請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96680
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賈景山 | zh_TW |
dc.contributor.advisor | Jean-San Chia | en |
dc.contributor.author | 郭佑民 | zh_TW |
dc.contributor.author | Yu-Min Kuo | en |
dc.date.accessioned | 2025-02-20T16:30:23Z | - |
dc.date.available | 2025-02-21 | - |
dc.date.copyright | 2025-02-20 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-12-30 | - |
dc.identifier.citation | 1.Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532-1535 (2004).
2 Thiam, H. R., Wong, S. L., Wagner, D. D. & Waterman, C. M. Cellular mechanisms of NETosis. Annual review of cell and developmental biology 36, 191-218 (2020). 3 Zuo, Y. et al. Neutrophil extracellular traps in COVID-19. JCI insight 5 (2020). 4 Jung, C.-J. et al. Endocarditis pathogen promotes vegetation formation by inducing intravascular neutrophil extracellular traps through activated platelets. Circulation 131, 571-581 (2015). 5 Zuo, Y. et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Science translational medicine 12, eabd3876 (2020). 6 Bonaventura, A. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nature Reviews Immunology 21, 319-329 (2021). 7 Petito, E. et al. Association of neutrophil activation, more than platelet activation, with thrombotic complications in coronavirus disease 2019. The Journal of infectious diseases 223, 933-944 (2021). 8 McFadyen, J. D., Stevens, H. & Peter, K. The emerging threat of (micro) thrombosis in COVID-19 and its therapeutic implications. Circulation research 127, 571-587 (2020). 9 Abrams, S. T. et al. A novel assay for neutrophil extracellular trap formation independently predicts disseminated intravascular coagulation and mortality in 46 critically ill patients. American journal of respiratory and critical care medicine 200, 869-880 (2019). 10 Khan, S. et al. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife 10, e68563 (2021). 11 Sharma, V. K. et al. Nanocurcumin potently inhibits SARS-CoV-2 spike protein-induced cytokine storm by deactivation of MAPK/NF-κB signaling in epithelial cells. ACS Applied Bio Materials 5, 483-491 (2022). 12 Liu, S. et al. Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Scientific reports 6, 37252 (2016). 13 Kaiser, R. et al. Self-sustaining IL-8 loops drive a prothrombotic neutrophil phenotype in severe COVID-19. Jci Insight 6 (2021). 14 Douda, D. N., Khan, M. A., Grasemann, H. & Palaniyar, N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proceedings of the National Academy of Sciences 112, 2817-2822 (2015). 15 Leung, H. H. et al. NETosis and thrombosis in vaccine-induced immune thrombotic thrombocytopenia. Nature Communications 13, 5206 (2022). 16 Zuo, Y. et al. Autoantibodies stabilize neutrophil extracellular traps in COVID-19. JCI insight 6 (2021). 17 Zuo, Y. et al. Anti–neutrophil extracellular trap antibodies and impaired neutrophil extracellular trap degradation in antiphospholipid syndrome. Arthritis & Rheumatology 72, 2130-2135 (2020). 18 Davies, D. J. Small vessel vasculitis. Cardiovascular Pathology 14, 335-346 (2005). 47 19 Harper, L. & Savage, C. Pathogenesis of ANCA‐associated systemic vasculitis. The Journal of pathology 190, 349-359 (2000). 20 Berthelot, J.