請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96677完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃敏銓 | zh_TW |
| dc.contributor.advisor | Min-Chuan Huang | en |
| dc.contributor.author | 陳儷元 | zh_TW |
| dc.contributor.author | Li-Yuan Chen | en |
| dc.date.accessioned | 2025-02-20T16:29:36Z | - |
| dc.date.available | 2025-02-21 | - |
| dc.date.copyright | 2025-02-20 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-01-02 | - |
| dc.identifier.citation | 1. Bray F , Laversanne M , Sung H , et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 1-35. doi:10.3322/caac.21834
2. Zhang H, Dziegielewski PT, Biron VL, Szudek J, Al-Qahatani KH, O'Connell DA, Harris JR, Seikaly H. Survival outcomes of patients with advanced oral cavity squamous cell carcinoma treated with multimodal therapy: a multi-institutional analysis. J Otolaryngol Head Neck Surg. 2013 Apr 19;42(1):30. doi: 10.1186/1916-0216-42-30. 3. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, Ove R, Kies MS, Baselga J, Youssoufian H, Amellal N, Rowinsky EK, Ang KK. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006 Feb 9;354(6):567-78. doi: 10.1056/NEJMoa053422. 4. Joshua Bauml et al., Pembrolizumab for Platinum- and Cetuximab-Refractory Head and Neck Cancer: Results From a Single-Arm, Phase II Study. JCO 35, 1542-1549(2017) DOI:10.1200/JCO.2016.70.1524 5. Ferris, R. L. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 375, 1856–1867 (2016) 6. Harrington KJ, Ferris RL, Blumenschein G Jr, Colevas AD, Fayette J, Licitra L, Kasper S, Even C, Vokes EE, Worden F, Saba NF, Kiyota N, Haddad R, Tahara M, Grünwald V, Shaw JW, Monga M, Lynch M, Taylor F, DeRosa M, Morrissey L, Cocks K, Gillison ML, Guigay J. Nivolumab versus standard, single-agent therapy of investigator's choice in recurrent or metastatic squamous cell carcinoma of the head and neck (CheckMate 141): health-related quality-of-life results from a randomised, phase 3 trial. Lancet Oncol. 2017 Aug;18(8):1104-1115. doi: 10.1016/S1470-2045(17)30421-7. 7. Walker C, Mojares E, Del Río Hernández A. Role of Extracellular Matrix in Development and Cancer Progression. Int J Mol Sci. 2018 Oct 4;19(10):3028. doi: 10.3390/ijms19103028. 8. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging Biological Principles of Metastasis. Cell. 2017 Feb 9;168(4):670-691. doi: 10.1016/j.cell.2016.11.037. 9. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011 Oct 14;147(2):275-92. doi: 10.1016/j.cell.2011.09.024. 10. Park S, Han W, Kim J, Kim MK, Lee E, Yoo TK, Lee HB, Kang YJ, Kim YG, Moon HG, Noh DY. Risk Factors Associated with Distant Metastasis and Survival Outcomes in Breast Cancer Patients with Locoregional Recurrence. J Breast Cancer. 2015 Jun;18(2):160-6. doi: 10.4048/jbc.2015.18.2.160. 11. Rezzola S, Sigmund EC, Halin C, Ronca R. The lymphatic vasculature: An active and dynamic player in cancer progression. Med Res Rev. 2022 Jan;42(1):576-614. doi: 10.1002/med.21855. 12. Follain G, Herrmann D, Harlepp S, Hyenne V, Osmani N, Warren SC, Timpson P, Goetz JG. Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer. 2020 Feb;20(2):107-124. doi: 10.1038/s41568-019-0221-x. 13. Swartz MA, Lund AW. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer. 2012 Feb 24;12(3):210-9. doi: 10.1038/nrc3186. 14. Jain RK, Tong RT, Munn LL. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res. 2007 Mar 15;67(6):2729-35. doi: 10.1158/0008-5472.CAN-06-4102. 15. Cornelison RC, Brennan CE, Kingsmore KM, Munson JM. Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model. Sci Rep. 2018 Nov 19;8(1):17057. doi: 10.1038/s41598-018-35141-9. 16. Li R, Serrano JC, Xing H, Lee TA, Azizgolshani H, Zaman M, Kamm RD. Interstitial flow promotes macrophage polarization toward an M2 phenotype. Mol Biol Cell. 2018 Aug 8;29(16):1927-1940. doi: 10.1091/mbc.E18-03-0164. 17. Issa A, Le TX, Shoushtari AN, Shields JD, Swartz MA. Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res. 2009 Jan 1;69(1):349-57. doi: 10.1158/0008-5472.CAN-08-1875. 18. Das S, Sarrou E, Podgrabinska S, Cassella M, Mungamuri SK, Feirt N, Gordon R, Nagi CS, Wang Y, Entenberg D, Condeelis J, Skobe M. Tumor cell entry into the lymph node is controlled by CCL1 chemokine expressed by lymph node lymphatic sinuses. J Exp Med. 2013 Jul 29;210(8):1509-28. doi: 10.1084/jem.20111627. 19. Farnsworth RH, Karnezis T, Maciburko SJ, Mueller SN, Stacker SA. The Interplay Between Lymphatic Vessels and Chemokines. Front Immunol. 2019 Apr 12;10:518. doi: 10.3389/fimmu.2019.00518. 20. Guan X. Cancer metastases: challenges and opportunities. Acta Pharm Sin B. 2015 Sep;5(5):402-18. doi: 10.1016/j.apsb.2015.07.005. 21. Wang B, Tang Z, Gong H, Zhu L, Liu X. Wnt5a promotes epithelial-to-mesenchymal transition and metastasis in non-small-cell lung cancer. Biosci Rep. 2017 Nov 29;37(6):BSR20171092. doi: 10.1042/BSR20171092. 22. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009 Jun;119(6):1420-8. doi: 10.1172/JCI39104. Erratum in: J Clin Invest. 2010 May 3;120(5):1786. 23. Usman S, Waseem NH, Nguyen TKN, Mohsin S, Jamal A, Teh MT, Waseem A. Vimentin Is at the Heart of Epithelial Mesenchymal Transition (EMT) Mediated Metastasis. Cancers (Basel). 2021 Oct 5;13(19):4985. doi: 10.3390/cancers13194985. 24. Yang Y, Zhu G, Dong B, Piao J, Chen L, Lin Z. The NQO1/PKLR axis promotes lymph node metastasis and breast cancer progression by modulating glycolytic reprogramming. Cancer Lett. 2019 Jul 1;453:170-183. doi: 10.1016/j.canlet.2019.03.054. 25. Chung MK, Do IG, Jung E, Son YI, Jeong HS, Baek CH. Lymphatic vessels and high endothelial venules are increased in the sentinel lymph nodes of patients with oral squamous cell carcinoma before the arrival of tumor cells. Ann Surg Oncol. 2012 May;19(5):1595-601. doi: 10.1245/s10434-011-2154-9. 26. Farnsworth RH, Karnezis T, Shayan R, Matsumoto M, Nowell CJ, Achen MG, Stacker SA. A role for bone morphogenetic protein-4 in lymph node vascular remodeling and primary tumor growth. Cancer Res. 2011 Oct 15;71(20):6547-57. doi: 10.1158/0008-5472.CAN-11-0200. 27. Garmy-Susini B, Avraamides CJ, Desgrosellier JS, Schmid MC, Foubert P, Ellies LG, Lowy AM, Blair SL, Vandenberg SR, Datnow B, Wang HY, Cheresh DA, Varner J. PI3Kα activates integrin α4β1 to establish a metastatic niche in lymph nodes. Proc Natl Acad Sci U S A. 2013 May 28;110(22):9042-7. doi: 10.1073/pnas.1219603110. 28. Wei WF, Chen XJ, Liang LJ, Yu L, Wu XG, Zhou CF, Wang ZC, Fan LS, Hu Z, Liang L, Wang W. Periostin+ cancer-associated fibroblasts promote lymph node metastasis by impairing the lymphatic endothelial barriers in cervical squamous cell carcinoma. Mol Oncol. 2021 Jan;15(1):210-227. doi: 10.1002/1878-0261.12837. 29. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956). 30. Shim, H. et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl Acad. Sci. USA 94, 6658–6663 (1997). 