請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96681
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 余忠仁 | zh_TW |
dc.contributor.advisor | Chong-Jen Yu | en |
dc.contributor.author | 陳彥甫 | zh_TW |
dc.contributor.author | Yen-Fu Chen | en |
dc.date.accessioned | 2025-02-20T16:30:39Z | - |
dc.date.available | 2025-02-21 | - |
dc.date.copyright | 2025-02-20 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-12-05 | - |
dc.identifier.citation | 1.Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486: 207-14.
2.Huse SM, Ye Y, Zhou Y, et al. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One. 2012; 7: e34242. 3.Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther. 2024; 9: 19. 4.Charlson ES, Bittinger K, Haas AR, et al Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011; 184: 957-63. 5.Marsland BJ, Gollwitzer ES. Host-microorganism interactions in lung diseases. Nat Rev Immunol. 2014; 14: 827-35. 6.Lagier J-C, Edouard S, Pagnier I, et al. Current and past strategies for bacterial culture in clinical microbiology. Clin Microbiol Rev. 2015; 28: 208–36. 7.Einarsson GG, Boutin S. Techniques: culture, identification and 16S rRNA gene sequencing. In: Cox MJ, Ege MJ, von Mutius E, eds. The Lung Microbiome (ERS Monograph). Sheffield, European Respiratory Society. 2019; pp. 18–34 8.Erb-Downward JR, Thompson DL, Han MK, et al. Analysis of the lung microbiome in the "healthy" smoker and in COPD. PLoS One. 2011; 6: e16384. 9.Morris A, Beck JM, Schloss PD, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med. 2013; 187: 1067-75. 10.Bell AS, Ranford-Cartwright LC. Real-time quantitative PCR in parasitology. Trends Parasitol. 2002; 18: 337–342. 11.Mackay IM, Arden KE, Nitsche A. Real-time PCR in virology. Nucleic Acids Res. 2002; 30: 1292–305. 12.Espy MJ, Uhl JR, Sloan LM, et al. Real-Time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev. 2006; 19: 165–256. 13.Carney SM, Clemente JC, Cox MJ, et al. Methods in Lung Microbiome Research. Am J Respir Cell Mol Biol. 2020; 62: 283-299. 14.Beck JM. ABCs of the lung microbiome. Ann Am Thorac Soc. 2014;11 Suppl 1(Suppl 1): S3-6. 15.López-Aladid, R., Fernández-Barat, L., Alcaraz-Serrano, V. et al. Determining the most accurate 16S rRNA hypervariable region for taxonomic identification from respiratory samples. Sci Rep. 2023; 13: 3974. 16.Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One. 2011; 6: e27310. 17.Schloss PD. Evaluating different approaches that test whether microbial communities have the same structure. ISME J. 2008; 2: 265–75. 18.Suzuki MT, Giovannoni SJ. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol. 1996; 62: 625–30. 19.Loman NJ, Constantinidou C, Christner M, et al. A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA. 2013; 309:1502–10. 20.Bengtsson-Palme J, Angelin M, Huss M, et al. The human gut microbiome as a transporter of antibiotic resistance genes between continents. Antimicrob Agents Chemother. 2015; 59: 6551–60. 21.Nordahl Petersen T, Rasmussen S, Hasman H, et al. Meta-genomic analysis of toilet waste from long distance flights; a step towards global surveillance of infectious diseases and antimicrobial resistance. Sci Rep. 2015; 5: 11444. 22.Pendleton KM, Erb-Downward JR, Bao Y, Branton WR, et al. Rapid pathogen identification in bacterial pneumonia using real-time metagenomics. Am J Respir Crit Care Med. 2017; 196: 1610–1612. 23.Marotz CA, Sanders JG, Zuniga C, et al. Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome. 2018; 6: 42. 24.Charalampous TKG, O’Grady J. Applying clinical metagenomics for the detection and characterisation of respiratory infections. In: The lung microbiome. Lausanne, Switzerland: European Respiratory Society. 2019. pp. 35–49 25.Brown AC, Bryant JM, Einer-Jensen K, et al. Rapid whole-genome sequencing of Mycobacterium tuberculosis isolates directly from clinical samples. J Clin Microbiol. 2015; 53: 2230–7. 26.Doyle RM, Burgess C, Williams R, et al. Direct whole-genome sequencing of sputum accurately identifies drug-resistant Mycobacterium tuberculosis faster than MGIT culture sequencing. J Clin Microbiol. 2018; 56: e00666-18. 27.Willner D, Furlan M, Haynes M, et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non–cystic fibrosis individuals. PLoS One. 2009; 4: e7370. 28.https://www.cd-genomics.com/microbioseq/fungal-its-sequencing.html 29.Nilsson RH, Ryberg M, Abarenkov K, et al. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol Lett. 2009; 296: 97-101. 30.Bellemain, E., Carlsen, T., Brochmann, C. et al. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol.2010; 10: 189. 31.Hong BY, Maulén NP, Adami AJ, et al.. 2016. Microbiome changes during tuberculosis and antituberculous therapy. Clin Microbiol Rev. 2016; 29: 915–26. 32.Hasleton PS. The internal surface area of the adult human lung. J Anat. 1972; 112: 391–400. 33.Helander HF, Fandriks L. Surface area of the digestive tract – revisited. Scand J Gastroenterol. 2014; 49: 681–9. 34.Bassis CM, Erb-Downward JR, Dickson RP, et al. Analysis of the upper respiratory tract microbiota as the source of the lung and gastric microbiotas in healthy individuals. MBio. 2015; 6: e00037 35.Dickson RP, Cox MJ. Sampling. In: Cox MJ, Ege MJ, von Mutius E, eds. The Lung Microbiome (ERS Monograph). Sheffield, European Respiratory Society. 2019; pp. 1–17 36.Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med. 2010; 363: 2233–47. 37.Voynow JA, Rubin BK. Mucins, mucus, and sputum. Chest. 2009; 135: 505–512. 38.Cox MJ, Turek EM, Hennessy C, et al. Longitudinal assessment of sputum microbiome by sequencing of the 16S rRNA gene in non-cystic fibrosis bronchiectasis patients. PLoS One. 2017; 12: e0170622. 39.Dickson RP, Erb-Downward JR, Freeman CM, et al. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc. 2015; 12: 821–30. 40.Marteau P, Pochart P, Dore J, et al. Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol. 2001; 67: 4939–42 41.Salter SJ, Cox MJ, Turek EM, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014; 12: 87. 42.https://www.qiagen.com/us/products/discovery-and-translational-research/dna-rna-purification/dna-purification/microbial-dna/qiaamp-dna-microbiome-kit 43.https://www.cd-genomics.com/blog/principle-and-workflow-of-illumina-next-generation-sequencing/ 44.Ross MG, Russ C, Costello M, et al. Characterizing and measuring bias in sequence data. Genome Biol. 2013; 14: R51. 45.Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008; 456: 53–9 46.Nakazato T, Ohta T, Bono H. Experimental design-based functional mining and characterization of high-throughput sequencing data in the sequence read archive. PLoS One. 2013; 8: e77910 47.Illumina. Nextera DNA Library Preparation Kits data sheet. 2014. (www.illumina.com/documents/products/datasheets/datasheet_nextera_dna_sample_prep.pdf). 48.Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009; 75:7537–41. 49.Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010; 7: 335–6 50.Rosen MJ, Callahan BJ, Fisher DS, et al. Denoising PCR-amplified metagenome data. BMC Bioinformatics. 2012; 13: 283. 51.Knight R, Vrbanac A, Taylor BC et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018; 16: 410-422. 52.Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016; 13: 581-3. 53.Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 2016: 081257. 54.Amir A, McDonald D, Navas-Molina JA, et al. Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. mSystems. 2017; 2: e00191-16. 55.https://en.wikipedia.org/wiki/Amplicon_sequence_variant 56.Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics. 2018; 34: 2371–2375. 57.Dickson RP, Martinez FJ, Huffnagle GB. The role of the microbiome in exacerbations of chronic lung diseases. Lancet. 2014; 384: 691-702 58.Dickson RP, Erb-Downward JR, Freeman CM, et al. Bacterial Topography of the Healthy Human Lower Respiratory Tract. mBio. 2017; 8: e02287-16. 59.Flume PA, Chalmers JD, Olivier KN. Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity. Lancet. 2018; 392: 880–890. 60.Huang YJ, Lynch SV. The emerging relationship between the airway microbiota and chronic respiratory disease: clinical implications. Expert Rev Respir Med. 2011; 5: 809-21. 61.Garcia-Nuñez M, Millares L, Pomares X, et al. Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease. J Clin Microbiol. 2014; 52: 4217-23. 62.Sze MA, Hogg JC, Sin DD. Bacterial microbiome of lungs in COPD. Int J Chron Obstruct Pulmon Dis. 2014; 9: 229-38. 63.Mac Aogáin M, Dicker AJ, Mertsch P, et al. Infection and the microbiome in bronchiectasis. Eur Respir Rev. 2024; 33: 240038 64.Dicker AJ, Huang JTJ, Lonergan M, et al. The sputum microbiome, airway inflammation, and mortality in chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2021; 147: 158-167. 65.Wang Z, Bafadhel M, Haldar K, et al. Lung microbiome dynamics in COPD exacerbations. Eur Respir J. 2016; 47: 1082-92. 66.Wang Z, Locantore N, Haldar K, et al. Inflammatory Endotype-associated Airway Microbiome in Chronic Obstructive Pulmonary Disease Clinical Stability and Exacerbations: A Multicohort Longitudinal Analysis. Am J Respir Crit Care Med. 2021; 203: 1488-1502 67.Richardson H, Dicker AJ, Barclay H, et al. The microbiome in bronchiectasis. Eur Respir Rev. 2019; 28: 190048. 68.Chalmers JD, Moffitt KL, Suarez-Cuartin G, et al. Neutrophil Elastase Activity Is Associated with Exacerbations and Lung Function Decline in Bronchiectasis. Am J Respir Crit Care Med. 2017; 195: 1384-1393. 69.Choi H, Ryu S, Keir HR, et al. Inflammatory Molecular Endotypes in Bronchiectasis: A European Multicenter Cohort Study. Am J Respir Crit Care Med. 2023; 208: 1166-1176. 70.Polverino E, Dimakou K, Hurst J, et al. The overlap between bronchiectasis and chronic airway diseases: state of the art and future directions. Eur Respir J. 2018; 52: 1800328. 71.Hurst JR, Elborn JS, De Soyza A, BRONCH-UK Consortium. COPD-bronchiectasis overlap syndrome. Eur Respir J. 2015; 45: 310-3. 72.Gatheral T, Kumar N, Sansom B, et al. COPD-related bronchiectasis; independent impact on disease course and outcomes. COPD. 2014; 11: 605-14. 73.Du Q, Jin J, Liu X, et al. Bronchiectasis as a Comorbidity of Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. PLoS One. 2016; 11: e0150532. 74.Tiew PY, Jaggi TK, Chan LLY, et al. The airway microbiome in COPD, bronchiectasis and bronchiectasis-COPD overlap. Clin Respir J. 2021; 15: 123-133. 75.Huang JT, Cant E, Keir HR, et al. Endotyping Chronic Obstructive Pulmonary Disease, Bronchiectasis, and the "Chronic Obstructive Pulmonary Disease-Bronchiectasis Association". Am J Respir Crit Care Med. 2022; 206: 417-426. 76.Traversi L, Miravitlles M, Martinez-Garcia MA, et al. ROSE: radiology, obstruction, symptoms and exposure - a Delphi consensus definition of the association of COPD and bronchiectasis by the EMBARC Airways Working Group. ERJ Open Res. 2021; 7:00399-2021. 77.Araújo D, Shteinberg M, Aliberti S, et al. The independent contribution of Pseudomonas aeruginosa infection to long-term clinical outcomes in bronchiectasis. Eur Respir J. 2018; 51: 1701953. 78.Tiew PY, Lim AYH, Keir HR, et al. High Frequency of Allergic Bronchopulmonary Aspergillosis in Bronchiectasis-COPD Overlap. Chest. 2022; 161: 40-53. 79.Yang IA, Jenkins CR, Salvi SS. Chronic obstructive pulmonary disease in never-smokers: risk factors, pathogenesis, and implications for prevention and treatment. Lancet Respir Med. 2022; 10: 497-511. 80.Hsieh MJ, Huang SY, Yang TM, et al. The impact of 2011 and 2017 Global Initiative for Chronic Obstructive Pulmonary Disease (GOLD) guidelines on allocation and pharmacological management of patients with COPD in Taiwan: Taiwan Obstructive Lung Disease (TOLD) study. Int J Chron Obstruct Pulmon Dis. 2018; 13: 2949-2959. 81.Lin L, Yi X, Liu H, et al. The airway microbiome mediates the interaction between environmental exposure and respiratory health in humans. Nat Med. 2023; 29: 1750-1759. 82.Dhar R, Singh S, Talwar D, et al. Clinical outcomes of bronchiectasis in India: data from the EMBARC/Respiratory Research Network of India registry. Eur Respir J. 2023; 61: 2200611. 83.Chandrasekaran R, Mac Aogáin M, Chalmers JD, et al. Geographic variation in the aetiology, epidemiology and microbiology of bronchiectasis. BMC Pulm Med. 2018; 18: 83. 84.Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management and prevention of COPD. 2022. Global Initiative for Chronic Obstructive Lung Disease website. Available from: http:// goldcopd.org/ 85.Naidich DP, McCauley DI, Khouri NF, Stitik FP, Siegelman SS. Computed tomography of bronchiectasis. J Comput Assist Tomogr. 1982; 6: 437-44. 86.Hill AT, Sullivan AL, Chalmers JD, et al. British Thoracic Society guideline for bronchiectasis in adults. BMJ Open Respir Res. 2018; 5: e000348. 87.Stanojevic S, Kaminsky DA, Miller MR, et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J. 2022; 60:2101499 88.Yang SC. Re-evaluation of the ventilatory function in a normal Chinese: comparison with the results of a survey conducted 15 years ago. J Formos Med Assoc. 1993; 92 Suppl 3: S152-159. 89.Agusti A, Celli BR, Criner GJ, et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Eur Respir J. 2023; 61: 2300239. 90.Chalmers JD, Polverino E, Crichton ML, et al. EMBARC Registry Investigators. Bronchiectasis in Europe: data on disease characteristics from the European Bronchiectasis registry (EMBARC). Lancet Respir Med. 2023; 11: 637-649. 91.Çolak Y, Afzal S, Nordestgaard BG, et al. Young and middle-aged adults with airflow limitation according to lower limit of normal but not fixed ratio have high morbidity and poor survival: a population-based prospective cohort study. Eur Respir J. 2018; 51:1702681. 92.Wang Z, Gu S, Leader JK, et al. Optimal threshold in CT quantification of emphysema. Eur Radiol. 2013;23: 975-84 93.Lor KL, Liu CP, Chang YC, et al. Predictive Modelling of Lung Function using Emphysematous Density Distribution. Sci Rep. 2019; 9: 19763. 94.Reiff DB, Wells AU, Carr DH, et al. CT findings in bronchiectasis: limited value in distinguishing between idiopathic and specific types. AJR Am J Roentgenol. 1995; 165: 261-7. 95.Chalmers JD, Goeminne P, Aliberti S, et al. The bronchiectasis severity index. An international derivation and validation study. Am J Respir Crit Care Med. 2014; 189: 576-85. 96.Rosales-Mayor E, Polverino E, Raguer L, et al. Comparison of two prognostic scores (BSI and FACED) in a Spanish cohort of adult patients with bronchiectasis and improvement of the FACED predictive capacity for exacerbations. PLoS One. 2017; 12: e0175171 97.O'Donnell AE. Bronchiectasis - A Clinical Review. N Engl J Med. 2022: 387: 533-545. 98.Martínez-García MÁ, Máiz L, Olveira C, et al. Spanish Guidelines on Treatment of Bronchiectasis in Adults. Arch Bronconeumol (Engl Ed). 2018; 54: 88-98 99.Hill AT, Haworth CS, Aliberti S, et al. Pulmonary exacerbation in adults with bronchiectasis: a consensus definition for clinical research. Eur Respir J. 2017; 49: 1700051 100.Amatullah H, Shan Y, Beauchamp BL, et al. Canadian Critical Care Translational Biology Group. DJ-1/PARK7 Impairs Bacterial Clearance in Sepsis. Am J Respir Crit Care Med. 2017; 195: 889-905. 101.Gauthier TW, Grunwell JR, Ping XD, et al. Impaired defenses of neonatal mouse alveolar macrophage with cftr deletion are modulated by glutathione and TGF-β1. Physiol Rep. 2017; 5: e13086. 102.Lood C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016; 22: 146-153. 103.Klindworth A, Pruesse E, Schweer T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013; 41: e1. 104.Lin YC, Chen YT, Li KY, et al. Investigating the Mechanistic Differences of Obesity-Inducing Lactobacillus kefiranofaciens M1 and Anti-obesity Lactobacillus mali APS1 by Microbolomics and Metabolomics. Front Microbiol. 2020; 11: 1454. 105.Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019; 37: 852-857. 106.Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009; 10: 421. 107.McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013; 8: e61217. 108.Oksanen J, Blanchet FG, Friendly M, et al. Community ecology package. R Package Ver 2013; 2: 321. 109.Barnett DJ, Arts IC, Penders J. Microviz: an R package for microbiome data visualization and statistics. J Open Source Softw. 2021; 6: 3201. 110.Wickham H. Ggplot2: elegant graphics for data analysis. New York: Springer; 2016. 111.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15: 550. 112.Chen, YF., Hou, HH., Chien, N. et al. The clinical impacts of lung microbiome in bronchiectasis with fixed airflow obstruction: a prospective cohort study. Respir Res. 2024; 25: 308. 113.Davis NM, Proctor DM, Holmes SP, et al. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018; 6: 226. 114.Chen YF; Chang CL, Hou HH, et al. and Taiwan Bronchiectasis Research Collaboration (TBARC). The Impact of COPD-Bronchiectasis Association on clinical outcomes: Insights from East Asian cohorts validating the ROSE criteria. ERJ Open Research. 2024 Sep (Accept). 115.Polverino, E.; Goeminne, P.C.; McDonnell, M.J. et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur Respir J. 2017; 50:1700629. 116.Martínez-García MA, de la Rosa Carrillo D, Soler-Cataluña JJ, et al. Prognostic value of bronchiectasis in patients with moderate-to-severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013; 187: 823-31. 117.Liu X, Sun W, Ma W, et al. Smoking related environmental microbes affecting the pulmonary microbiome in Chinese population. Sci Total Environ. 2022; 829: 154652. 118.Eklöf J, Sørensen R, Ingebrigtsen TS, et al. Pseudomonas aeruginosa and risk of death and exacerbations in patients with chronic obstructive pulmonary disease: an observational cohort study of 22 053 patients. Clin Microbiol Infect. 2020; 26: 227-234. 119.Martinez-Garcia MA, Faner R, Oscullo G, et al. Inhaled Steroids, Circulating Eosinophils, Chronic Airway Infection, and Pneumonia Risk in Chronic Obstructive Pulmonary Disease. A Network Analysis. Am J Respir Crit Care Med. 2020; 201: 1078-1085. 120.Shoemark A, Shteinberg M, De Soyza A, et al. Characterization of Eosinophilic Bronchiectasis: A European Multicohort Study. Am J Respir Crit Care Med. 2022; 205: 894-902. 121.Singh D, Brightling C. Bronchiectasis, the Latest Eosinophilic Airway Disease: What About the Microbiome? Am J Respir Crit Care Med. 2022; 205: 860-862 122.Aliberti S, Sotgiu G, Blasi F, et al. Blood eosinophils predict inhaled fluticasone response in bronchiectasis. Eur Respir J. 2020; 56: 2000453. 123.Takeuchi Y, Umeda M, Sakamoto M, et al. Treponema socranskii, Treponema denticola, and Porphyromonas gingivalis are associated with severity of periodontal tissue destruction. J Periodontol. 2001; 72: 1354-63. 124.Rôças IN, Siqueira JF Jr. Characterization of Dialister species in infected root canals. J Endod. 2006; 32: 1057. 125.Segal LN, Clemente JC, Tsay JC, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol. 2016; 1: 16031. 126.Mammen MJ, Scannapieco FA, Sethi S. Oral-lung microbiome interactions in lung diseases. Periodontol 2000. 2020; 83: 234-241 127.Pathak JL, Yan Y, Zhang Q, et al. The role of oral microbiome in respiratory health and diseases. Respir Med. 2021; 185: 106475. 128.Dong J, Li W, Wang Q, et al. Relationships Between Oral Microecosystem and Respiratory Diseases. Front Mol Biosci. 2022; 8: 718222. 129.Polverino E, De Soyza A, Dimakou K, et al. The Association Between Bronchiectasis and Chronic Obstructive Pulmonary Disease: Data from the European Bronchiectasis Registry (EMBARC). Am J Respir Crit Care Med. 2024; 210: 119-127. 130.Chen, W., Ran, S., Li, C. et al. Elevated Eosinophil Counts in Acute Exacerbations of Bronchiectasis: Unveiling a Distinct Clinical Phenotype. Lung. 2024; 202, 53–61. 131.Martinez-García MÁ, Villa C, Dobarganes Y, et al. RIBRON: The Spanish Online Bronchiectasis Registry. Characterization of the first 1912 patients. Arch Bronconeumol (Engl Ed). 2021; 57: 28–35. 132.Dhar R, Singh S, Talwar D, et al. Bronchiectasis in India: results from the European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC) and Respiratory Research Network of India Registry. Lancet Glob Health. 2019; 7: e1269–e1279. 133.Visser SK, Bye PTP, Fox GJ, et al. Management of Australian adults with bronchiectasis in tertiary care: evidence-based or access-driven? Lung. 2019; 197: 803–810. 134.Martínez-García MA, Perpiñá-Tordera M, Soler-Cataluña JJ, et al. Dissociation of lung function, dyspnea ratings and pulmonary extension in bronchiectasis. Respir Med. 2007; 101: 2248–53. 135.Martínez-García MÁ, Oscullo G, García-Ortega A, et al. Rationale and clinical use of bronchodilators in adults with bronchiectasis. Drugs. 2022; 82: 1–13. 136.Cazzola M, Martínez-García MÁ, Matera MG. Bronchodilators in bronchiectasis: there is light but it is still too dim. Eur Respir J. 2022; 59: 2103127 137.Lin SH, Kuo PH, Hsueh PR, et al. Sputum bacteriology in hospitalized patients with acute exacerbation of chronic obstructive pulmonary disease in Taiwan with an emphasis on Klebsiella pneumoniae and Pseudomonas aeruginosa. Respirology. 2007; 12:81-7. 138.Kim Y, Kim K, Rhee CK, et al. Increased hospitalizations and economic burden in COPD with bronchiectasis: a nationwide representative study. Sci Rep. 2022; 12 :3829. 139.Chen YF, Lin CH, Hou HH, et al. Investigating the impact of azithromycin on the lung microbiome and immune response in patients with bronchiectasis (abstract). Am J Respir Crit Care Med. 2024; 209: A1036. 140.Narayana JK, Aliberti S, Mac Aogáin M, et al. Microbial Dysregulation of the Gut-Lung Axis in Bronchiectasis. Am J Respir Crit Care Med. 2023; 207: 908-920. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96681 | - |
dc.description.abstract | 背景:慢性阻塞性肺病(COPD)和支氣管擴張症(Bronchiectasis, BE)都是異質性肺病,具有複雜的臨床和病理特徵。這些特徵的共存會加劇臨床症狀、強化炎症,並導致疾病惡化及較差的預後。當支氣管擴張症患者合併固定氣流阻塞(fixed airflow obstruction, FAO)時,通常同時滿足阻塞性肺功能測試標準及支氣管擴張症的影像結構性診斷。這表明這群患者符合近期所提出的「慢性阻塞性肺病-支氣管擴張症關聯症」(COPD-BE association)這一新的診斷群體。然而,肺微生物菌叢基因體(lung microbiome)在COPD-BE關聯症中的作用仍然不明確。本研究旨在利用支氣管肺泡灌洗液(Bronchoalveolar lavage, BAL)樣本,探討肺微生物菌叢基因體在慢性阻塞性肺病、支氣管擴張症及同時符合這兩種診斷的患者中的角色。此外,我們通過基於ROSE(放射學Radiology、阻塞Obstruction、肺功能測試Spirometry和暴露Exposure)標準對支氣管擴張症患者進行分類,以評估氣道炎症標誌物的臨床意義及其相關的臨床預後。
方法:我們在台灣進行了一項前瞻性觀察研究,招募患有支氣管擴張症或慢性阻塞性肺病的患者。我們分析了這些患者的肺微生物菌叢基因體,並評估其氣道發炎的生物標誌物。同時,我們收集了支氣管肺泡灌洗樣本,進行16S 核糖體核糖核酸基因定序分析。此外,我們還通過收集兩個支氣管擴張症世代研究來驗證ROSE標準在支氣管擴張症患者中的應用,包括一個前瞻性單中心世代和一個回顧性多中心世代,以評估COPD-BE關聯症的臨床意義和預後,並與其他有或沒有固定氣流阻塞(FAO)的支氣管擴張患者進行比較。 結果:在觀察性世代研究中,我們收入了181名患者,其中包括86名慢性阻塞性肺病患者、46名支氣管擴張症患者和49名經肺功能檢查確認的支氣管擴張症合併固定氣流阻塞(BE-FAO)患者。我們發現無論有無合併氣流阻塞,支氣管擴張症患者的微生物群特徵相似,表現為α多樣性降低和變形菌門(Proteobacteria)占主導地位,與展現更多厚壁菌門(Firmicutes)、更大多樣性和更多共生類群的慢性阻塞性肺病患者顯著不同。此外,與無固定氣流阻塞的COPD和BE相比,患有固定氣流阻塞的支氣管擴張症(BE-FAO)患者顯示出更嚴重的疾病和更高的惡化風險。我們發現綠膿桿菌(Pseudomonas aeruginosa)的存在與氣道嗜中性球發炎症的增加顯著相關,包括白介素(IL)-1β、IL-8和腫瘤壞死因子α(TNF-α),以及更高的支氣管擴張症嚴重程度,這可能導致惡化風險的增加。此外,在患有固定氣流阻塞的支氣管擴張症(BE-FAO)患者中,根據吸菸史的有無,使用ROSE標準將個體分類為ROSE(+)或ROSE(-)。這一分類突顯了ROSE(-)和ROSE(+)患者之間在臨床特徵、炎症特徵和微生物群細微變化上的差異,暗示在合併有氣流阻塞的支氣管擴張症(BE-FAO)患者群體中存在多樣的內表型(Endotypes)。 我們又在台灣人群中進行了一項世代分析,將147名參與者的前瞻性世代與574名參與者的多中心回顧性世代結合。使用ROSE標準,我們發現約有16.5%的參與者具有COPD-BE關聯症(前瞻性世代族群中為22.4%,回顧性世代族群中為14.9%),主要集中在年長的男性患者中。這些患者與無氣流阻塞的支氣管擴張症患者相比,他們的呼吸困難指數上升,臨床上合併有慢性阻塞性肺病診斷率較高,使用吸入治療的比例也增加。值得注意的是,儘管具有COPD-BE關聯患者和無吸菸的支氣管擴張症合併固定氣流阻塞(nonsmoking BE-FAO)患者在臨床症狀、肺功能和疾病嚴重性上表現相似,但在氣道的微生物學上略有不同。此外,具有COPD-BE關聯的患者在調整干擾因素後,仍顯示出其有顯著較高的急性惡化和住院的風險,強調COPD-BE關聯症的患者臨床預後較其他群體更差。 結論:根據ROSE標準進行定義,患有支氣管擴張症合併固定氣流阻塞(BE-FAO)的患者可能表現出兩種不同的內表型。這些內表型的特徵為疾病嚴重程度更高,其肺微生物菌叢基因體更接近於沒有固定氣流阻塞的支氣管擴張症患者,而不是慢性阻塞性肺患者。綠膿桿菌定殖(colonization)與氣道嗜中性球發炎症增加之間的顯著相關性以及疾病嚴重程度,突顯了氣道微生物菌叢的臨床意義。此外,我們發現使用ROSE標準可以有效地找出東亞人群中的具有COPD-BE關聯症患者,顯示出相較於其他支氣管擴張症群體,其未來急性惡化的風險顯著的增加。這一發現強調了這些肺微生物菌叢基因體在支氣管擴張症合併固定氣流阻塞的疾病進展與其在急性惡化中的潛在作用。未來的研究亟需深入了解支氣管擴張症的進展,特別是在合併固定氣流阻塞的族群。 | zh_TW |
dc.description.abstract | Background: Chronic obstructive pulmonary disease (COPD) and bronchiectasis (BE) are both heterogeneous lung diseases characterized by complex clinical and pathological features. The coexistence of these features exacerbates symptoms, intensifies inflammation, and worsens prognosis compared to either condition alone. Patients with bronchiectasis and fixed airflow obstruction (FAO) meet both the obstructive spirometry criteria for COPD and the structural diagnosis of bronchiectasis, reflecting the recently proposed COPD-BE association. However, the role of the lung microbiome in the COPD-BE association remains unclear. This study aimed to investigate the role of the lung microbiome in patients with COPD, bronchiectasis, and those who meet both diagnoses, using bronchoalveolar lavage (BAL) samples. Additionally, we sought to evaluate airway inflammatory markers, their clinical significance, and outcomes by categorizing bronchiectasis patients based on the ROSE (Radiology, Obstruction, Spirometry, and Exposure) criteria.
Methods: We conducted a prospective observational study in Taiwan, enrolling patients with either bronchiectasis or COPD. To analyze the lung microbiome and assess inflammatory markers, BAL samples were collected for 16S rRNA gene sequencing. Additionally, we validated the ROSE criteria in two bronchiectasis cohorts—a prospective single-center cohort and a retrospective multicenter cohort in Taiwan—to assess the clinical implications and clinical outcomes of the COPD-BE association compared to other groups with or without FAO. Results: The study cohort comprised 181 patients: 86 with COPD, 46 with bronchiectasis, and 49 with bronchiectasis and FAO, confirmed by spirometry. Patients with bronchiectasis, regardless of FAO, had similar microbiome profiles characterized by reduced alpha diversity and a predominance of Proteobacteria, which were distinctly different from COPD patients who exhibited more Firmicutes, greater diversity, and more commensal taxa. Furthermore, compared to COPD and BE without FAO, BE with FAO showed more severe disease and a higher risk of exacerbations. A significant correlation was found between the presence of Pseudomonas aeruginosa and increased airway neutrophilic inflammation, including Interleukin (IL)-1β, IL-8, and tumor necrosis factor-alpha (TNF)-α, as well as higher bronchiectasis severity, which may contribute to an increased risk of exacerbations. In BE patients with FAO, the ROSE criteria were employed to classify individuals as either ROSE (+) or ROSE (-) based on smoking history. This classification highlighted differences in clinical features, inflammatory profiles, and slight microbiome variations between ROSE (-) and ROSE (+) patients, suggesting diverse endotypes within the BE with FAO group. An integrated cohort analysis was conducted within a Taiwanese demographic, combining a prospective cohort of 147 participants with a multicenter retrospective cohort of 574 participants. Using the ROSE criteria, we found that 16.5% of participants had a COPD-BE association (22.4% in the prospective cohort and 14.9% in the retrospective cohort), predominantly among older male patients. These patients had escalated dyspnea scores, higher COPD diagnosis rates, and increased use of inhalation therapies compared to those without FAO. Notably, patients with a COPD-BE association and nonsmoking BE with FAO displayed similar clinical symptoms, pulmonary function, and disease severity but differed slightly in airway microbiology. Furthermore, patients with a COPD-BE association had significantly higher risks of exacerbations and hospitalizations, even after adjusting for confounding factors, highlighting poorer clinical outcomes compared to other groups. Conclusion: Patients with bronchiectasis and FAO may exhibit two distinct endotypes, as defined by the ROSE criteria. These endotypes are characterized by greater disease severity and a lung microbiome that is more similar to that of bronchiectasis patients without FAO than to those with COPD. The significant correlation between Pseudomonas aeruginosa colonization and increased airway neutrophilic inflammation, along with disease severity, underscores the clinical relevance of microbial patterns. Additionally, we found that the ROSE criteria effectively identify the COPD-BE association in East Asian populations, highlighting a significantly higher risk of future exacerbations compared to other bronchiectasis groups. This finding reinforces the potential role of this lung microbiome in the progression and exacerbations of bronchiectasis with FAO. Future research is warranted to better understand the progression of bronchiectasis, particularly in subgroups with FAO. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:30:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-20T16:30:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF ABBREVIATIONS vi LIST OF FIGURES vii LIST OF TABLE viii Chapter 1. Background 01 1.1 History of lung microbiome 01 1.2 NGS and detectable lung microbiome 02 1.2.1 16S rRNA gene sequencing 03 1.2.2 Shotgun metagenomics gene sequencing 05 1.2.3 ITS1 and ITS2 gene sequencing for fungal mycobiome 06 1.2.4 Lung microbiome: from samples to results 07 1.3 Sampling and collection of lung microbiota 09 1.3.1 Sputum sample collection 09 1.3.2 Bronchoalveolar lavage (BAL) sample collection 12 1.3.3 Contamination and negative control sample collection 16 1.4 DNA extraction protocol 19 1.5. From library preparation, cluster generation, sequencing to alignment 22 1.5.1 Library preparation 22 1.5.2 Cluster generation 23 1.5.3 Sequencing 24 1.5.4 Alignment and data analysis 25 1.6 Sequence analysis 26 1.6.1 Operational Taxonomic Units (OTUs) versus Amplicon Sequence Variants (ASVs) 27 1.7 The origins of the lung microbiota 29 1.8 The concept of “bacterial dysbiosis” in chronic lung disease 31 1.9 The role of lung microbiome in chronic lung diseases (COPD and bronchiectasis) 33 1.10 The association of COPD and bronchiectasis 34 1.11 The of lung microbiome in COPD-BE association 34 1.12 Aim of study for lung microbiome research for COPD and bronchiectasis 36 1.12.1 Establish a prospective clinical study for COPD 36 1.12.2 Establish a prospective clinical study for Bronchiectasis 37 1.12.3 Investigate the lung microbiome in COPD, Bronchiectasis, and coexisting conditions using BAL samples 37 1.12.4 Apply the ROSE criteria to assess the COPD-Bronchiectasis association in East Asian cohorts 37 Chapter 2. Materials and Methods 38 2.1 Study design and participants 38 2.2 Inclusion criteria 38 2.3 Exclusion criteria 39 2.4 Clinical assessment of the patients 40 2.4.1 Lung function measurements 40 2.4.2 Quantification of emphysema area on chest CT 40 2.4.3 Assessment of severity of bronchiectasis 41 2.4.4 Clinical outcomes measurements 42 2.5 Sample collections and Processing 43 2.5.1 BAL samples collections 43 2.5.2 BAL sample for cytokines analysis 44 2.5.3 BAL sample for immune cells analysis 44 2.5.4 BAL sample for neutrophilic extracellular traps (NETs) analysis 45 2.5.5 BAL sample processing for DNA extraction 45 2.6 Methods for lung microbiome sequencing 45 2.6.1 PCR amplification and purification 46 2.6.2 Library preparation and sequencing 47 2.7 Lung microbiome analysis 47 2.8 Statistical analysis 49 Chapter 3. Results 50 3.1 Clinical characteristics of patients with bronchiectasis and COPD 50 3.2 Negative controls and decomtam method results 54 3.3 Lung microbiome comparison between BE-FAO, BE, and COPD groups 57 3.4 Bronchiectasis with FAO exhibits neutrophilic inflammation and specific microbiota compared to BE and COPD 63 3.5 Differences in clinical features, airway inflammation, and lung microbiome among patients with bronchiectasis with FAO according to ROSE criteria 65 3.6 Association of specific lung bacterial taxa and airway inflammation with risk of future exacerbations in BE-FAO 73 3.7 The Impact of COPD-Bronchiectasis association on clinical outcomes: validation of the ROSE criteria in two cohorts 79 3.7.1 Stratification of bronchiectasis in cohorts based on ROSE criteria 80 3.7.2 Clinical characteristics of COPD-BE association and other groups in the prospective cohort 82 3.7.3 Clinical characteristics of COPD-BE association and other groups in the retrospective cohort 88 3.7.4 Clinical outcomes of COPD-BE association and other groups in the prospective cohort 92 3.7.5 Clinical outcomes of COPD-BE association and other groups in the retrospective cohort 94 3.7.6 The bronchiectasis patients with a clinical diagnosis of COPD had worse outcomes 96 Chapter 4. Discussion 99 Chapter 5. Conclusion and Future Prospects 112 Reference 114 Appendix. Related Publications 134 | - |
dc.language.iso | en | - |
dc.title | 慢性阻塞性肺病及支氣管擴張症的肺微生物菌叢基因體研究 | zh_TW |
dc.title | Lung microbiome research in chronic obstructive pulmonary disease and bronchiectasis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 王弘毅;王鶴健;李岡遠;吳俊穎 | zh_TW |
dc.contributor.oralexamcommittee | Hurng-Yi Wang;Hao-Chien Wang;Kang-Yun Lee;Chun-Ying Wu | en |
dc.subject.keyword | 16S核糖体核糖核酸基因定序,支氣管擴張症,慢性阻塞性肺病-支氣管擴張症關聯症,固定氣道阻塞,肺微生物菌叢基因體,ROSE標準, | zh_TW |
dc.subject.keyword | 16S rRNA Gene Sequencing,Bronchiectasis,COPD-BE Association,Fixed Airflow Obstruction,Lung Microbiome,ROSE Criteria, | en |
dc.relation.page | 140 | - |
dc.identifier.doi | 10.6342/NTU202404666 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-12-05 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 臨床醫學研究所 | - |
dc.date.embargo-lift | 2025-02-21 | - |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 34.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。