-M., Le Goff, B., Neel, A., Maugars, Y. & Hamidou, M. NETosis: At the crossroads of rheumatoid arthritis, lupus, and vasculitis. Joint Bone Spine 84, 255-262 (2017). 21 Söderberg, D. et al. Increased levels of neutrophil extracellular trap remnants in the circulation of patients with small vessel vasculitis, but an inverse correlation to anti-neutrophil cytoplasmic antibodies during remission. Rheumatology 54, 2085-2094 (2015). 22 Moore, S. et al. Role of neutrophil extracellular traps regarding patients at risk of increased disease activity and cardiovascular comorbidity in systemic lupus erythematosus. The Journal of rheumatology 47, 1652-1660 (2020). 23 Kallenberg, C. G. & Tadema, H. Vasculitis and infections: contribution to the issue of autoimmunity reviews devoted to “autoimmunity and infection”. Autoimmunity Reviews 8, 29-32 (2008). 24 Gómez-Puerta, J. A., Gedmintas, L. & Costenbader, K. H. The association between silica exposure and development of ANCA-associated vasculitis: systematic review and meta-analysis. Autoimmunity reviews 12, 1129-1135 (2013). 25 Ntatsaki, E. et al. BSR and BHPR guideline for the management of adults with ANCA-associated vasculitis. Rheumatology 53, 2306-2309 (2014). 26 McClure, M., Gopaluni, S., Jayne, D. & Jones, R. B cell therapy in ANCA-associated vasculitis: current and emerging treatment options. Nature Reviews Rheumatology 14, 580-591 (2018). 27 Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. New England Journal of Medicine 363, 221-232 (2010). 48 28 Chang, C.-H. et al. The first reported case of trastuzumab induced interstitial lung disease associated with anti-neutrophil cytoplasmic antibody vasculitis–A case report and a prospective cohort study on the usefulness of neutrophil derived biomarkers in monitoring vasculitis disease activity during follow-up. The Breast 61, 35-42 (2022). 29 Ruopp, M. D., Perkins, N. J., Whitcomb, B. W. & Schisterman, E. F. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom J 50, 419-430, doi:10.1002/bimj.200710415 (2008). 30 Radić, M., Martinović Kaliterna, D. & Radić, J. Drug-induced vasculitis: a clinical and pathological review. Neth J Med 70, 12-17 (2012). 31 Csernok, E. & Hellmich, B. Usefulness of vasculitis biomarkers in the era of the personalized medicine. Autoimmun Rev 19, 102514, doi:10.1016/j.autrev.2020.102514 (2020). 32 Almaani, S., Fussner, L. A., Brodsky, S., Meara, A. S. & Jayne, D. ANCA-Associated Vasculitis: An Update. J Clin Med 10, doi:10.3390/jcm10071446 (2021). 33 Kinoshita, M. et al. Neutrophils initiate and exacerbate Stevens-Johnson syndrome and toxic epidermal necrolysis. Sci Transl Med 13, doi:10.1126/scitranslmed.aax2398 (2021). 34 Ahn, M. H. et al. Neutrophil Extracellular Traps May Contribute to the Pathogenesis in Adult-onset Still Disease. J Rheumatol 46, 1560-1569, doi:10.3899/jrheum.181058 (2019). 35 Greinacher, A. et al. Insights in ChAdOx1 nCoV-19 vaccine-induced immune thrombotic thrombocytopenia. Blood 138, 2256-2268, doi:10.1182/blood.2021013231 (2021). 49 36 Paues Göranson, S. et al. Circulating H3Cit is elevated in a human model of endotoxemia and can be detected bound to microvesicles. Sci Rep 8, 12641, doi:10.1038/s41598-018-31013-4 (2018). 37 Kustanovich, A., Schwartz, R., Peretz, T. & Grinshpun, A. Life and death of circulating cell-free DNA. Cancer Biol Ther 20, 1057-1067, doi:10.1080/15384047.2019.1598759 (2019). 