheynel, E. Floyd, and W. Pan. 2021. Using machine learning to detect misstatements. Review of Accounting Studies 26: 468-519.
Blankley, A. I., D. N. Hurtt, and J. E. MacGregor. 2012. Abnormal audit fees and restatements. Auditing: A Journal of Practice & Theory 31(1): 79-96.
Casterella, J. R., J. R. Francis, B. L. Lewis, and P. L. Walker. 2004. Auditor industry specialization, client bargaining power, and audit pricing. Auditing: A Journal of Practice & Theory 23(1): 123-140.
Chen, T., and C. Guestrin. 2016. Xgboost: A scalable tree boosting system. Paper read at Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining.
Chi, W., E. B. Douthett Jr, and L. L. Lisic. 2012. Client importance and audit partner independence. Journal of Accounting and Public Policy 31(3): 320-336.
Chin, C. L., and H. Y. Chi. 2009. Reducing restatements with increased industry expertise. Contemporary Accounting Research 26(3): 729-765.
Cho, S., M. A. Vasarhelyi, T. Sun, and C. Zhang. 2020. Learning from machine learning in accounting and assurance. Journal of Emerging Technologies in Accounting 17(1): 1-10.
Choi, J.-H., J.-B. Kim, and Y. Zang. 2010. Do abnormally high audit fees impair audit quality? Auditing: A Journal of Practice & Theory 29(2): 115-140.
Chou, L.-T. L., Y.-F. Wang, and C.-C. Lin. 2017. Financial Restatements and Audit Fees. Journal of Accounting Review 65: 83-116.
DeAngelo, L. E. 1981. Auditor size and audit quality. Journal of Accounting and Economics 3(3): 183-199.
Dechow, P. M., R. G. Sloan, and A. P. Sweeney. 1995. Detecting earnings management. Accounting Review:193-225.
DeFond, M., and J. Zhang. 2014. A review of archival auditing research. Journal of Accounting and Economics 58(2-3): 275-326.
Ding, K., B. Lev, X. Peng, T. Sun, and M. A. Vasarhelyi. 2020. Machine learning improves accounting estimates: Evidence from insurance payments. Review of Accounting Studies 25(3): 1098-1134.
Doogar, R., P. Sivadasan, and I. Solomon. 2015. Audit fee residuals: Costs or rents? Review of Accounting Studies 20: 1247-1286.
El Naqa, I., and M. J. Murphy. 2015. What is machine learning? Springer.
Eshleman, J. D., and P. Guo. 2014. Abnormal audit fees and audit quality: The importance of considering managerial incentives in tests of earnings management. Auditing: A Journal of Practice & Theory 33(1): 117-138.
Gul, F. A., A. W.-h. Hsu, and S. H.-T. Liu. 2018. Parent-subsidiary investment layers and audit fees. Journal of Accounting, Auditing & Finance 33(4): 555-579.
Hribar, P., T. Kravet, and R. Wilson. 2014. A new measure of accounting quality. Review of Accounting Studies 19: 506-538.
Kothari, S. P., A. J. Leone, and C. E. Wasley. 2005. Performance matched discretionary accrual measures. Journal of Accounting and Economics 39(1): 163-197.
Larcker, D. F., and S. A. Richardson. 2004. Fees paid to audit firms, accrual choices, and corporate governance. Journal of Accounting Research 42(3): 625-658.
Lundberg, S. M., and S.-I. Lee. 2017. A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems 30.
Miller, T. 2019. Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence 267: 1-38.
Mitra, S., D. R. Deis, and M. Hossain. 2009. The association between audit fees and reported earnings quality in pre‐and post‐Sarbanes‐Oxley regimes. Review of Accounting and Finance 8(3): 232-252.
Nielsen, D. 2016. Tree boosting with xgboost-why does xgboost win" every" machine learning competition? Norwegian University of Science and Technology. Master Thesis.
Perols, J. 2011. Financial statement fraud detection: An analysis of statistical and machine learning algorithms. Auditing: A Journal of Practice & Theory 30(2): 19-50.
Perols, J. L., R. M. Bowen, C. Zimmermann, and B. Samba. 2017. Finding needles in a haystack: Using data analytics to improve fraud prediction. The Accounting Review 92(2): 221-245.
Rajgopal, S., S. Srinivasan, and X. Zheng. 2021. Measuring audit quality. Review of Accounting Studies 26(2): 559-619.
Reynolds, J. K., and J. R. Francis. 2000. Does size matter? The influence of large clients on office-level auditor reporting decisions. Journal of Accounting and Economics 30(3): 375-400.
Simunic, D. A. 1980. The pricing of audit services: Theory and evidence. Journal of Accounting Research: 161-190.
Stanisic, N., T. Radojevic, and N. Stanic. 2019. Predicting the type of auditor opinion: Statistics, machine learning, or a combination of the two? Machine Learning, or a Combination of the Two: 1-58.