31. Lang, L., Chemmalakuzhy, R., Shay, C., Teng, Y. (2019). PFKP Signaling at a Glance: An Emerging Mediator of Cancer Cell Metabolism. In: Guest, P. (eds) Reviews on Biomarker Studies of Metabolic and Metabolism-Related Disorders. Advances in Experimental Medicine and Biology, vol 1134. Springer, Cham. 32. A.I. Coelho, G.T. Berry, M.E. Rubio-Gozalbo, Galactose metabolism and health, Curr Opin Clin Nutr Metab Care 18 (4) (2015) 422–427. 33. Sun X, Xue H, Xiong Y, Yu R, Gao X, Qian M, Wang S, Wang H, Xu J, Chen Z, Deng L, Li G. GALE Promotes the Proliferation and Migration of Glioblastoma Cells and Is Regulated by miR-let-7i-5p. Cancer Manag Res. 2019 Dec 16;11:10539-10554. doi: 10.2147/CMAR.S221585. 34. Liu, G.; Wu, X.; Chen, J. Identification and validation of a glycolysis-related gene signature for depicting clinical characteristics and its relationship with tumor immunity in patients with colon cancer. Aging 2022, 14, 8700–8718 35. He Y, Luo Y, Zhang D, Wang X, Zhang P, Li H, Ejaz S, Liang S. PGK1-mediated cancer progression and drug resistance. Am J Cancer Res. 2019 Nov 1;9(11):2280-2302. 36. Gaude, E., Frezza, C. Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival. Nat Commun 7, 13041 37. X.L. Zu, M. Guppy, Cancer metabolism: facts, fantasy, and fiction, Biochem.Biophys. Res. Commun. 313 (3) (2004) 459–465 38. Caro P, Kishan AU, Norberg E, Stanley IA, Chapuy B, Ficarro SB, et al Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 2012;22:547–60 39. Viale A, Corti D, Draetta GF. Tumors and mitochondrial respiration: a neglected connection. Cancer Res 2015;75:3685–6 40. Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M, et al Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 2014;514:628–32 41. Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol 2017;14:11–31 42. Zong WX, Rabinowitz JD, White E. Mitochondria and cancer. Mol Cell 2016;61:667–76 43. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS, Deschler DG, Varvares MA, Mylvaganam R, Rozenblatt-Rosen O, Rocco JW, Faquin WC, Lin DT, Regev A, Bernstein BE. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell. 2017 Dec 14;171(7):1611-1624.e24. doi: 10.1016/j.cell.2017.10.044. 44. Smith A, Teknos TN, Pan Q. Epithelial to mesenchymal transition in head and neck squamous cell carcinoma. Oral Oncol. 2013 Apr;49(4):287-92. doi: 10.1016/j.oraloncology.2012.10.009. 45. Cell Biology for Seminars. Unit 3: How Are Eukaryotic Cells Organized into Smaller Parts? 2014 Nature Education 46. Sandu K, Nisa L, Monnier P, Simon C, Andrejevic-Blant S, Bron L. Clinicobiological progression and prognosis of oral squamous cell carcinoma in relation to the tumor invasive front: impact on prognosis. Acta oto-laryngologica. April 2014; DOI: 10.3109/00016489.2013.849818; 134(4):416–424. 47. Spiro RH, Huvos AG, Wong GY, Spiro JD, Gnecco CA, Strong EW. Predictive value of tumor thickness in squamous carcinoma confined to the tongue and floor of the mouth. American journal of surgery. October 1986; 152(4):345–350. 48. Ghantous, Y.; Mozalbat, S.; Nashef, A.; Abdol-Elraziq, M.; Sudri, S.; Araidy, S.; Tadmor, H.; Abu El-naaj, I. EMT Dynamics in Lymph Node Metastasis of Oral Squamous Cell Carcinoma. Cancers 2024, 16, 1185. https://doi.org/10.3390/cancers16061185 49. Zhou D, Duan Z, Li Z, Ge F, Wei R, Kong L. The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment. Front Pharmacol. 2022 Dec 14;13:1091779. doi: 10.3389/fphar.2022.1091779. 50. Shiratori, R., Furuichi, K., Yamaguchi, M. et al. Glycolytic suppression dramatically changes the intracellular metabolic profile of multiple cancer cell lines in a mitochondrial metabolism-dependent manner. Sci Rep 9, 18699 (2019). https://doi.org/10.1038/s41598-019-55296-3 51. Ubellacker JM, Morrison SJ. Metabolic Adaptation Fuels Lymph Node Metastasis. Cell Metab. 2019 Apr 2;29(4):785-786. doi: 10.1016/j.cmet.2019.03.006. 52. Endo H, Owada S, Inagaki Y, Shida Y, Tatemichi M. Metabolic reprogramming sustains cancer cell survival following extracellular matrix detachment. Redox Biol. 2020 Sep;36:101643. doi: 10.1016/j.redox.2020.101643. 53. Mukha A, Kahya U, Dubrovska A. Targeting glutamine metabolism and autophagy: the combination for prostate cancer radiosensitization. Autophagy. 2021 Nov;17(11):3879-3881. doi: 10.1080/15548627.2021.1962682. 54. Meng X, Zheng Y, Zhang L, Liu P, Liu Z, He Y. Single-Cell Analyses Reveal the Metabolic Heterogeneity and Plasticity of the Tumor Microenvironment during Head and Neck Squamous Cell Carcinoma Progression. Cancer Res. 2024 Aug 1;84(15):2468-2483. doi: 10.1158/0008-5472. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96677 | - |
| dc.description.abstract | 頭頸部鱗狀細胞癌 (HNSCC) 是一種起源於口腔、咽喉和喉部的黏膜上皮的癌症。癌細胞從初始部位擴散到周圍淋巴結是HNSCC的一個常見特徵,並且腫瘤的轉移也與患者的高死亡率相關。多項研究發現:與正常組織相比,癌細胞會重新編程其代謝以支持增加的能量需求,例如增加葡萄糖攝取率並在有氧情況下優先生成乳酸(即所謂的瓦爾堡效應)。然而,HNSCC是否因為代謝重編程而變得更具惡性和侵襲性仍不清楚。在這項研究中,我們使用了C57BL/6小鼠的頭頸癌淋巴轉移模型,分析原發性腫瘤和頸部淋巴結中轉移性腫瘤之間的差異。我們將小鼠口腔鱗狀細胞癌細胞系 (MOC2) 原位注射到小鼠舌頭。大約兩週後,將舌上的腫瘤(作為原發性腫瘤)和頸部淋巴結中的腫瘤(作為轉移性腫瘤)取下進行後續分析。首先,我們透過即時定量聚合酶連鎖反應技術(Quantitative real-time PCR service) 確認在轉移性腫瘤中,Wnt5a、Vimentin、Snai2 和 Acta2 等上皮間質轉化(epithelial-mesenchymal transition,EMT)相關的標誌物表現升高。然而,就侵襲能力(invasion ability)而言,原發性腫瘤和轉移性腫瘤之間沒有顯著差異。根據海馬生物能量分析儀(Seahorse analysis)進行的糖解壓力測試,與原發性腫瘤相比,轉移性腫瘤的細胞外酸化率 (ECAR) 明顯降低,這意味著轉移性腫瘤的瓦爾堡效應得到緩解。然而,即時定量聚合酶連鎖反應結果顯示轉移性腫瘤中的糖解相關基因表現較高。根據結果,轉移性腫瘤表現出升高的EMT和糖解相關標誌物,而細胞外酸化率則降低。這些發現顯示了HNSCC在轉移過程中的代謝重編程特徵,為進一步研究腫瘤代謝對癌症惡性和侵襲性的影響提供了新的見解,但關於代謝如何影響轉移的確切機制未來仍須更近一步的探討。 | zh_TW |
| dc.description.abstract | Head and neck squamous cell carcinoma (HNSCC) originates from the mucosal squamous epithelial cells in the head and neck region, including oral cavity, pharynx, and larynx. The spread of cancer cells from the initial site to the surrounding lymph nodes is a hallmark of HNSCC and is associated with high patient mortality. Previous studies have reported that cancer cells adapt their metabolism to meet elevated energy demands, including increased uptake of glucose and production of lactate, even under oxygen-sufficient conditions—a phenomenon known as the Warburg effect. However, whether metabolic reprogramming contributes to the lymphatic metastasis of HNSCC remains unclear. In this study, we used an HNSCC lymphatic metastasis model in C57BL/6 mice to investigate the differences between primary tumors and metastatic tumors in cervical lymph nodes. The mouse oral squamous cell carcinoma cell line (MOC2) was orthotopically injected into the tongues of mice. After approximately two weeks, the tumors from the tongue (primary tumors) and cervical lymph nodes (metastatic tumors) were harvested for subsequent analysis. Real-time RT-PCR analysis revealed that epithelial mesenchymal transition (EMT)-related markers, including Wnt5a, Vimentin, Snai2, and Acta2, were elevated in metastatic tumors. However, the Matrigel invasion assay showed no significant difference in invasion ability between primary and metastatic tumors. Additionally, glycolysis-related genes showed higher expression in metastatic tumors, as determined by real-time RT-PCR. In contrast, Seahorse analysis showed that the extracellular acidification rate (ECAR) of metastatic tumors was significantly lower than that of primary tumors, indicating an attenuation of the Warburg effect in metastatic tumors. In conclusion, these results indicate that EMT and glycolysis-related gene expression are elevated in metastatic HNSCC tumors. However, the invasion ability exhibits no significant changes, and ECAR is even decreased. These findings suggest that metastatic tumors undergo metabolic reprogramming, and the observed gene expression changes are not directly correlated with the invasive and metabolic phenotypes. Further research is required to elucidate the precise mechanisms by which metabolism influences metastasis and to determine how the expression of these genes is regulated. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:29:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-20T16:29:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II Contents IV List of Figures VI List of Tables IX 1. Introduction 1 1.1. Head and neck squamous cell carcinoma 1 1.2. Lymph node metastasis in cancer progression 2 1.3. Cancer metabolism 5 2. Materials and Methods 9 2.1. Pathway enrichment analysis 9 2.2. Establishment of the head and neck cancer lymphatic metastasis model in mice 9 2.3. Isolation of tumor cells and primary cell culture 9 2.4. cDNA synthesis and real‐time RT‐PCR 9 2.5. Metabolic assays 10 2.6. Matrigel invasion assays 11 2.7. Transmission electron microscopy (TEM) 11 2.8. Statistical analysis 12 3. Results 13 3.1. Pathway enrichment analysis in tumors from patients with different metastatic potential 13 3.2. Establish the head and neck cancer lymphatic metastasis cell line in vivo 14 3.3. There is not significant difference in invasion ability between metastatic tumor cells and non-metastatic tumor cells in the lymphatic metastasis model 14 3.4. EMT-related gene expression is higher in metastasis tumor cells from lymphatic metastasis model 15 3.5. Expression of metabolism-related genes were upregulated in metastatic tumor cells 16 3.6. Subculturing the primary tumor in vitro does not affect the tendency of gene expression 17 3.7. Metabolic phenotypes alteration during HNSCC metastasis 17 3.8. Analysis of mitochondrial morphology by TEM showed the difference in the number of mitochondria among primary site and metastatic site 19 4. Discussion 21 5. References 26 | - |
| dc.language.iso | en | - |
| dc.subject | 代謝 | zh_TW |
| dc.subject | 頭頸癌 | zh_TW |
| dc.subject | 糖解作用 | zh_TW |
| dc.subject | 轉移 | zh_TW |
| dc.subject | 上皮間質轉化 | zh_TW |
| dc.subject | EMT | en |
| dc.subject | glycolysis | en |
| dc.subject | HNSCC | en |
| dc.subject | metastasis | en |
| dc.subject | metabolism | en |
| dc.title | 體內具轉移潛能同源口腔癌細胞系的建立與基因表達分析 | zh_TW |
| dc.title | Establishment and gene expression analysis of syngeneic oral cancer cell lines with enhanced metastatic potential in vivo | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林能裕;陳學亭;陳家嬅 | zh_TW |
| dc.contributor.oralexamcommittee | Neng-Yu Lin;Syue-Ting Chen;Chia-Hua Chen | en |
| dc.subject.keyword | 頭頸癌,轉移,代謝,糖解作用,上皮間質轉化, | zh_TW |
| dc.subject.keyword | HNSCC,metastasis,metabolism,glycolysis,EMT, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202404802 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-01-03 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | - |
| dc.date.embargo-lift | 2025-02-21 | - |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 11.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