38 Krashias, G. et al. SARS CoV- 2 vaccination induces antibodies against cardiolipin. BMC Res Notes 15, 292, doi:10.1186/s13104-022-06180-3 (2022). 39 Meng, H. et al. In Vivo Role of Neutrophil Extracellular Traps in Antiphospholipid Antibody-Mediated Venous Thrombosis. Arthritis Rheumatol 69, 655-667, doi:10.1002/art.39938 (2017). 40 Malamud, M. et al. Recognition and control of neutrophil extracellular trap formation by MICL. Nature 633, 442-450 (2024). 41 Zuo, Y. et al. Anti-Neutrophil Extracellular Trap Antibodies in Antiphospholipid Antibody-Positive Patients: Results From the Antiphospholipid Syndrome Alliance for Clinical Trials and InternatiOnal Networking Clinical Database and Repository. Arthritis Rheumatol 75, 1407-1414, doi:10.1002/art.42489 (2023). 42 Cohen, T. S. et al. Serum levels of anti-PF4 IgG after AZD1222 (ChAdOx1 nCoV-19) vaccination. Sci Rep 12, 7961, doi:10.1038/s41598-022-11623-9 (2022). 43 Falsey, A. R. et al. Phase 3 Safety and Efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 Vaccine. N Engl J Med 385, 2348-2360, doi:10.1056/NEJMoa2105290 (2021). 44 Boonyawat, K. et al. Incidence of anti-platelet factor4/polyanionic antibodies, thrombocytopenia, and thrombosis after COVID-19 vaccination with ChAdOx1 nCoV-19 in Thais. Thromb J 21, 92, doi:10.1186/s12959-023-00533-z (2023). 50 45 Lai, C. C., Lee, P. I. & Hsueh, P. R. How Taiwan has responded to COVID-19 and how COVID-19 has affected Taiwan, 2020-2022. J Microbiol Immunol Infect 56, 433-441, doi:10.1016/j.jmii.2023.04.001 (2023). 46 Song, Y. C. et al. Humoral and cellular immunity in three different types of COVID-19 vaccines against SARS-CoV-2 variants in a real-world data analysis. J Microbiol Immunol Infect 56, 705-717, doi:10.1016/j.jmii.2023.03.008 (2023). 47 Sheng, W. H., Hsieh, S. M. & Chang, S. C. Achievements of COVID-19 vaccination programs: Taiwanese perspective. J Formos Med Assoc 123 Suppl 1, S70-s76, doi:10.1016/j.jfma.2023.04.017 (2024). 48 Lavillegrand, J.-R. et al. Alternating high-fat diet enhances atherosclerosis by neutrophil reprogramming. Nature, 1-10 (2024). 49 Widyasari, K., Jang, J., Lee, S., Kang, T. & Kim, S. Evaluation of the T cell and B cell response following the administration of COVID-19 vaccines in Korea. J Microbiol Immunol Infect 55, 1013-1024, doi:10.1016/j.jmii.2022.09.004 (2022). 50 Hudis, C. A. Trastuzumab--mechanism of action and use in clinical practice. N Engl J Med 357, 39-51, doi:10.1056/NEJMra043186 (2007). 51 Geyer, C. E. et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355, 2733-2743, doi:10.1056/NEJMoa064320 (2006). 52 Gianni, L. et al. Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: a 4-year follow-up of a randomised controlled trial. Lancet Oncol 12, 236-244, doi:10.1016/s1470-2045(11)70033-x (2011). 53 Baselga, J. et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366, 109-119, doi:10.1056/NEJMoa1113216 (2012). 51 54 Skeoch, S. et al. Drug-Induced Interstitial Lung Disease: A Systematic Review. J Clin Med 7, doi:10.3390/jcm7100356 (2018). 55 Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353, 1659-1672, doi:10.1056/NEJMoa052306 (2005). 56 Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353, 1673-1684, doi:10.1056/NEJMoa052122 (2005). 