請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96712完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李貫銘 | zh_TW |
| dc.contributor.advisor | Kuan-Ming Li | en |
| dc.contributor.author | 邱晨光 | zh_TW |
| dc.contributor.author | Chen-Kuang Chiu | en |
| dc.date.accessioned | 2025-02-21T16:12:54Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-09-19 | - |
| dc.identifier.citation | [1]R. Dearn B. Sc., “The fine art of gear pump selection and operation,” World Pumps, pp. 38-40, June 2001.
[2]Hydraulic & Pneumatics, "Hydraulic Pumps," Fluid Power Handbook & Directory, pp. 119-127, 1998-1999. [3]A. E. Brown, "Rotary positive displacement machines," U. S. Patent 3,472,445, October 14, 1969. [4]A. E. Brown, "Rotary positive displacement machines," U. S. Patent 4,224,016, September 23, 1980. [5]H. Wycliffe, "Mechanical pumps," U. S. Patent 4,504,201, March 12, 1985. [6]D. A. Turrell, "Vacuum pump systems," U. S. Patent 4,934,908, January 19, 1990. [7]R. Garczorz, "Rotary piston machine with three blade rotors," U. S. Patent 6,364,642, April 2, 2002. [8]C. F. Hsieh, Y.W. Hwang, and Z.H. Fong, "Study on the tooth profile for the screw claw-type pump," Mechanism and Machine Theory, vol. 43, pp. 812-828, 2008. [9]T. T. Chung, US patent 7,565,741, “Methods for designing lobe-type rotors,” Washington, DC: US Patent and Trademark Office, 2009. [10]W. K. Fan, “Design and analysis of a new claw vacuum pump,” M.S. thesis, National Taiwan University, Taipei, Taiwan, July 2008. [11]L. Y. Kung, “Clearance and leakage analysis of a liquid pump with claw rotors,” M.S. thesis, National Taiwan University, Taipei, Taiwan, July 2011. [12]C. G. Fu, “Design of a liquid pump with new claw rotors,” M.S. thesis, National Taiwan University, Taipei, Taiwan, July 2009 (Traditional Chinese). [13]T. L. Hsu, and T. T. Chung, US patent 2014/0,102,233, “Device of a pair of claw-type rotors having same profiles,” Washington, DC: U.S. Patent and Trademark Office, 2014. [14]H. C. Liu, S. H. Tong, and C. H. Yang, “Trapping-Free Rotors for High-Sealing Lobe Pumps,” ASME, Journal of Mechanical Design, Vol. 122, December 2000, pp. 536-542. [15]C. H. Yang, and S. H. Tong, US patent 8,323,011 B2, “Lobe pump system and method of manufacture,” Washington, DC: US Patent and Trademark Office, 2012. [16]H. H. Wu, “Development of New Claw Rotor Profiles with Deviation Function Curves,” M.S. thesis, National Taiwan University, Taipei, Taiwan, July 2013. [17]C. C. Chang, “Design and Analysis of Two New Claw Rotor Types with Elliptical Cycloids and with Elliptical Arcs,” M.S. thesis, National Taiwan University, Taipei, Taiwan, January 2021. [18]Bo-Chang Bao, “Development of New Claw Rotor Profiles with Elliptic Involute Curves” M.S. thesis, National Taiwan University, Taipei, Taiwan, January 2024. [19]Vincenzo Vullo, “Basic Law of Mating Gear Teeth,” in “Gears: General Concepts, Definitions and Some Basic Quantities,” Springer, 2020, pp. 14-20. [20]F. L. Litvin, “Conjugate Shapes,” in “Theory of Gearing,” NASA Reference Publication 1212, 1989, pp. 63-86. [21]F. L. Litvin, “Conditions of Tooth Nonundercutting,” in “Theory of Gearing,” NASA Reference Publication 1212, 1989, pp. 120-127. [22]C. F. Hsieh, “A new curve for application to the rotor profile of rotary lobe pumps,” Mechanism and Machine Theory, volume 87, pp. 70-81, May 2015. [23]張文桐,吳隆庸,2006,平面曲線之曲率半徑,機構與機器設計—中華民國機構與機器原理學會會刊,第17卷,第1號,13-19頁。 [24]H. W. Wang, “Design of a New Fluid Pump with Helical Claw Rotors,” M.S. thesis, National Taiwan University, Taipei, Taiwan, July 2010. [25]Weisstein, Eric W. "Conic Section." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ConicSection.html [26]Purcell, E. J., Varberg, D., & Rigdon, S. E. (2007), “Conic and Polar Coordinate” in “Calculus (9th ed.),” Prentice Hall, 2006, pp. 509-554, ISBN: 0-13-129331-1 [27]Christopher Baltus, “Conics in Greek Geometry,” in “Collineations and Conic Sections: An Introduction to Projective Geometry in its History,” Springer, 2020, pp. 45-57, ISBN: 3-030-46287-0 [28]F. L. Litvin, A. Fuentes, In Chapter 12, "None Circular Gear," in “Gear Geometry and Applied Theory,” Cambridge University, 2004, pp. 318-349. [29]Weisstein, Eric W. "Focus." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Focus.html [30]Weisstein, Eric W. "Conic Section Directrix." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ConicSectionDirectrix.html [31]Weisstein, Eric W. "Eccentricity." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Eccentricity.html [32]Weisstein, Eric W. "Focal Parameter." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FocalParameter.html | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96712 | - |
| dc.description.abstract | 本研究發展了一種以二次曲線(也稱為圓錐曲線)作為爪形輪廓的新型爪式轉子。每個爪的輪廓包含一段外旋擺線、兩段圓弧、一段二次曲線及其對應的共軛曲線。此輪廓設計由五個獨立參數決定:爪數、節圓半徑、轉子半徑、密封角和二次曲線的離心率。此外,在給定這五個獨立參數的情況下,爪式轉子的輪廓可以透過本研究所開發的自動繪圖程式在CAD軟體AutoCAD中進行設計與繪製,並且其性能,例如面積效率和最大密封角,可以通過本研究所編寫的C++ 程式進行分析。由於二次曲線的離心率在參數設定上具有高度彈性,新型爪式轉子可以表現出顯著的輪廓變化及寬裕的性能可調性,過去的一些爪式轉子輪廓可以被視為此新型爪式轉子輪廓的特例。本研究還將新型爪式轉子與過去具有不同輪廓設計的爪式轉子間進行比較,結果顯示,具有二次曲線的爪式轉子在廣泛的參數條件下擁有最高的面積效率。在常用的參數條件下,它還提供了更大的面積效率之可調範圍,使其相較於以往的設計更具優勢。 | zh_TW |
| dc.description.abstract | This thesis studies the development of new claw rotor profiles by including quadratic curves, also known as conic section curves, as one segment curve of a claw. Each claw profile includes five curve segments, an epitrochoid, two circular arcs, a quadratic curve, and a conjugate corresponding to the quadratic curve. The claw profile with these curve segments is determined by five independent parameters: the number of claws, pitch radius, rotor radius, conformity angle, and eccentricity of the quadratic curve. With given five independent parameters, claw rotor profiles can be designed and drawn in the CAD software AutoCAD through developed automatic drawing program, and performances, such as area efficiency and maximum conformity angle, can be analyzed through developed C++ programs. Due to the high flexibility in the parameter settings of eccentricity, significant changes in claw rotor profiles can be designed, resulting in wide adjustability of performance. Part of the previous claw rotor profiles can be considered as special cases of the new claw rotor profiles. This thesis also compares the new claw rotor with previous claw rotors featuring different profiles designs. The results show that the claw rotor with quadratic curves achieves the highest area efficiency under a broad range of parameter conditions. Additionally, it offers a wider range of area efficiency adjustability under commonly used conditions, making it superior to previous designs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:12:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:12:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF APPENDIX FIGURES xii LIST OF TABLES xiii LIST OF APPENDIX TABLES xiii NOMENCLATURE xiv Chapter 1 Introduction 1 1.1 Background Knowledge 1 1.2 Classification of Multiple Rotary Pumps 3 1.3 Development of Claw Rotor Profiles 6 1.4 Motivation 15 1.5 Outline 15 Chapter 2 Related Theory of Claw Rotor Pumps 17 2.1 Conjugate Theory 17 2.1.1 Conjugate Action 17 2.1.2 Meshing Equation 20 2.1.3 Graphical Construction Method of Conjugate Curve 23 2.1.4 Calculation of Rotation Angle of the Meshing Equation 28 2.2 Condition of Non-Undercutting 31 2.3 Pump Performances 35 2.3.1 Specific Flow Rate and Area Efficiency 35 2.3.2 Sealing Property 37 Chapter 3 Claw Rotors with Quadratic Curves 40 3.1 Five Curve Segments of a Claw with Quadratic Curves 40 3.2 Epitrochoid Segment of a Claw (Curve A) 41 3.2.1 Claw-Shape Designed with Epitrochoid 41 3.2.2 Claw-Shape Designed with Modified Epitrochoid 44 3.3 Arc Segments (Curve B and Curve E) 46 3.4 Quadratic Curve of a Claw (Curve C) 47 3.4.1 Origin and Applications of Quadratic Curves 47 3.4.2 Mathematical Model of Quadratic Curves 49 3.4.3 Maintaining Positivity of Focal Parameter d 51 3.4.4 Translation and Rotation of Quadratic Curves 53 3.4.5 Mathematical Model for Quadratic Curve of a Claw 57 3.5 Conjugate Curve of Quadratic curves (Curve D) 63 3.6 Models of New Claw Rotor Pair 66 3.7 Eccentricity Parameter e of Quadratic Curves 69 3.7.1 Influence of Parameter e on Claw Rotor Profiles 69 3.7.2 Constraints of Parameter e 73 Chapter 4 Computer-Aided Design and Performances of New Claw Rotors 81 4.1 Computer-Aided Design 81 4.2 Area Efficiency and Sealing Property of New Claw Rotors 85 4.2.1 Area Efficiency with Different Eccentricity of Quadratic Curve 85 4.2.2 Area Efficiency with Different Pitch Ratio of New Claw Rotors 86 4.2.3 Area Efficiency with Different Conformity Angle of New Claw Rotors 88 4.2.4 Sealing Property with Different Parameters of New Claw Rotors 90 4.2.5 Maximum Pitch Ratio for Different Number of Claws 92 4.3 Comparison with Previous Claw Rotor Types 93 4.3.1 Maximum Area Efficiency and Conformity Angle 93 4.3.2 Adjustability of Area Efficiency 102 Chapter 5 Conclusions and Suggestions 112 5.1 Conclusion 112 5.2 Suggestion 113 REFERENCES 115 Appendix A Automatic Drawing Program of New Claw Rotor Profiles 118 | - |
| dc.language.iso | en | - |
| dc.subject | 二次曲線 | zh_TW |
| dc.subject | 自動化繪圖程式 | zh_TW |
| dc.subject | 面積效率 | zh_TW |
| dc.subject | 密封角 | zh_TW |
| dc.subject | 共軛曲線 | zh_TW |
| dc.subject | 爪式轉子 | zh_TW |
| dc.subject | area efficiency | en |
| dc.subject | conformity angje | en |
| dc.subject | conjugate curve | en |
| dc.subject | quadratic curve | en |
| dc.subject | claw rotor | en |
| dc.subject | automatic drawing program | en |
| dc.title | 具有二次曲線之新型爪式轉子輪廓發展 | zh_TW |
| dc.title | Development of New Claw Rotor Profiles with Quadratic Curves | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 鍾添東 | zh_TW |
| dc.contributor.coadvisor | Tien-Tung Chung | en |
| dc.contributor.oralexamcommittee | 史建中 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Jong Shih | en |
| dc.subject.keyword | 爪式轉子,二次曲線,共軛曲線,密封角,面積效率,自動化繪圖程式, | zh_TW |
| dc.subject.keyword | claw rotor,quadratic curve,conjugate curve,conformity angje,area efficiency,automatic drawing program, | en |
| dc.relation.page | 121 | - |
| dc.identifier.doi | 10.6342/NTU202404375 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-09-20 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2029-09-01 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 9.18 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