Stanley, J. D., and F. T. DeZoort. 2007. Audit firm tenure and financial restatements: An analysis of industry specialization and fee effects. Journal of Accounting and Public Policy 26(2): 131-159.
Turner, L. 2005. Comment letter to the Securities and Exchange Commission. April 12. Available at: http://www.sec.gov/spotlight/soxcomp/soxcomp-turner.pdf.
Yu, C. C., A. Xie, and H. W. Huang. 2023. The Associations between Abnormal Audit Fees and Actual and Perceived Audit Quality: Recent Evidence from Taiwan. Review of Accounting and Auditing Studies 12(2): 39-86.
Zhang, C. A., S. Cho, and M. Vasarhelyi. 2022. Explainable artificial intelligence (XAI) in auditing. International Journal of Accounting Information Systems 46:100572.
Zou, H., and T. Hastie. 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2): 301-320.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96716-
dc.description.abstract本研究探討「普通最小平方法(OLS)」與「機器學習模型」於預測審計公費的準確度差異,是否影響異常審計公費之估計,並進而影響其與審計品質之間的關係。針對此一關係,過去文獻並未有一致的結論。本研究發現,預測審計公費時,機器學習模型XGBoost明顯優於OLS;此外,當XGBoost模型加入更多的財務資料並應用特徵工程篩選重要變數後,準確度會再進一步提高。最後,異常審計公費與審計品質之間的關係,研究結果顯示確實會因所選用的審計公費預測模型(OLS或XGBoost)或變數選擇方式(基於先前文獻或特徵工程)的不同,而產出不同準確度的審計公費預測值,進而使該關係有所變化。因此,本研究強調於會計和審計研究中使用預測值時,預測模型和變數選擇方式之重要性。zh_TW
dc.description.abstractThis study examines the differences in prediction accuracy of audit fees between Ordinary Least Squares (OLS) regression and machine learning models, specifically focusing on their impact on the relationship between abnormal audit fees and audit quality, a topic with mixed evidence in the existing research. The results reveal that the XGBoost, a machine learning model, significantly outperforms OLS regression in predicting audit fees. Further improvements in prediction accuracy are achieved by incorporating additional financial data and applying data-driven feature selection techniques in XGBoost. The association between abnormal audit fees and audit quality also appears to be contingent on the choice of prediction model (OLS vs. XGBoost) and the set of variables used in these models, whether chosen based on prior research or through feature selection. Our findings underscore the critical importance of modeling approaches and variable selection in accounting and auditing research that relies on predicted values.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:13:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-21T16:13:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 ................................................... i
ABSTRACT .................................................. ii
CONTENTS ................................................. iii
LIST OF TABLES ............................................. v
1. INTRODUCTION ............................................ 1
2. LITERATURE REVIEW ....................................... 5
2.1 Machine Learning ....................................... 5
2.2 Abnormal Audit Fees and Audit Quality .................. 7
3. DATA & RESEARCH DESIGNS ................................ 12
3.1 Replication 1 ......................................... 12
3.2 Replication 2 ......................................... 18
4. RESULTS ................................................ 22
4.1 Replication 1 ......................................... 22
4.2 Replication 2 ......................................... 26
4.3 Comparison ............................................ 29
5. ADDITIONAL ANALYSES .................................... 30
5.1 Data ...................................................30
5.2 Research Design ........................................31
5.3 Results ............................................... 35
6. CONCLUSIONS ............................................ 37
REFERENCES ................................................ 40
APPENDIX A AUDIT FEE MODELS FOR REPLICATION 2 ............. 85
APPENDIX B AUDIT FEE MODELS FOR ADDITIONAL ANALYSES ....... 87
APPENDIX C CALCULATION FOR DISCRETIONARY ACCRUALS ......... 88
APPENDIX D VARIABLES DEFINITION ........................... 89
-
dc.language.isoen-
dc.subjectXGBoostzh_TW
dc.subject估計準確度zh_TW
dc.subject異常審計公費zh_TW
dc.subject普通最小平方法zh_TW
dc.subject機器學習zh_TW
dc.subjectmachine learningen
dc.subjectXGBoosten
dc.subjectestimation accuracyen
dc.subjectabnormal audit feesen
dc.subjectOLSen
dc.title運用機器學習提升異常審計公費之估計準確度zh_TW
dc.titleLeveraging Machine Learning to Enhance the Accuracy of Abnormal Audit Fee Estimationen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳坤志;顏如君zh_TW
dc.contributor.oralexamcommitteeKun-Chih Chen;Ju-Chun Yenen
dc.subject.keyword機器學習,普通最小平方法,異常審計公費,估計準確度,XGBoost,zh_TW
dc.subject.keywordmachine learning,OLS,abnormal audit fees,estimation accuracy,XGBoost,en
dc.relation.page101-
dc.identifier.doi10.6342/NTU202404767-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-12-23-
dc.contributor.author-college管理學院-
dc.contributor.author-dept會計學系-
dc.date.embargo-lift2025-02-22-
顯示於系所單位:會計學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf1.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved