Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 轉譯醫學博士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96686
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊樹諄zh_TW
dc.contributor.advisorTrees-Juen Chuangen
dc.contributor.author何偉民zh_TW
dc.contributor.authorWei-Min Hoen
dc.date.accessioned2025-02-20T16:31:59Z-
dc.date.available2025-02-21-
dc.date.copyright2025-02-20-
dc.date.issued2025-
dc.date.submitted2025-02-06-
dc.identifier.citation1 Louis, D. N. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23, 1231-1251, doi:10.1093/neuonc/noab106 (2021).
2 van den Bent, M. J. et al. Primary brain tumours in adults. Lancet (London, England) 402, 1564-1579, doi:10.1016/s0140-6736(23)01054-1 (2023).
3 Ostrom, Q. T., Cote, D. J., Ascha, M., Kruchko, C. & Barnholtz-Sloan, J. S. Adult Glioma Incidence and Survival by Race or Ethnicity in the United States From 2000 to 2014. JAMA oncology 4, 1254-1262, doi:10.1001/jamaoncol.2018.1789 (2018).
4 Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England journal of medicine 352, 987-996, doi:10.1056/NEJMoa043330 (2005).
5 Weller, M. et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. The Lancet. Oncology 18, e315-e329, doi:10.1016/s1470-2045(17)30194-8 (2017).
6 Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. The New England journal of medicine 352, 997-1003, doi:10.1056/NEJMoa043331 (2005).
7 Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522-526, doi:10.1038/nature11287 (2012).
8 Haider, A. S. et al. Toward a standard pathological and molecular characterization of recurrent glioma in adults: a Response Assessment in Neuro-Oncology effort. Neuro Oncol 22, 450-456, doi:10.1093/neuonc/noz233 (2020).
9 Byron, S. A. et al. Prospective Feasibility Trial for Genomics-Informed Treatment in Recurrent and Progressive Glioblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research 24, 295-305, doi:10.1158/1078-0432.Ccr-17-0963 (2018).
10 Touat, M. et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nature 580, 517-523, doi:10.1038/s41586-020-2209-9 (2020).
11 Morrissy, A. S. et al. Spatial heterogeneity in medulloblastoma. Nature Genetics 49, 780-788, doi:10.1038/ng.3838 (2017).
12 Szerlip, N. J. et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proceedings of the National Academy of Sciences of the United States of America 109, 3041-3046, doi:10.1073/pnas.1114033109 (2012).
13 Sottoriva, A. et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proceedings of the National Academy of Sciences of the United States of America 110, 4009-4014, doi:10.1073/pnas.1219747110 (2013).
14 Kim, J. et al. Spatiotemporal Evolution of the Primary Glioblastoma Genome. Cancer Cell 28, 318-328, doi:10.1016/j.ccell.2015.07.013 (2015).
15 Wang, J. et al. Clonal evolution of glioblastoma under therapy. Nature Genetics 48, 768-776, doi:10.1038/ng.3590 (2016).
16 Körber, V. et al. Evolutionary Trajectories of IDH(WT) Glioblastomas Reveal a Common Path of Early Tumorigenesis Instigated Years ahead of Initial Diagnosis. Cancer Cell 35, 692-704.e612, doi:10.1016/j.ccell.2019.02.007 (2019).
17 Kim, H. et al. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome research 25, 316-327, doi:10.1101/gr.180612.114 (2015).
18 Muscat, A. M. et al. The evolutionary pattern of mutations in glioblastoma reveals therapy-mediated selection. Oncotarget 9, 7844-7858, doi:10.18632/oncotarget.23541 (2018).
19 Hu, L. S. et al. Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro Oncol 19, 128-137, doi:10.1093/neuonc/now135 (2017).
20 Wang, L. et al. The evolution of alternative splicing in glioblastoma under therapy. Genome Biology 22, 48, doi:10.1186/s13059-021-02259-5 (2021).
21 Kim, E. L. et al. Intratumoral Heterogeneity and Longitudinal Changes in Gene Expression Predict Differential Drug Sensitivity in Newly Diagnosed and Recurrent Glioblastoma. Cancers 12, doi:10.3390/cancers12020520 (2020).
22 Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science (New York, N.Y.) 270, 467-470, doi:10.1126/science.270.5235.467 (1995).
23 DeRisi, J. L., Iyer, V. R. & Brown, P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science (New York, N.Y.) 278, 680-686, doi:10.1126/science.278.5338.680 (1997).
