Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96696Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 邱靜雯 | zh_TW |
| dc.contributor.advisor | Ching-Wen Chiu | en |
| dc.contributor.author | 黃士祐 | zh_TW |
| dc.contributor.author | Shih-Yu Huang | en |
| dc.date.accessioned | 2025-02-20T16:34:37Z | - |
| dc.date.available | 2025-02-21 | - |
| dc.date.copyright | 2025-02-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-01-24 | - |
| dc.identifier.citation | 1. Weetman, C.; Xu, H.; Inoue, S. Recent Developments in Low-Valent Aluminum Chemistry. In Encyclopedia of Inorganic and Bioinorganic Chemistry, pp 1-20.
2. Pluta, C.; Pörschke, K.-R.; Krüger, C.; Hildenbrand, K. An Al–Al One-Electron π Bond. Angew. Chem., Int. Ed. Engl. 1993, 32 (3), 388-390. 3. Nakamoto, M.; Yamasaki, T.; Sekiguchi, A. Stable Mononuclear Radical Anions of Heavier Group 13 Elements: [(tBu2MeSi)3E•−]·[K+(2.2.2-Cryptand)] (E = Al, Ga). J. Am. Chem. Soc. 2005, 127 (19), 6954-6955. 4. Henke, P.; Pankewitz, T.; Klopper, W.; Breher, F.; Schnöckel, H. Snapshots of the Al–Al σ-Bond Formation Starting from {AlR2} Units: Experimental and Computational Observations. Angew. Chem. Int. Ed. 2009, 48 (43), 8141-8145. 5. Li, B.; Kundu, S.; Stückl, A. C.; Zhu, H.; Keil, H.; Herbst-Irmer, R.; Stalke, D.; Schwederski, B.; Kaim, W.; Andrada, D. M.; et al. A Stable Neutral Radical in the Coordination Sphere of Aluminum. Angew. Chem. Int. Ed. 2017, 56 (1), 397-400. 6. Kundu, S.; Sinhababu, S.; Dutta, S.; Mondal, T.; Koley, D.; Dittrich, B.; Schwederski, B.; Kaim, W.; Stückl, A. C.; Roesky, H. W. Synthesis and characterization of Lewis base stabilized mono- and di-organo aluminum radicals. Chem. Commun. 2017, 53 (76), 10516-10519. 7. Lavallo, V.; Canac, Y.; Präsang, C.; Donnadieu, B.; Bertrand, G. Stable Cyclic (Alkyl)(Amino)Carbenes as Rigid or Flexible, Bulky, Electron-Rich Ligands for Transition-Metal Catalysts: A Quaternary Carbon Atom Makes the Difference. Angew. Chem. Int. Ed. 2005, 44 (35), 5705-5709. 8. Li, B.; Geoghegan, B. L.; Weinert, H. M.; Wölper, C.; Cutsail, G. E.; Schulz, S. Synthesis and redox activity of carbene-coordinated group 13 metal radicals. Chem. Commun. 2022, 58 (27), 4372-4375. 9. Mandal, D.; Demirer, T. I.; Sergeieva, T.; Morgenstern, B.; Wiedemann, H. T. A.; Kay, C. W. M.; Andrada, D. M. Evidence of AlII Radical Addition to Benzene. Angew. Chem. Int. Ed. 2023, 62 (13), e202217184. 10. Dhara, D.; Endres, L.; Krummenacher, I.; Arrowsmith, M.; Dewhurst, R. D.; Engels, B.; Bertermann, R.; Finze, M.; Demeshko, S.; Meyer, F.; et al. Synthesis and Reactivity of a Dialane-Bridged Diradical. Angew. Chem. Int. Ed. 2024, 63 (18), e202401052. 11. Protchenko, A. V.; Dange, D.; Harmer, J. R.; Tang, C. Y.; Schwarz, A. D.; Kelly, M. J.; Phillips, N.; Tirfoin, R.; Birjkumar, K. H.; Jones, C.; et al. Stable GaX2, InX2 and TlX2 radicals. Nat. Chem. 2014, 6 (4), 315-319. 12. Lin, Y.-J.; Liu, W.-C.; Liu, Y.-H.; Lee, G.-H.; Chien, S.-Y.; Chiu, C.-W. A linear Di-coordinate boron radical cation. Nat. Commun. 2022, 13 (1), 7051. 13. Viehe, H. G.; Janousek, Z.; Merenyi, R.; Stella, L. The captodative effect. Acc. Chem. Res. 1985, 18 (5), 148-154. 14. Viehe, H. G.; Merenyi, R.; Janousek, Z. Captodative substituent effects in radical chemistry. Pure Appl. Chem. 1988, 60 (11), 1635-1644. 15. Peterson, J. P.; Winter, A. H. Solvent Effects on the Stability and Delocalization of Aryl Dicyanomethyl Radicals: The Captodative Effect Revisited. J. Am. Chem. Soc. 2019, 141 (32), 12901-12906. 16. Hofmann, A.; Tröster, T.; Kupfer, T.; Braunschweig, H. Monomeric Cp3tAl(I): synthesis, reactivity, and the concept of valence isomerism. Chem. Sci. 2019, 10 (11), 3421-3428. 17. Dohmeier, C.; Robl, C.; Tacke, M.; Schnöckel, H. The Tetrameric Aluminum(I) Compound [{Al(η5-C5Me5)}4]. Angew. Chem. Int. Ed. Engl. 1991, 30 (5), 564-565. 18. Koch, H.-J.; Schulz, S.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G.; Heine, A.; Herbst-Irmer, R.; Stalke, D.; Sheldrick, G. M. Synthese und Struktur von CpAlCl2-Verbindungen mit sterisch anspruchsvollen Substituenten (Cp = Me5C5, EtMe4C5). Chem. Ber. 1992, 125 (5), 1107-1109. 19. Segawa, Y.; Yamashita, M.; Nozaki, K. Boryllithium: Isolation, Characterization, and Reactivity as a Boryl Anion. Science 2006, 314 (5796), 113-115. 20. Soleilhavoup, M.; Bertrand, G. Cyclic (Alkyl)(Amino)Carbenes (CAACs): Stable Carbenes on the Rise. Acc. Chem. Res. 2015, 48 (2), 256-266. 21. Melaimi, M.; Jazzar, R.; Soleilhavoup, M.; Bertrand, G. Cyclic (Alkyl)(amino)carbenes (CAACs): Recent Developments. Angew. Chem. Int. Ed. 2017, 56 (34), 10046-10068. 22. Kundu, S.; Sinhababu, S.; Chandrasekhar, V.; Roesky, H. W. Stable cyclic (alkyl)(amino)carbene (cAAC) radicals with main group substituents. Chem. Sci. 2019, 10 (18), 4727-4741. 23. Bonyhady, S. J.; Collis, D.; Frenking, G.; Holzmann, N.; Jones, C.; Stasch, A. Synthesis of a stable adduct of dialane(4) (Al2H4) via hydrogenation of a magnesium(I) dimer. Nat. Chem. 2010, 2 (10), 865-869. 24. Tan, G.; Szilvási, T.; Inoue, S.; Blom, B.; Driess, M. An Elusive Hydridoaluminum(I) Complex for Facile C–H and C–O Bond Activation of Ethers and Access to Its Isolable Hydridogallium(I) Analogue: Syntheses, Structures, and Theoretical Studies. J. Am. Chem. Soc. 2014, 136 (27), 9732-9742. 25. Kaim, W. Single electron transfer reaction of aluminum hydride with nitrogen-containing heterocycles. ESR characterization of the radical products. J. Am. Chem. Soc. 1984, 106 (6), 1712-1716. 26. Dettenrieder, N.; Schädle, C.; Maichle-Mössmer, C.; Anwander, R. Reactivity of boryllithium with AlMe3, AlEt3, and GaMe3, including the synthesis of a lanthanum heterogallate complex. Dalton Trans. 2014, 43 (42), 15760-15770. 27. Dettenrieder, N.; Dietrich, H. M.; Schädle, C.; Maichle-Mössmer, C.; Törnroos, K. W.; Anwander, R. Organoaluminum Boryl Complexes. Angew. Chem. Int. Ed. 2012, 51 (18), 4461-4465. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96696 | - |
| dc.description.abstract | 近年來含有硼(B)、鎵(Ga)、銦(In)或鉈(Tl)的雙取代13族自由基已成功被合成和發表。然而,由於鋁的缺電子特性與高路易士酸性,目前尚未成功分離出雙取代鋁自由基。這裡我們提出三種分子設計來嘗試合成以鋁為中心的自由基。借鑑於先前關於硼陽離子自由基 ([cAACCyBTMP]•+)的研究,我們採用了正交推拉效應(orthogonal push-pull effect)。我們成功分離並利用單晶X射線繞射鑑定了三取代的中性鋁自由基[cAACCyAlHMDS(Cl)]•,並且這是目前第二個被發表的單體形式的中性三取代鋁自由基。然而,我們嘗試進一步拔氯生成[cAACCyAlHMDS]•+卻未能成功。為此,我們將HMDS替換為Cp*取代基,目的是為了使π電子能夠更好的給到鋁中心。我們合成了起始物cAACCyAlCp*(Cl2)。雖然未能成功分離經過還原後的[cAACCyAlCp*(Cl)]•,但EPR訊號證實了這個自由基的存在。然而,由於該化合物的穩定性不足,無法進一步進行拔氯的過程,因此未能成功合成雙取代鋁自由基陽離子。我們推測是因為鋁的高路易士酸性是鹵素難以拔除的原因,因此,我們將不帶電的cAAC改為帶負電的NHB來提昇鋁原子上的電子密度,並成功合成了[NHBAlCp*]+,並通過單晶結構確認其結構,也對其進行了單電子還原反應。雖然目前仍無法分離[NHBAlCp*]•,但自由基捕捉實驗成功證實了[NHBAlCp*]•的存在,為鋁自由基分子的研究前進一大步。 | zh_TW |
| dc.description.abstract | Di-substituted group 13 radical species, such as those with B, Ga, In, or Tl, have recently been reported. However, the isolation of di-substituted aluminum radical has not been achieved, primarily due to its electron deficiency and high Lewis acidity. Here, we propose three synthetic strategies to achieve aluminum centered radicals. Drawing inspiration from our previous work on the boron radical cation ([cAACCyBTMP]•+), the orthogonal push-pull effect and captodative effect were utilized as the design principle for the di-substituted aluminum radical. To this end, a tri-substituted neutral aluminum radical [cAACCyAlHMDS(Cl)]•, the precursor of the anticipated radical cation, was successfully isolated and characterized by SC-XRD. However, all attempts at the following chloride abstraction to generate [cAACCyAlHMDS]•+ were unsuccessful. Considering that one Al-N π-interaction might be insufficient in stabilizing low-coordinate Al atom, HMDS group was replaced with Cp* ligand for a better π-electron donating ability. Chemical reduction of cAACCyAlCp*(Cl2) was performed. Although not successfully isolated, the observed EPR signals suggested the formation of [cAACCyAlCp*(Cl)]• in the solution. Unfortunately, its instability prevented the subsequent chloride abstraction, so the desired di-substituted aluminum radical cation was not accomplished. To mitigate the electron deficiency of low-coordinate Al radical, neutral cAAC ligand is replaced by the isoelectronic boryl anion. Consequently, di-substituted aluminum radical [NHBAlCp*]• was successfully generated from one-electron reduction of [NHBAlCp*]+. While the isolation of [NHBAlCp*]• remains challenging, its existence could be verified via radical trapping experiment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:34:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-20T16:34:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Contents iv List of Figures vi List of Schemes viii List of Tables ix Chapter 1 Introduction 1 1.1 Aluminum Radical 1 1.1.1 Radical Species 1 1.1.2 Low-valent Aluminum Radicals 1 1.2 Challenging in Achieving Di-substituted Aluminum(II) Radical Species 3 1.3 Molecular Design 4 Chapter 2 Results and Discussion 8 2.1 Synthesis of [cAACCy-Al-HMDS]•+ 8 2.2 Synthesis of [cAACCyAlCp*]•+ 14 2.3 Synthesis of [NHBAlCp*]• 20 Chapter 3 Conclusion 26 Chapter 4 Experimental Section 27 4.1 General Consideration 27 4.2 Synthesis of Compounds 28 REFERENCE 31 APPENDIX 35 EPR data 60 DFT Calculations of Optimized Structures 64 | - |
| dc.language.iso | en | - |
| dc.subject | 環狀(烷基)(胺基)碳烯取代基 | zh_TW |
| dc.subject | 低價鋁錯合物 | zh_TW |
| dc.subject | 正交推拉效應 | zh_TW |
| dc.subject | 鋁自由基 | zh_TW |
| dc.subject | 二氮硼代環基取代基 | zh_TW |
| dc.subject | NHB substituent | en |
| dc.subject | aluminum radicals | en |
| dc.subject | low-valent aluminum complex | en |
| dc.subject | orthogonal push-pull effect | en |
| dc.subject | cyclic (alkyl)(amino)carbene | en |
| dc.title | 雙取代鋁自由基之合成 | zh_TW |
| dc.title | Syntheses of Di-Substituted Aluminum Radicals | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡蘊明;林峻毅 | zh_TW |
| dc.contributor.oralexamcommittee | Yeun-Min Tsai;Chun-Yi Lin | en |
| dc.subject.keyword | 鋁自由基,低價鋁錯合物,正交推拉效應,環狀(烷基)(胺基)碳烯取代基,二氮硼代環基取代基, | zh_TW |
| dc.subject.keyword | aluminum radicals,low-valent aluminum complex,orthogonal push-pull effect,cyclic (alkyl)(amino)carbene,,NHB substituent, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202500259 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-01-25 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2030-01-22 | - |
| Appears in Collections: | 化學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-1.pdf Restricted Access | 2.81 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