57 Slamon, D. et al. Adjuvant Trastuzumab in HER2-Positive Breast Cancer. New England Journal of Medicine 365, 1273-1283, doi:doi:10.1056/NEJMoa0910383 (2011). 58 Modi, S. et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. N Engl J Med 382, 610-621, doi:10.1056/NEJMoa1914510 (2020). 59 Hackshaw, M. D. et al. Incidence of pneumonitis/interstitial lung disease induced by HER2-targeting therapy for HER2-positive metastatic breast cancer. Breast Cancer Res Treat 183, 23-39, doi:10.1007/s10549-020-05754-8 (2020). 60 Wong, M., Grossman, J., Hahn, B. H. & La Cava, A. Cutaneous vasculitis in breast cancer treated with chemotherapy. Clin Immunol 129, 3-9, doi:10.1016/j.clim.2008.07.001 (2008). 61 Bhardwaj, A. S. et al. A case of vasculitis in a breast cancer patient treated with T-DM1. Semin Oncol 41, e39-45, doi:10.1053/j.seminoncol.2014.08.010 (2014). 62 Suzuki, Y., Tokuda, Y., Saito, Y., Ohta, M. & Tajima, T. Combination of Trastuzumab and Vinorelbine in Metastatic Breast Cancer. Japanese Journal of Clinical Oncology 33, 514-517, doi:10.1093/jjco/hyg101 (2003). 52 63 Anders, C. K. et al. What's the Price? Toxicities of Targeted Therapies in Breast Cancer Care. Am Soc Clin Oncol Educ Book 40, 55-70, doi:10.1200/edbk_279465 (2020). 64 Kumagai, K. et al. Interstitial pneumonitis related to trastuzumab deruxtecan, a human epidermal growth factor receptor 2-targeting Ab-drug conjugate, in monkeys. Cancer Sci 111, 4636-4645, doi:10.1111/cas.14686 (2020). 65 Radzikowska, E., Szczepulska, E., Chabowski, M. & Bestry, I. Organising pneumonia caused by transtuzumab (Herceptin) therapy for breast cancer. Eur Respir J 21, 552-555, doi:10.1183/09031936.03.00035502 (2003). 66 Kuip, E. & Muller, E. Fatal pneumonitis after treatment with docetaxel and trastuzumab. Neth J Med 67, 237-239 (2009). 67 Pepels, M. J., Boomars, K. A., van Kimmenade, R. & Hupperets, P. S. Life-threatening interstitial lung disease associated with trastuzumab: case report. Breast Cancer Res Treat 113, 609-612, doi:10.1007/s10549-008-9966-8 (2009). 68 Abulkhair, O. & El Melouk, W. Delayed Paclitaxel-trastuzumab-induced interstitial pneumonitis in breast cancer. Case Rep Oncol 4, 186-191, doi:10.1159/000326063 (2011). 69 Reynolds, T. D. et al. An unusual flare of anti-synthetase syndrome during concurrent trastuzumab therapy given for recurrent breast cancer. Eur J Rheumatol 4, 278-280, doi:10.5152/eurjrheum.2017.17036 (2017). 70 Sugaya, A. et al. Interstitial lung disease associated with trastuzumab monotherapy: A report of 3 cases. Mol Clin Oncol 6, 229-232, doi:10.3892/mco.2016.1113 (2017). 71 Yates, M. et al. EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis. Ann Rheum Dis 75, 1583-1594, doi:10.1136/annrheumdis-2016-209133 (2016). 53 72 Tsutsumi, Y. et al. Hepatitis B virus reactivation with a rituximab-containing regimen. World J Hepatol 7, 2344-2351, doi:10.4254/wjh.v7.i21.2344 (2015). 73 Berger, J. R., Malik, V., Lacey, S., Brunetta, P. & Lehane, P. B. Progressive multifocal leukoencephalopathy in rituximab-treated rheumatic diseases: a rare event. J Neurovirol 24, 323-331, doi:10.1007/s13365-018-0615-7 (2018). 74 Jayne, D. et al. Efficacy and Safety of Belimumab and Azathioprine for Maintenance of Remission in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis: A Randomized Controlled Study. Arthritis Rheumatol 71, 952-963, doi:10.1002/art.40802 (2019). 75 Derebail, V. K. & Falk, R. J. ANCA-Associated Vasculitis - Refining Therapy with Plasma Exchange and Glucocorticoids. N Engl J Med 382, 671-673, doi:10.1056/NEJMe1917490 (2020). 76 Pendergraft, W. F., 3rd & Niles, J. L. Trojan horses: drug culprits associated with antineutrophil cytoplasmic autoantibody (ANCA) vasculitis. Curr Opin Rheumatol 26, 42-49, doi:10.1097/bor.0000000000000014 (2014). 77 Travieso, T., Li, J., Mahesh, S., Mello, J. D. F. R. E. & Blasi, M. The use of viral vectors in vaccine development. npj Vaccines 7, 75 (2022). 78 Hu, Z., Lu, S.-H., Lowrie, D. B. & Fan, X.-Y. Research advances for virus-vectored tuberculosis vaccines and latest findings on tuberculosis vaccine development. Frontiers in Immunology 13, 895020 (2022). 79 Li, X. et al. Comparative risk of thrombosis with thrombocytopenia syndrome or thromboembolic events associated with different covid-19 vaccines: international network cohort study from five European countries and the US. bmj 379 (2022). 54 80 Li, X. et al. Characterising the background incidence rates of adverse events of special interest for covid-19 vaccines in eight countries: multinational network cohort study. bmj 373 (2021). 81 Chen, C. et al. (2020). 82 Stephen, J. et al. Neutrophil swarming and extracellular trap formation play a significant role in Alum adjuvant activity. npj Vaccines 2, 1 (2017). 83 Gonçalves, A. K. et al. Characterization of immunoglobulin A/G responses during 3 doses of the human papillomavirus-16/18 ASO4-adjuvanted vaccine. Sexually transmitted diseases 43, 335-339 (2016). 84 Garnock-Jones, K. P. & Giuliano, A. R. Quadrivalent human papillomavirus (HPV) types 6, 11, 16, 18 vaccine: for the prevention of genital warts in males. Drugs 71, 591-602 (2011). 85 Herrero, R., González, P. & Markowitz, L. E. Present status of human papillomavirus vaccine development and implementation. The lancet oncology 16, e206-e216 (2015). 86 Nakayama, T., Kashiwagi, Y. & Kawashima, H. Long‐term regulation of local cytokine production following immunization in mice. Microbiology and immunology 62, 124-131 (2018). 87 Keshari, R. S. et al. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS One 7, e48111, doi:10.1371/journal.pone.0048111 (2012). 88 Hirsch, G., Lavoie-Lamoureux, A., Beauchamp, G. & Lavoie, J. P. Neutrophils are not less sensitive than other blood leukocytes to the genomic effects of glucocorticoids. PLoS One 7, e44606, doi:10.1371/journal.pone.0044606 (2012). 55 89 Gabarin, N., Arnold, D. M., Nazy, I. & Warkentin, T. E. Treatment of vaccine-induced immune thrombotic thrombocytopenia (VITT). Semin Hematol 59, 89-96, doi:10.1053/j.seminhematol.2022.03.002 (2022). 90 Ronchetti, S., Ricci, E., Migliorati, G., Gentili, M. & Riccardi, C. How Glucocorticoids Affect the Neutrophil Life. Int J Mol Sci 19, doi:10.3390/ijms19124090 (2018). 91 Vaidya, K. et al. Colchicine Inhibits Neutrophil Extracellular Trap Formation in Patients With Acute Coronary Syndrome After Percutaneous Coronary Intervention. Journal of the American Heart Association 10, e018993, doi:doi:10.1161/JAHA.120.018993 (2021). 92 Safi, R. et al. Neutrophils contribute to vasculitis by increased release of neutrophil extracellular traps in Behçet's disease. J Dermatol Sci 92, 143-150, doi:10.1016/j.jdermsci.2018.08.010 (2018). 93 Karakaş, Ö. et al. Reducing length of hospital stay with colchicine. J Infect Dev Ctries 16, 57-62, doi:10.3855/jidc.14924 (2022). 94 Gillot, C. et al. NETosis and the Immune System in COVID-19: Mechanisms and Potential Treatments. Front Pharmacol 12, 708302, doi:10.3389/fphar.2021.708302 (2021). 95 Lee, Y. Y. et al. Long-acting nanoparticulate DNase-1 for effective suppression of SARS-CoV-2-mediated neutrophil activities and cytokine storm. Biomaterials 267, 120389, doi:10.1016/j.biomaterials.2020.120389 (2021). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96680 | - |
dc.description.abstract | 嗜中性白血球細胞外誘網 (NETs) 作為一種先天防禦機制,已被發現與 COVID-19 及與腺病毒載體疫苗相關的疫苗誘發性血栓性血小板減少症 (VITT) 以及全身性血管炎有關。我們假設,接種 COVID-19 加強劑後出現不良事件的健康受試者 (HDs) 及全身性血管炎患者中,與 NETs 相關的生物指標可能會升高。一項從 2021 年 3 月至 2022 年 1 月進行的研究,納入在國立台灣大學醫院接種 ChAdOx1-S (A)、mRNA-1273 (M) 及高端 MVC-COV1901 (G) 的健康受試者。研究包含三個亞群:MM-M、AA-M 和 GG-G。針對 citrullinated-histone 3 (citH3) 和髓過氧化物酶 (MPO) -DNA 複合物進行了三個時間點的序列測量:疫苗接種前(Naïve)、加強劑當天 (第 0 天) 以及加強劑後 30 天。此外,我們亦檢測了抗肝素血小板因子 4 (抗 HPF4) 和抗 NETs 的 IgG/IgM 抗體,並通過線上日誌收集HDs報告之不良事件 (AEs) 。結果顯示,在不良事件陽性的受試者 (n=100) 中,加強劑第 0 天及加強劑第 30 天的血清 citH3 數值顯著升高。特別是接種 mRNA-1273 和 ChAdOx1-S 的受試者中 citH3 數值較高,並與皮疹相關,但與發燒、頭痛、胸痛或心悸無關。在 AA-M 群組中,抗 HPF4 抗體比值 (加強劑第 0 天/ Naïve) 與 citH3 顯著正相關,這表明抗 HPF4 抗體可能像 VITT 患者一樣,在HDs亦刺激 NETs生物指標citH3之產生。相反地,在 MM-M 群組中,抗 NETs IgM比值 (加強劑第 30 天/加強劑第 0 天)) 與同一時間citH3上升比值顯著相關。另一項前瞻性的血管炎研究 (2017-2021 年) 顯示,血管炎患者的 MPO-DNA數值較高,並且與臨床嚴重程度相關,優於 C 反應蛋白和紅血球沉降率等傳統發炎指標。總結:考量施打mRNA-1273/ChAdOx1-S之HDs有NETs 生物指標上升與促NET自體抗體上升之情形,這兩種疫苗與 NETs 相關「免疫血栓」有潛在相關性。此外,MPO-DNA此NETs生物指標在監測血管炎活性中顯示有應用價值。 | zh_TW |
dc.description.abstract | Neutrophil extracellular traps (NETs), an innate defense mechanism, have been linked to COVID-19 and vaccine-induced thrombotic thrombocytopenia (VITT) associated with adenovirus-vectored vaccines and systemic vasculitis. We hypothesize that NET-related biomarkers may be elevated in healthy donors (HDs) who develop adverse events after receiving COVID-19 boosters and in individuals with systemic vasculitis. A study from March 2021 to January 2022 enrolled HDs receiving ChAdOx1-S (AZ), mRNA-1273 (M), and MVC-COV1901 (G) at National Taiwan University Hospital. Three subgroups, MM-M, AA-M, and GG-G, were included. Serial measurements of citrullinated-histone 3 (citH3) and myeloperoxidase (MPO)-DNA complexes were taken at three points: pre-vaccination, Booster Day 0, and 30 days post-boosters. Anti-heparin platelet factor 4 (anti-HPF4) and anti-NET IgG/IgM antibodies were also examined, with HDs reporting adverse events (AEs) via online diaries. Serum citH3 levels were significantly higher in AE-positive enrollees (n=100) on Booster Day 0 and Day 30. Higher citH3 levels were noted in mRNA-1273 and ChAdOx1-S recipients, correlating with rash but not with fever, headache, chest pain, or palpitations. A significant positive correlation was observed between anti-HPF4 antibody ratios (Booster Day 0/Naïve) and citH3 in the AA-M group, suggesting that anti-HPF4 antibodies may trigger citH3 similarly to VITT. Conversely, a significant correlation was identified between anti-NET IgM ratios (Booster Day 30/Booster Day 0) and citH3 in the MM-M group. In another prospective vasculitis study (2017-2021), MPO-DNA levels were higher in vasculitis patients and correlated with clinical severity, outperforming traditional markers like C-reactive protein and erythrocyte sedimentation rate. These findings highlight a potential link between mRNA-1273/ChAdOx1-S vaccines and NET-associated immunothrombosis, as well as the utility of MPO-DNA in monitoring vasculitis activity. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:30:23Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-20T16:30:23Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv Table of Contents v Abbreviations viii Chapter 1 Introduction 1 1.1 Neutrophil extracellular traps 1 1.2 Neutrophil extracellular traps and immunothrombosis 1 1.3 NET-promoting factors and NET-promoting autoantibodies 3 1.4 Overview of small vessel vasculitis and pathophysiological mechanisms, including the role of NETs 4 1.5 Environmental triggers and clinical management of AAV 6 1.6 Hypothesis formulation and study design 8 Chapter 2 Methods 9 2.1 Healthy donors in a prospective COVID-19 cohort study 9 2.2 Measurement of MPO-DNA complex 10 2.3 Measurement of citH3 11 2.4 Measurement of anti-HPF4 antibodies 12 2.5 Measurement of anti-NET IgG/IgM 12 2.6 Measurement of total IgG and antineutrophil cytoplasmic antibody (ANCA) 13 2.7 A prospective cohort study on neutrophil-derived biomarkers in vasculitis disease activity and a case of vasculitis with longitudinal follow-up 14 2.8 Statistical analysis 15 Chapter 3 Results 17 3.1 Age discrepancy observed in study participants of COVID-19 vaccine immunogenicity and adverse events investigation 17 3.2 Positive adverse events following booster vaccinations linked to higher serum citH3 levels 18 3.3 Dynamic changes in citH3 and anti-NET antibody levels post-booster vaccination of three types of COVID-19 vaccines 19 3.4 Positive correlation between anti-HPF4 antibodies and citH3 levels post-booster in AA-M group and potential role for anti-NET IgM in elevation of citH3 after mRNA COVID-19 vaccines 21 3.5 No significant correlation between anti-S IgG levels and citH3 escalation post-COVID-19 boosters 22 3.6 Analysis of symptomatology post-booster COVID-19 vaccination reveals correlations with NETosis biomarkers 23 3.7 Vasculitis case presentation 23 3.8 Optimizing the use of vasculitis markers in trastuzumab-induced interstitial lung disease 25 3.9 Evaluating MPO-DNA efficacy in a prospective vasculitis cohort 27 3.10 Evaluation of NET biomarkers MPO-DNA in the vasculitis case associated with trastuzumab-ILD 28 Chapter 4 Discussion 30 4.1 Discussion of Part I: The roles of NETs and autoantibodies in adverse events following COVID-19 vaccines 30 4.2 Discussion of Part II: The use of neutrophil extracellular trap biomarkers for prognostic prediction in systemic vasculitis 34 Chapter 5 Perspective 40 5.1 Adenovirus-based vaccines: implications for safety and future research 40 5.2 NETs biomarkers are potentially linked to specific antibody production 42 5.3 Potential influence of age on NETosis in vaccine studies 42 5.4 The potential of MPO-DNA as a biomarker in systemic vasculitis and trastuzumab-induced ILD 43 5.5 Conclusion 44 Chapter 6 References 45 Chapter 7 Figures and Tables 56 FIGURE 1. Method of measurement of anti-NET IgG/IgM 56 FIGURE 2. Enrollment flow diagram of COVID vaccine cohort 57 FIGURE 3. Substantial elevation or inclination towards elevation was noted for the NETosis biomarkers citH3 and MPO-DNA in HDs who reported AEs 59 FIGURE 4. Evaluation of citH3 levels for AE prediction 61 FIGURE 5. Comparison of Anti-S and total IgG levels in AE(+) and AE(-)HDs 62 FIGURE 6. HDs who received adenovirus-vectored/mRNA COVID-19 vaccines exhibited heightened levels of serum citH3 upon serial testing 63 FIGURE 7. Dynamic changes in Anti-S antibodies across three subgroups 65 FIGURE 8. Temporal associations were observed among increases in anti-HPF4 antibodies, anti-NET IgM, and citH3 levels 66 FIGURE 9. Lack of temporal correlation between Anti-S antibody increases and citH3 levels 67 FIGURE 10. Absence of significant elevation in Anti-S antibodies stratified by NETosis biomarkers citH3 68 FIGURE 11. Symptomatology across three subgroups 69 FIGURE 12. Association of higher citH3 levels with rash, not fever or other AEs 70 FIGURE 13. Imaging studies of a case of vasculitis 71 FIGURE 14. Bronchoscopy findings of diffuse mucosal bleeding in the airway 72 FIGURE 15. Evidence of vasculitis from pathology specimen 73 FIGURE 16. Key inflammatory markers change prior to and after treatment 74 FIGURE 17. Study flowchart of a prospective cohort study on systemic vasculitis 75 FIGURE 18. MPO-DNA levels as a diagnostic biomarker in systemic vasculitis 76 FIGURE 19. MPO-DNA correlation with disease activity in vasculitis patients 77 FIGURE 20. A schematic diagram highlights the role of NETs and NET-promoting antibodies in vaccinated HDs 78 FIGURE 21. Interaction between anti-HER2 antibody and ANCA-associated vasculitis and neutrophil 80 TABLE 1. Baseline characteristics and dynamic changes in citH3 levels were analyzed for three subgroups 81 TABLE 2. Dynamic changes in citH3 serum levels and anti-HPF4 antibody levels in COVID-19 vaccine recipients were assessed using linear mixed models 82 TABLE 3. Case comparison of previously reported trastuzumab-related interstitial lung disease 83 TABLE 4. Clinical characteristics of vasculitis patients and healthy controls 84 Chapter 8 APPENDIX 85 | - |
dc.language.iso | en | - |
dc.title | 嗜中性白血球細胞外誘網與自體抗體在新冠疫苗後併發症與血管炎之角色 | zh_TW |
dc.title | Adverse events following COVID-19 vaccines and systemic vasculitis—elucidating the roles of neutrophil extracellular traps and autoantibodies. | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.coadvisor | 謝松洲 | zh_TW |
dc.contributor.coadvisor | Song-Chou Hsieh | en |
dc.contributor.oralexamcommittee | 蔡長祐;鍾筱菁;余家利;呂明錡 ;楊偉勛 | zh_TW |
dc.contributor.oralexamcommittee | Chang-Youh Tsai;Chiau-Jing Jung;Chia-Li Yu ;Ming-Chi Lu;Wei-Shiung Yang | en |
dc.subject.keyword | COVID-19 疫苗,mRNA 疫苗,嗜中性白血球細胞外誘網,自體抗體,全身性血管炎, | zh_TW |
dc.subject.keyword | COVID-19 vaccines,mRNA vaccine,NETosis,autoantibodies,systemic vasculitis, | en |
dc.relation.page | 85 | - |
dc.identifier.doi | 10.6342/NTU202404782 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2025-01-02 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 臨床醫學研究所 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 3.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。