24 Sallinen, S. L. et al. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer research 60, 6617-6622 (2000).
25 Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157-173, doi:10.1016/j.ccr.2006.02.019 (2006).
26 Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98-110, doi:10.1016/j.ccr.2009.12.020 (2010).
27 Henriksson, R., Asklund, T. & Poulsen, H. S. Impact of therapy on quality of life, neurocognitive function and their correlates in glioblastoma multiforme: a review. Journal of neuro-oncology 104, 639-646, doi:10.1007/s11060-011-0565-x (2011).
28 Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS genetics 3, 1724-1735, doi:10.1371/journal.pgen.0030161 (2007).
29 Kim, Y., Kim, K. H., Park, J., Yoon, H. I. & Sung, W. Prognosis prediction for glioblastoma multiforme patients using machine learning approaches: Development of the clinically applicable model. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 183, 109617, doi:10.1016/j.radonc.2023.109617 (2023).
30 Karrison, T. & Kocherginsky, M. Restricted mean survival time: Does covariate adjustment improve precision in randomized clinical trials? Clinical trials (London, England) 15, 178-188, doi:10.1177/1740774518759281 (2018).
31 Yoon, H. G. et al. The genes significantly associated with an improved prognosis and long-term survival of glioblastoma. PloS one 18, e0295061, doi:10.1371/journal.pone.0295061 (2023).
32 Teng, C. et al. Recurrence- and Malignant Progression-Associated Biomarkers in Low-Grade Gliomas and Their Roles in Immunotherapy. Frontiers in immunology 13, doi:10.3389/fimmu.2022.899710 (2022).
33 Wang, Q. W., Zhao, Z., Bao, Z. S., Jiang, T. & Zhu, Y. J. Comprehensive analysis of multi-omics data of recurrent gliomas identifies a recurrence-related signature as a novel prognostic marker. American journal of cancer research 11, 1226-1246 (2021).
34 Johnson, B. E. et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science (New York, N.Y.) 343, 189-193, doi:10.1126/science.1239947 (2014).
35 McLendon, R. et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061-1068, doi:10.1038/nature07385 (2008).
36 Varn, F. S. et al. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell 185, 2184-2199.e2116, doi:https://doi.org/10.1016/j.cell.2022.04.038 (2022).
37 European Organisation for Research and Treatment of Cancer (EORTC). EORTC Annual Report 2023, <https://www.eortc.org/annual-report/> (2023).
38 Hoogstrate, Y. et al. Transcriptome analysis reveals tumor microenvironment changes in glioblastoma. Cancer Cell 41, 678-692.e677, doi:10.1016/j.ccell.2023.02.019 (2023).
39 Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics 12, 323, doi:10.1186/1471-2105-12-323 (2011).
40 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21, doi:10.1093/bioinformatics/bts635 (2013).
41 Wang, Q. et al. Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell 32, 42-56.e46, doi:https://doi.org/10.1016/j.ccell.2017.06.003 (2017).
42 Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nature biotechnology 37, 773-782, doi:10.1038/s41587-019-0114-2 (2019).
43 Steen, C. B., Liu, C. L., Alizadeh, A. A. & Newman, A. M. Profiling Cell Type Abundance and Expression in Bulk Tissues with CIBERSORTx. Methods in molecular biology (Clifton, N.J.) 2117, 135-157, doi:10.1007/978-1-0716-0301-7_7 (2020).
44 Neftel, C. et al. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell 178, 835-849.e821, doi:https://doi.org/10.1016/j.cell.2019.06.024 (2019).
45 Johnson, K. C. et al. Single-cell multimodal glioma analyses identify epigenetic regulators of cellular plasticity and environmental stress response. Nat Genet 53, 1456-1468, doi:10.1038/s41588-021-00926-8 (2021).
46 Li, W. V., Chen, Y. & Li, J. J. TROM: A Testing-Based Method for Finding Transcriptomic Similarity of Biological Samples. Statistics in biosciences 9, 105-136, doi:10.1007/s12561-016-9163-y (2017).
47 Wang, L. et al. A single-cell atlas of glioblastoma evolution under therapy reveals cell-intrinsic and cell-extrinsic therapeutic targets. Nature cancer 3, 1534-1552, doi:10.1038/s43018-022-00475-x (2022).
48 Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e3529, doi:10.1016/j.cell.2021.04.048 (2021).
49 Kuleshov, M. V. et al. modEnrichr: a suite of gene set enrichment analysis tools for model organisms. Nucleic acids research 47, W183-w190, doi:10.1093/nar/gkz347 (2019).
50 Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572-1573, doi:10.1093/bioinformatics/btq170 (2010).
51 Yoon, H. G. et al. The genes significantly associated with an improved prognosis and long-term survival of glioblastoma. PloS one 18, e0295061, doi:10.1371/journal.pone.0295061 (2023).
52 Nichols, E. et al. Considerations for the use of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) in cross-country comparisons of cognitive aging and dementia. Alzheimer's & dementia : the journal of the Alzheimer's Association, doi:10.1002/alz.13895 (2024).
53 Ostrom, Q. T. et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019. Neuro Oncol 24, v1-v95, doi:10.1093/neuonc/noac202 (2022).
54 Barthel, F. P. et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 576, 112-120, doi:10.1038/s41586-019-1775-1 (2019).
55 Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences 102, 15545-15550, doi:doi:10.1073/pnas.0506580102 (2005).
56 Bouwens van der Vlis, T. A. M. et al. The complement system in glioblastoma multiforme. Acta neuropathologica communications 6, 91, doi:10.1186/s40478-018-0591-4 (2018).
57 Auffinger, B., Spencer, D., Pytel, P., Ahmed, A. U. & Lesniak, M. S. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert review of neurotherapeutics 15, 741-752, doi:10.1586/14737175.2015.1051968 (2015).
58 Qiang, L. et al. HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell death and differentiation 19, 284-294, doi:10.1038/cdd.2011.95 (2012).
59 Renfrow, J. J. et al. Attenuating hypoxia driven malignant behavior in glioblastoma with a novel hypoxia-inducible factor 2 alpha inhibitor. Scientific reports 10, 15195, doi:10.1038/s41598-020-72290-2 (2020).
60 Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436-444, doi:10.1038/nature07205 (2008).
61 Roesler, R., Dini, S. A. & Isolan, G. R. Neuroinflammation and immunoregulation in glioblastoma and brain metastases: Recent developments in imaging approaches. Clinical and experimental immunology 206, 314-324, doi:10.1111/cei.13668 (2021).
62 D'Mello, C., Le, T. & Swain, M. G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 2089-2102, doi:10.1523/jneurosci.3567-08.2009 (2009).
63 Kore, R. A. & Abraham, E. C. Inflammatory cytokines, interleukin-1 beta and tumor necrosis factor-alpha, upregulated in glioblastoma multiforme, raise the levels of CRYAB in exosomes secreted by U373 glioma cells. Biochemical and biophysical research communications 453, 326-331, doi:10.1016/j.bbrc.2014.09.068 (2014).
64 Weller, M. et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nature reviews. Neurology 6, 39-51, doi:10.1038/nrneurol.2009.197 (2010).
65 Gobin, M. et al. A DNA Repair and Cell-Cycle Gene Expression Signature in Primary and Recurrent Glioblastoma: Prognostic Value and Clinical Implications. Cancer research 79, 1226-1238, doi:10.1158/0008-5472.Can-18-2076 (2019).
66 Masica, D. L. & Karchin, R. Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival. Cancer research 71, 4550-4561, doi:10.1158/0008-5472.Can-11-0180 (2011).
67 Wang, Z. X. et al. Oct4 and Sox2 directly regulate expression of another pluripotency transcription factor, Zfp206, in embryonic stem cells. The Journal of biological chemistry 282, 12822-12830, doi:10.1074/jbc.M611814200 (2007).
68 Jiang, Y. et al. ZSCAN10 promotes cell proliferation, upregulates OCT4 expression, and activates Wnt/β-catenin signaling in glioma. International journal of clinical and experimental pathology 12, 700-710 (2019).
69 Kraus, P. et al. Pleiotropic functions for transcription factor zscan10. PloS one 9, e104568, doi:10.1371/journal.pone.0104568 (2014).
70 Olmez, I., Shen, W., McDonald, H. & Ozpolat, B. Dedifferentiation of patient-derived glioblastoma multiforme cell lines results in a cancer stem cell-like state with mitogen-independent growth. Journal of cellular and molecular medicine 19, 1262-1272, doi:10.1111/jcmm.12479 (2015).
71 Ali, S. R. et al. Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus. The Journal of experimental medicine 211, 1231-1242, doi:10.1084/jem.20131853 (2014).
72 Marinari, E. et al. Inflammation and lymphocyte infiltration are associated with shorter survival in patients with high-grade glioma. Oncoimmunology 9, 1779990, doi:10.1080/2162402x.2020.1779990 (2020).
73 Chang, Y. et al. A potentially effective drug for patients with recurrent glioma: sermorelin. Ann Transl Med 9, 406, doi:10.21037/atm-20-6561 (2021).
74 Jaeger, L. B., Banks, W. A., Varga, J. L. & Schally, A. V. Antagonists of growth hormone-releasing hormone cross the blood-brain barrier: a potential applicability to treatment of brain tumors. Proceedings of the National Academy of Sciences of the United States of America 102, 12495-12500, doi:10.1073/pnas.0504163102 (2005).
75 Schally, A. V. et al. Agonists of growth hormone-releasing hormone (GHRH) inhibit human experimental cancers in vivo by down-regulating receptors for GHRH. Proceedings of the National Academy of Sciences of the United States of America 115, 12028-12033, doi:10.1073/pnas.1813375115 (2018).
76 Yan, D. et al. The overexpression and clinical significance of TBX15 in human gliomas. Scientific reports 13, 9771, doi:10.1038/s41598-023-36410-y (2023).
77 Zhang, L., Jiang, Y., Zhang, G. & Wei, S. The diversity and dynamics of tumor-associated macrophages in recurrent glioblastoma. Frontiers in immunology 14, 1238233, doi:10.3389/fimmu.2023.1238233 (2023).
78 Bhat, K. P. L. et al. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 24, 331-346, doi:10.1016/j.ccr.2013.08.001 (2013).
79 Lin, Y. J., Wu, C. Y., Wu, J. Y. & Lim, M. The Role of Myeloid Cells in GBM Immunosuppression. Frontiers in immunology 13, 887781, doi:10.3389/fimmu.2022.887781 (2022).
80 Korshunov, A. et al. Integrated molecular characterization of IDH-mutant glioblastomas. Neuropathology and applied neurobiology 45, 108-118, doi:10.1111/nan.12523 (2019).
81 Hu, H. et al. Mutational Landscape of Secondary Glioblastoma Guides MET-Targeted Trial in Brain Tumor. Cell 175, 1665-1678.e1618, doi:10.1016/j.cell.2018.09.038 (2018).
82 Bai, H. et al. Integrated genomic characterization of IDH1-mutant glioma malignant progression. Nat Genet 48, 59-66, doi:10.1038/ng.3457 (2016).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96686-
dc.description.abstract神經膠質母細胞瘤 (Glioblastoma multiforme,GBM) 是成人中最常見且侵襲性最強的惡性腦部腫瘤,對現有的治療方式仍具高度抗性,且在初次治療後常迅速復發。儘管針對GBM復發所涉及的基因組與轉錄組變化已進行了廣泛的研究,成對的原發及復發 GBM 之間的演化動態仍未完全理解。其中一個主要挑戰是找出與復發時間 (Relapse time/Time to relapse,RT/TTR) 相關的分子標誌,並建立一個能準確預測原發GBM患者RT的穩定預後模型。 在本研究中,我們整合了多個患者匹配的GBM資料集的RNA測序和基因組數據 (Genomic and transcriptomic datasets),特別關注於異檸檬酸脫氫酶野生型 (IDH wild-type) 的腫瘤。我們探討了RT與原發及復發 GBM之間分子異質性之間的關聯,著重於基因表現模式、腫瘤突變負荷 (Tumor mutational burden,TMB) 和腫瘤微環境。 我們的研究結果顯示,RT與原發及復發 GBM之間轉錄組和基因組的差異程度呈正相關。此外,相較於RT較長的患者,RT較短的患者顯示出非間質型向間質型轉變(Non-mesenchymal-to-mesenchymal transitions)的比例較高,以及更高的間質型亞型表現。我們還觀察到原發及復發 GBM在基因表現模式和TMB上的高度相關性,且這些匹配的原發及復發 GBM基因表現一致性與RT呈負相關。 基於這些觀察結果,我們鑑定出55個與RT相關的基因,並透過單變量和多變量Cox回歸分析建立了一個包含7個關鍵基因(ZSCAN10、SIGLEC14、GHRHR、TBX15、TAS2R1、CDKL1、CD101)的預後模型。該模型產生的風險分數在訓練集及兩個獨立驗證集中與RT呈顯著負相關。此外,該模型有效地將IDH wild-type GBM患者分成兩組,並顯示出顯著不同的無進展生存率 (Progression-free survival,PFS) 結果,且在所有數據集中對1年、2年及3年的PFS率預測表現出色。我們的研究結果為GBM復發時的分子機制提供了新的見解,並提出了潛在的治療靶點以供未來研發策略的參考。zh_TW
dc.description.abstractGlioblastoma multiforme (GBM) represents the most pervasive and formidable malignant brain tumor in adults, characterized by its resistance to current therapeutic modalities and a propensity for rapid recurrence post-initial treatment. Despite substantial efforts to elucidate the genomic and transcriptomic landscapes underpinning GBM recurrence, the evolutionary dynamics linking initial/primary and recurrent (I-R/P-R) GBMs remain inadequately defined. A critical challenge lies in discerning molecular determinants predictive of relapse time/time to relapse (RT/TTR) and formulating a reliable prognostic framework to estimate RT in patients with initial/primary GBM (iGBM/pGBM). In this investigation, we leveraged RNA sequencing and genomic datasets from longitudinally collected, patient-matched GBM cohorts, with a specific focus on isocitrate dehydrogenase wild-type (IDH-wildtype) tumors. Our analysis interrogated the interplay between RT and molecular heterogeneity within matched I-R GBMs, emphasizing gene activity dynamics, tumor mutational burden (TMB), and the composition of the tumor microenvironment. Notably, our findings demonstrated a direct correlation between RT and the extent of transcriptomic and genomic divergence observed between initial and recurrent GBMs. Patients with shorter RTs exhibited elevated frequencies of non-mesenchymal-to-mesenchymal transitions and a predominance of mesenchymal subtypes, as opposed to those with prolonged RTs. Moreover, we identified a strong concordance in gene activity patterns and TMB between matched I-R GBMs, which inversely correlated with RT. From these analyses, we pinpointed 55 RT-associated genes and built a prognostic model incorporating seven pivotal genes (ZSCAN10, SIGLEC14, GHRHR, TBX15, TAS2R1, CDKL1, and CD101) through univariate and multivariate Cox regression methodologies. The model's risk scores demonstrated a significant inverse correlation with RT in the training cohort, validated across two independent datasets. Furthermore, the model stratified IDH-wildtype GBM patients into two distinct prognostic subgroups with significantly different progression-free survival (PFS) trajectories, while achieving robust predictive accuracy for one-, two-, and three-year PFS across all cohorts. These findings illuminate the molecular underpinnings of GBM progression and recurrence, offering a deeper understanding of its evolutionary biology. The study also highlights potential molecular targets for therapeutic intervention, paving the way for more personalized and effective strategies in GBM management.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:31:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-20T16:31:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
中文摘要 iv
ABSTRACT v
LIST OF FIGURES(圖次) x
LIST OF TABLES(表次) xi
ABBREVIATIONS xvi
INTRODUCTION 1
1.1 Glioblastoma Multiforme: An Archetype of Oncologic Aggression and Therapeutic Intransigence 1
1.2 Evolutionary Dynamics and Intratumoral Heterogeneity: Mechanisms Underpinning Therapeutic Resistance in Glioblastoma 1
1.3 Genetic and Transcriptomic Landscapes of GBM Recurrence: Unraveling Clonal Evolution and Therapeutic Resistance 2
1.4 Transcriptional Classification of Glioblastoma: Advancing Molecular Stratification and Therapeutic Insights 3
1.5 Challenges in Matched Sample Analysis: Overcoming Data Scarcity and Covariate Confounds in GBM Research 4
1.6 Elucidating Genetic Signatures in Glioma Recurrence: A Critical Perspective 5
1.7 Leveraging Longitudinal Data for Prognostic Stratification: Insights from the GLASS Dataset on GBM Evolution and Therapeutic Response 6
MATERIALS AND METHODS 9
2.1 Data Collection and Preprocessing 9
2.2 Workflow of the Glioma Samples 12
2.3 Definition of the Relapse Time Intervals 16
2.4 Covariate Impact Assessment and Differential Gene Expression Analysis 16
2.5 Transcriptional Subtyping and Single Cell Deconvolution Analysis 17
2.6 Evaluation of the Correlation Between Gene Activity Patterns, TMB and Transcriptomic Similarity in Matched I-R GBMs 19
2.7 Identification of Genes Associated with RT 21
2.8 Building Predictive Models for Progression-Free Survival 22
2.9 Statistical Analysis 24
RESULTS 25
3.1 Standardization of Gene Activity Patterns and Analysis of Covariate Influences 25
3.2 Correlation of Time to Relapse with Transcriptomic and Genomic Disparities in Matched Initial and Recurrent GBMs 26
3.3 Linkage between Time to Relapse and Intratumoral Cellular Heterogeneity in Initial and Recurrent GBMs 30
3.4 Comparative Analysis of Transcriptomic and Genomic Concordance between Matched Initial and Recurrent GBMs 33
3.5 Discovery of Molecular Subtypes Associated with Time to Relapse in Initial GBM Patients 40
3.6 Development of a Predictive Model for Estimating Time to Relapse 46
3.7 Validation of the Predictive Model Across Independent External Cohorts 57
3.8 Comparison of the Criteria of The Risk Gene Selection in Training and Testing Datasets 59
3.9 Development and Validation of a Seven-Gene Nomogram for Predicting Recurrence Time in Initial IDH-Wildtype GBM: A Clinical Tool for Risk Stratification 65
DISCUSSION 66
4.1 Dissecting Tumor Heterogeneity and Prognostic Predictors in GBM: Insights from the GLASS Dataset on Evolutionary Dynamics and RT Correlations 66
4.2 Temporal Dynamics of Genomic and Transcriptomic Heterogeneity in GBM: Insights into RT and Mutational Accumulation across Matched I-R Samples 67
4.3 Identification and Validation of Prognostic Biomarkers for RT in IDH-Wildtype GBM: A Seven-Gene Classifier for Clinical Stratification and Therapeutic Insights 68
4.4 Temporal Shifts in Cellular Composition and Subtype Dynamics in GBM: The Role of Mesenchymal Transition and Tumor Microenvironment in RT Outcomes 70
4.5 Limitations and Future Directions in Longitudinal Analysis of IDH-Wildtype GBM: Expanding Cohort Diversity and Unraveling Molecular Mechanisms of Recurrence 71
CONCLUSIONS 71
ACKNOWLEDGEMENTS 72
AVAILABILITY OF DATA AND MATERIALS 72
REFERENCE 74
APPENDIX 79
R code 79
Published paper 79
-
dc.language.isoen-
dc.subject患者匹配的長期分析(Patient-matched longitudinal analysis)zh_TW
dc.subject復發時間(Relapse time)zh_TW
dc.subject預後模型(Prognostic model)zh_TW
dc.subject無進展生存(Progression-free survival)zh_TW
dc.subject神經膠質母細胞瘤zh_TW
dc.subjectProgression-free survivalen
dc.subjectGlioblastomasen
dc.subjectPatient-matched longitudinal analysisen
dc.subjectRelapse timeen
dc.subjectPrognostic modelen
dc.title藉由系統性分析配對的原發性和復發性 IDH 野生型膠質母細胞瘤間的基因體和轉錄體差異尋找癌症復發相關的生物標記zh_TW
dc.titleSystematic Analysis of Genomic and Transcriptomic Differences between Matched Initial and Recurrent IDH Wild-Type Glioblastomas Identifies Recurrence-Associated Biomarkeren
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.coadvisor陳達夫zh_TW
dc.contributor.coadvisorDa-Fu Chenen
dc.contributor.oralexamcommittee姚季光;蔡懷寬;黃宣誠;阮雪芬zh_TW
dc.contributor.oralexamcommitteeChi-Kuang Yao;Huai-Kuang Tsai;Hsuan-Cheng Huang;Hsueh-Fen Juanen
dc.subject.keyword神經膠質母細胞瘤,患者匹配的長期分析(Patient-matched longitudinal analysis),復發時間(Relapse time),預後模型(Prognostic model),無進展生存(Progression-free survival),zh_TW
dc.subject.keywordGlioblastomas,Patient-matched longitudinal analysis,Relapse time,Prognostic model,Progression-free survival,en
dc.relation.page79-
dc.identifier.doi10.6342/NTU202500408-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-02-07-
dc.contributor.author-college醫學院-
dc.contributor.author-dept轉譯醫學博士學位學程-
dc.date.embargo-lift2025-02-21-
顯示於系所單位:轉譯醫學博士學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved