Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96674
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉秉慧zh_TW
dc.contributor.advisorBiing-Hui Liuen
dc.contributor.author蔡睿豐zh_TW
dc.contributor.authorJui-Feng Tsaien
dc.date.accessioned2025-02-20T16:28:48Z-
dc.date.available2025-02-21-
dc.date.copyright2025-02-20-
dc.date.issued2024-
dc.date.submitted2024-11-28-
dc.identifier.citation潘子明, 2023. 綜述紅麴橘黴素與莫那可林K之安全性. 臺灣農業化學與食品科學 61, 67-72.
Abudayyak, M., Karaman, E.F., Ozden, S., 2023. Mechanisms underlying citrinin-induced toxicity via oxidative stress and apoptosis-mediated by mitochondrial-dependent pathway in SH-SY5Y cells. Drug Chem Toxicol 46, 944-954.
Adiseshaiah, P.P., Clogston, J.D., McLeland, C.B., Rodriguez, J., Potter, T.M., Neun, B.W., Skoczen, S.L., Shanmugavelandy, S.S., Kester, M., Stern, S.T., McNeil, S.E., 2013. Synergistic combination therapy with nanoliposomal C6-ceramide and vinblastine is associated with autophagy dysfunction in hepatocarcinoma and colorectal cancer models. Cancer Lett 337, 254-265.
Agholme, L., Lindstrom, T., Kagedal, K., Marcusson, J., Hallbeck, M., 2010. An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis 20, 1069-1082.
Aleo, M.D., Wyatt, R.D., Schnellmann, R.G., 1991. The role of altered mitochondrial function in citrinin-induced toxicity to rat renal proximal tubule suspensions. Toxicol Appl Pharmacol 109, 455-463.
Ali, N., 2018. Co-occurrence of citrinin and ochratoxin A in rice in Asia and its implications for human health. J Sci Food Agric 98, 2055-2059.
Alto, L.T., Terman, J.R., 2017. Semaphorins and their Signaling Mechanisms. Methods Mol Biol 1493, 1-25.
Ambrose, A.M., DeEds, F., 1946. Some toxicological and pharmacological properties of citrinin. J Pharmacol Exp Ther 88, 173-186.
Arai, M., Hibino, T., 1983. Tumorigenicity of citrinin in male F344 rats. Cancer Lett 17, 281-287.
Arduino, D.M., Esteves, A.R., Cardoso, S.M., 2013. Mitochondria drive autophagy pathology via microtubule disassembly: a new hypothesis for Parkinson disease. Autophagy 9, 112-114.
Asatryan, B., Medeiros-Domingo, A., 2018. Translating emerging molecular genetic insights into clinical practice in inherited cardiomyopathies. J Mol Med (Berl) 96, 993-1024.
Aydin, Y., Orta Yilmaz, B., Yildizbayrak, N., Korkut, A., Arabul Kursun, M., Irez, T., Erkan, M., 2021. Evaluation of citrinin-induced toxic effects on mouse Sertoli cells. Drug Chem Toxicol 44, 559-565.
Bach, D.H., Zhang, W., Sood, A.K., 2019. Chromosomal Instability in Tumor Initiation and Development. Cancer Res 79, 3995-4002.
Bakhoum, S.F., Cantley, L.C., 2018. The Multifaceted Role of Chromosomal Instability in Cancer and Its Microenvironment. Cell 174, 1347-1360.
Bakkers, J., 2011. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91, 279-288.
Bambino, K., Chu, J., 2017. Zebrafish in Toxicology and Environmental Health. Curr Top Dev Biol 124, 331-367.
Bao, W., Gu, Y., Ta, L., Wang, K., Xu, Z., 2016. Induction of autophagy by the MG‑132 proteasome inhibitor is associated with endoplasmic reticulum stress in MCF‑7 cells. Mol Med Rep 13, 796-804.
Barth, M., Toto Nienguesso, A., Navarrete Santos, A., Schmidt, C., 2022. Quantitative proteomics and in-cell cross-linking reveal cellular reorganisation during early neuronal differentiation of SH-SY5Y cells. Commun Biol 5, 551.
Bates, D., Eastman, A., 2017. Microtubule destabilising agents: far more than just antimitotic anticancer drugs. Br J Clin Pharmacol 83, 255-268.
Bauer, B., Mally, A., Liedtke, D., 2021. Zebrafish Embryos and Larvae as Alternative Animal Models for Toxicity Testing. Int J Mol Sci 22.
Behrens, M., Huwel, S., Galla, H.J., Humpf, H.U., 2021. Efflux at the Blood-Brain Barrier Reduces the Cerebral Exposure to Ochratoxin A, Ochratoxin alpha, Citrinin and Dihydrocitrinone. Toxins (Basel) 13.
Bell, M., Zempel, H., 2022. SH-SY5Y-derived neurons: a human neuronal model system for investigating TAU sorting and neuronal subtype-specific TAU vulnerability. Rev Neurosci 33, 1-15.
Bennett, J.W., Klich, M., 2003. Mycotoxins. Clin Microbiol Rev 16, 497-516.
Bjorkoy, G., Lamark, T., Pankiv, S., Overvatn, A., Brech, A., Johansen, T., 2009. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452, 181-197.
Bouslimi, A., Bouaziz, C., Ayed-Boussema, I., Hassen, W., Bacha, H., 2008a. Individual and combined effects of ochratoxin A and citrinin on viability and DNA fragmentation in cultured Vero cells and on chromosome aberrations in mice bone marrow cells. Toxicology 251, 1-7.
Bouslimi, A., Ouannes, Z., Golli, E.E., Bouaziz, C., Hassen, W., Bacha, H., 2008b. Cytotoxicity and oxidative damage in kidney cells exposed to the mycotoxins ochratoxin a and citrinin: individual and combined effects. Toxicol Mech Methods 18, 341-349.
Braicu, C., Buse, M., Busuioc, C., Drula, R., Gulei, D., Raduly, L., Rusu, A., Irimie, A., Atanasov, A.G., Slaby, O., Ionescu, C., Berindan-Neagoe, I., 2019. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers (Basel) 11.
Branco, A.F., Pereira, S.P., Gonzalez, S., Gusev, O., Rizvanov, A.A., Oliveira, P.J., 2015. Gene Expression Profiling of H9c2 Myoblast Differentiation towards a Cardiac-Like Phenotype. PLoS One 10, e0129303.
Brennan, K.M., Oh, S.Y., Yiannikouris, A., Graugnard, D.E., Karrow, N.A., 2017. Differential Gene Expression Analysis of Bovine Macrophages after Exposure to the Penicillium Mycotoxins Citrinin and/or Ochratoxin A. Toxins (Basel) 9.
Caporizzo, M.A., Chen, C.Y., Prosser, B.L., 2019. Cardiac microtubules in health and heart disease. Exp Biol Med (Maywood) 244, 1255-1272.
Chagas, G.M., Kluppel, M.L., Campello Ade, P., Buchi Dde, F., de Oliveira, M.B., 1994. Alterations induced by citrinin in cultured kidney cells. Cell Struct Funct 19, 103-108.
Chagas, G.M., Oliveira, B.M., Campello, A.P., Kluppel, M.L., 1992. Mechanism of citrinin-induced dysfunction of mitochondria. II. Effect on respiration, enzyme activities, and membrane potential of liver mitochondria. Cell Biochem Funct 10, 209-216.
Chagas, G.M., Oliveira, M.B., Campello, A.P., Kluppel, M.L., 1995. Mechanism of citrinin-induced dysfunction of mitochondria. III. Effects on renal cortical and liver mitochondrial swelling. J Appl Toxicol 15, 91-95.
Chan, W.H., 2007. Citrinin induces apoptosis via a mitochondria-dependent pathway and inhibition of survival signals in embryonic stem cells, and causes developmental injury in blastocysts. Biochem J 404, 317-326.
Chan, W.H., Shiao, N.H., 2007. Effect of citrinin on mouse embryonic development in vitro and in vivo. Reprod Toxicol 24, 120-125.
Chang, C.H., Yu, F.Y., Wang, L.T., Lin, Y.S., Liu, B.H., 2009. Activation of ERK and JNK signaling pathways by mycotoxin citrinin in human cells. Toxicol Appl Pharmacol 237, 281-287.
Chang, C.H., Yu, F.Y., Wu, T.S., Wang, L.T., Liu, B.H., 2011. Mycotoxin citrinin induced cell cycle G2/M arrest and numerical chromosomal aberration associated with disruption of microtubule formation in human cells. Toxicol Sci 119, 84-92.
Chen, C.C., Chan, W.H., 2009. Inhibition of citrinin-induced apoptotic biochemical signaling in human hepatoma G2 cells by resveratrol. Int J Mol Sci 10, 3338-3357.
Chen, M.T., Hsu, Y.H., Wang, T.S., Chien, S.W., 2016. Mycotoxin monitoring for commercial foodstuffs in Taiwan. J Food Drug Anal 24, 147-156.
Chen, P.M., Gombart, Z.J., Chen, J.W., 2011. Chloroquine treatment of ARPE-19 cells leads to lysosome dilation and intracellular lipid accumulation: possible implications of lysosomal dysfunction in macular degeneration. Cell Biosci 1, 10.
Cheng, A., Hou, Y., Mattson, M.P., 2010. Mitochondria and neuroplasticity. ASN Neuro 2, e00045.
Cheung, Y.T., Lau, W.K., Yu, M.S., Lai, C.S., Yeung, S.C., So, K.F., Chang, R.C., 2009. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 30, 127-135.
Chisholm, A., Tessier-Lavigne, M., 1999. Conservation and divergence of axon guidance mechanisms. Curr Opin Neurobiol 9, 603-615.
Chiu, W.A., Axelrad, D.A., Dalaijamts, C., Dockins, C., Shao, K., Shapiro, A.J., Paoli, G., 2018. Beyond the RfD: Broad Application of a Probabilistic Approach to Improve Chemical Dose-Response Assessments for Noncancer Effects. Environ Health Perspect 126, 067009.
Choi, T.Y., Choi, T.I., Lee, Y.R., Choe, S.K., Kim, C.H., 2021. Zebrafish as an animal model for biomedical research. Exp Mol Med 53, 310-317.
Cicero, A.F.G., Fogacci, F., Banach, M., 2019. Red Yeast Rice for Hypercholesterolemia. Methodist Debakey Cardiovasc J 15, 192-199.
Curigliano, G., Mayer, E.L., Burstein, H.J., Winer, E.P., Goldhirsch, A., 2010. Cardiac toxicity from systemic cancer therapy: a comprehensive review. Prog Cardiovasc Dis 53, 94-104.
Da Lozzo, E.J., Oliveira, M.B., Carnieri, E.G., 1998. Citrinin-induced mitochondrial permeability transition. J Biochem Mol Toxicol 12, 291-297.
de Oliveira Filho, J.W.G., Islam, M.T., Ali, E.S., Uddin, S.J., Santos, J.V.O., de Alencar, M., Junior, A.L.G., Paz, M., de Brito, M., JMC, E.S., Shaw, S., de Medeiros, M., Dantas, S., Rolim, H.M.L., Ferreira, P.M.P., Kamal, M.A., Pieczynska, M.D., Das, N., Gupta, V.K., Mocan, A., Dos Santos Andrade, T.J.A., Singh, B.N., Mishra, S.K., Atanasov, A.G., Melo-Cavalcante, A.A.C., 2017. A comprehensive review on biological properties of citrinin. Food Chem Toxicol 110, 130-141.
de Sa, S.V.M., Sousa Monteiro, C., Fernandes, J.O., Pinto, E., Faria, M.A., Cunha, S.C., 2024. Evaluating the human neurotoxicity and toxicological interactions impact of co-occurring regulated and emerging mycotoxins. Food Res Int 184, 114239.
Degen, G.H., Ali, N., Gundert-Remy, U., 2018. Preliminary data on citrinin kinetics in humans and their use to estimate citrinin exposure based on biomarkers. Toxicol Lett 282, 43-48.
Donmez-Altuntas, H., Dumlupinar, G., Imamoglu, N., Hamurcu, Z., Liman, B.C., 2007. Effects of the mycotoxin citrinin on micronucleus formation in a cytokinesis-block genotoxicity assay in cultured human lymphocytes. J Appl Toxicol 27, 337-341.
Dravid, A., Raos, B., Svirskis, D., O'Carroll, S.J., 2021. Optimised techniques for high-throughput screening of differentiated SH-SY5Y cells and application for neurite outgrowth assays. Sci Rep 11, 23935.
EFSA, 2005. Opinion of the Scientific Committee on a request from EFSA related to A Harmonised Approach for Risk Assessment of Substances Which are both Genotoxic and Carcinogenic. EFSA Journal 3, 282.
EFSA, 2010. Management of left-censored data in dietary exposure assessment ofchemical substances. EFSA Journal 8, 1557.
EFSA, 2012a. Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data. EFSA Journal 10, 2579.
EFSA, 2012b. Scientific Opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA Journal 10, 2605.
Enomoto, T., 1996. Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: possible involvement of the rho signal cascade. Cell Struct Funct 21, 317-326.
EPA, 2012. Benchmark dose technical guidance. U.S. Environmental Protection Agency, Risk Assessment Forum
Erdogrull, O., Azirak, S., 2004. Review of the studies on the red yeast rice (Monascus purpureus). Turk Electron J Biotechnol 2, 37-49.
EU, 2006. COMMISSION REGULATION (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union 49, 5-24.
EU, 2019. DIRECTIVE 2010/63/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union 62, 115-127.
EU, 2023. COMMISSION REGULATION (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Official Journal of the European Union 66, 103-157.
Ferguson, L.R., Chen, H., Collins, A.R., Connell, M., Damia, G., Dasgupta, S., Malhotra, M., Meeker, A.K., Amedei, A., Amin, A., Ashraf, S.S., Aquilano, K., Azmi, A.S., Bhakta, D., Bilsland, A., Boosani, C.S., Chen, S., Ciriolo, M.R., Fujii, H., Guha, G., Halicka, D., Helferich, W.G., Keith, W.N., Mohammed, S.I., Niccolai, E., Yang, X., Honoki, K., Parslow, V.R., Prakash, S., Rezazadeh, S., Shackelford, R.E., Sidransky, D., Tran, P.T., Yang, E.S., Maxwell, C.A., 2015. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin Cancer Biol 35 Suppl, S5-S24.
Fernandez Casafuz, A.B., De Rossi, M.C., Bruno, L., 2023. Author Correction: Mitochondrial cellular organization and shape fluctuations are differentially modulated by cytoskeletal networks. Sci Rep 13, 7543.
Ferre, F.S., 2016. Worldwide occurrence of mycotoxins in rice. Food Control 62, 291-298.
Finotello, F., Di Camillo, B., 2015. Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Brief Funct Genomics 14, 130-142.
Flajs, D., Peraica, M., 2009. Toxicological properties of citrinin. Arh Hig Rada Toksikol 60, 457-464.
Gabellini, N., Bortoluzzi, S., Danieli, G.A., Carafoli, E., 2003. Control of the Na+/Ca2+ exchanger 3 promoter by cyclic adenosine monophosphate and Ca2+ in differentiating neurons. J Neurochem 84, 282-293.
GEMS/Food-EURO, 1995. GEMS/Food-EURO Second Workshop on Reliable Evaluation of Low-Level Contamination of Food. World Health Organization Regional Office for Europe, Geneva, Kulmbach, Federal Republic of Germany.
Goldblum, R.R., McClellan, M., White, K., Gonzalez, S.J., Thompson, B.R., Vang, H.X., Cohen, H., Higgins, L., Markowski, T.W., Yang, T.Y., Metzger, J.M., Gardner, M.K., 2021. Oxidative stress pathogenically remodels the cardiac myocyte cytoskeleton via structural alterations to the microtubule lattice. Dev Cell 56, 2252-2266 e2256.
Gong, L., Zhu, H., Li, T., Ming, G., Duan, X., Wang, J., Jiang, Y., 2019. Molecular signatures of cytotoxic effects in human embryonic kidney 293cells treated with single and mixture of ochratoxin A and citrinin. Food Chem Toxicol 123, 374-384.
Gordon, R.Y., Cooperman, T., Obermeyer, W., Becker, D.J., 2010. Marked variability of monacolin levels in commercial red yeast rice products: buyer beware! Arch Intern Med 170, 1722-1727.
Grunert, M., Dorn, C., Rickert-Sperling, S., 2016. Cardiac Transcription Factors and Regulatory Networks, in: S. Rickert-Sperling, R.G. Kelly, D.J. Driscoll (Eds.), Congenital Heart Diseases: The Broken Heart: Clinical Features, Human Genetics and Molecular Pathways. Springer Vienna, Vienna, pp. 139-152.
Gulyas-Onodi, Z., Visnovitz, T., Koncz, A., Varadi, B., Agg, B., Kiss, B., Makkos, A., Nagy, N.R., Toth, V.E., Leszek, P., Gorbe, A., Giricz, Z., Buzas, E.I., Ferdinandy, P., Varga, Z.V., 2022. Transcriptomic analysis and comparative characterization of rat H9C2, human AC16 and murine HL-1 cardiac cell lines. Cardiovasc Res 118.
Gupta, M., Sasmal, D., Bandyopadhyay, S., Bagchi, G., Chatterjee, T., Dey, S., 1983. Hematological changes produced in mice by ochratoxin A and citrinin. Toxicology 26, 55-62.
Gupta, M., Sasmal, D., Gupta, S.D., Bagchi, G.K., 1984. CHANGES OF EPINEPHRINE, NOREPlNEPHRINE, DOPAMINE IN MICE BRAIN AND LIVER AND 5-HYDROXYTRYPTAMINE IN MICE BRAIN FOLLOWlNG TREATMENT WlTH OCHRATOXIN A AND CITRININ. Indian Journal of Pharmacology 16, 102-106.
Hamlin, R.L., Keene, B.W., 2020. Species differences in cardiovascular physiology that affect pharmacology and toxicology. Curr Opin Toxicol 23-24, 106-113.
Hanika, C., Carlton, W.W., Tuite, J., 1983. Citrinin mycotoxicosis in the rabbit. Food Chem Toxicol 21, 487-493.
Hayashi, H., Itahashi, M., Taniai, E., Yafune, A., Sugita-Konishi, Y., Mitsumori, K., Shibutani, M., 2012. Induction of ovarian toxicity in a subchronic oral toxicity study of citrinin in female BALB/c mice. J Toxicol Sci 37, 1177-1190.
Heber, D., Lembertas, A., Lu, Q.Y., Bowerman, S., Go, V.L., 2001. An analysis of nine proprietary Chinese red yeast rice dietary supplements: implications of variability in chemical profile and contents. J Altern Complement Med 7, 133-139.
Heber, D., Yip, I., Ashley, J.M., Elashoff, D.A., Elashoff, R.M., Go, V.L., 1999. Cholesterol-lowering effects of a proprietary Chinese red-yeast-rice dietary supplement. Am J Clin Nutr 69, 231-236.
Hescheler, J., Meyer, R., Plant, S., Krautwurst, D., Rosenthal, W., Schultz, G., 1991. Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res 69, 1476-1486.
Heussner, A.H., Dietrich, D.R., O'Brien, E., 2006. In vitro investigation of individual and combined cytotoxic effects of ochratoxin A and other selected mycotoxins on renal cells. Toxicol In Vitro 20, 332-341.
Huang, Y.L., Pan, W.L., Cai, W.W., Ju, J.Q., Sun, S.C., 2021. Exposure to citrinin induces DNA damage, autophagy, and mitochondria dysfunction during first cleavage of mouse embryos. Environ Toxicol 36, 2217-2224.
Huang, Y.T., Lai, C.Y., Lou, S.L., Yeh, J.M., Chan, W.H., 2009. Activation of JNK and PAK2 is essential for citrinin-induced apoptosis in a human osteoblast cell line. Environ Toxicol 24, 343-356.
IARC, 1986. Some naturally occurring and synthetic food components, furocoumarins and ultraviolet radiation, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, p. 67.
IARC, 2019. IARC Monographs on the evaluation of carcinogenic risks to humans: Preamble.
Janke, C., Montagnac, G., 2017. Causes and Consequences of Microtubule Acetylation. Curr Biol 27, R1287-R1292.
Jeswal, P., 1996. Citrinin-induced chromosomal abnormalities in the bone marrow cells of Mus musculus. Cytobios 86, 29-33.
Ji, X., Xu, J., Wang, X., Qi, P., Wei, W., Chen, X., Li, R., Zhou, Y., 2015. Citrinin Determination in Red Fermented Rice Products by Optimized Extraction Method Coupled to Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). J Food Sci 80, T1438-1444.
Joseph, P., 2017. Transcriptomics in toxicology. Food Chem Toxicol 109, 650-662.
Joshi, A.M., Prousi, G.S., Bianco, C., Malla, M., Guha, A., Shah, M., Brown, S.A., Patel, B., 2021. Microtubule Inhibitors and Cardiotoxicity. Curr Oncol Rep 23, 30.
Kamle, M., Mahato, D.K., Gupta, A., Pandhi, S., Sharma, N., Sharma, B., Mishra, S., Arora, S., Selvakumar, R., Saurabh, V., Dhakane-Lad, J., Kumar, M., Barua, S., Kumar, A., Gamlath, S., Kumar, P., 2022. Citrinin Mycotoxin Contamination in Food and Feed: Impact on Agriculture, Human Health, and Detection and Management Strategies. Toxins (Basel) 14.
Kankeu, C., Clarke, K., Van Haver, D., Gevaert, K., Impens, F., Dittrich, A., Roderick, H.L., Passante, E., Huber, H.J., 2018. Quantitative proteomics and systems analysis of cultured H9C2 cardiomyoblasts during differentiation over time supports a 'function follows form' model of differentiation. Mol Omics 14, 181-196.
Kann, O., Kovacs, R., 2007. Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292, C641-657.
Karkhanis, A., Leow, J.W.H., Hagen, T., Chan, E.C.Y., 2018. Dronedarone-Induced Cardiac Mitochondrial Dysfunction and Its Mitigation by Epoxyeicosatrienoic Acids. Toxicol Sci 163, 79-91.
Kathiriya, I.S., Nora, E.P., Bruneau, B.G., 2015. Investigating the transcriptional control of cardiovascular development. Circ Res 116, 700-714.
Katsetos, C.D., Legido, A., Perentes, E., Mork, S.J., 2003. Class III beta-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology. J Child Neurol 18, 851-866; discussion 867.
Kim, H.J., Lee, H.N., Jeong, M.S., Jang, S.B., 2021. Oncogenic KRAS: Signaling and Drug Resistance. Cancers (Basel) 13.
Kimes, B.W., Brandt, B.L., 1976. Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98, 367-381.
Kitchen, D.N., Carlton, W.W., Tuite, J., 1977. Ochratoxin A and citrinin induced nephrosis in Beagle dogs. II. Pathology. Vet Pathol 14, 261-272.
Knasmuller, S., Cavin, C., Chakraborty, A., Darroudi, F., Majer, B.J., Huber, W.W., Ehrlich, V.A., 2004. Structurally related mycotoxins ochratoxin A, ochratoxin B, and citrinin differ in their genotoxic activities and in their mode of action in human-derived liver (HepG2) cells: implications for risk assessment. Nutr Cancer 50, 190-197.
Kogika, M.M., Hagiwara, M.K., Mirandola, R.M., 1993. Experimental citrinin nephrotoxicosis in dogs: renal function evaluation. Vet Hum Toxicol 35, 136-140.
Korecka, J.A., van Kesteren, R.E., Blaas, E., Spitzer, S.O., Kamstra, J.H., Smit, A.B., Swaab, D.F., Verhaagen, J., Bossers, K., 2013. Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One 8, e63862.
Kovalevich, J., Langford, D., 2013. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078, 9-21.
Kumar, M., Dwivedi, P., Sharma, A.K., Sankar, M., Patil, R.D., Singh, N.D., 2014. Apoptosis and lipid peroxidation in ochratoxin A- and citrinin-induced nephrotoxicity in rabbits. Toxicol Ind Health 30, 90-98.
Kuroda, K., Ishii, Y., Takasu, S., Kijima, A., Matsushita, K., Watanabe, M., Takahashi, H., Sugita-Konishi, Y., Sakai, H., Yanai, T., Nohmi, T., Ogawa, K., Umemura, T., 2013. Cell cycle progression, but not genotoxic activity, mainly contributes to citrinin-induced renal carcinogenesis. Toxicology 311, 216-224.
Kushiro, M., 2015. Historical review of researches on yellow rice and mycotoxigenic fungi adherent to rice in Japan. JSM Mycotoxins 65, 19-23.
Kuznetsov, A.V., Javadov, S., Grimm, M., Margreiter, R., Ausserlechner, M.J., Hagenbuchner, J., 2020. Crosstalk between Mitochondria and Cytoskeleton in Cardiac Cells. Cells 9.
Kyei, N.N.A., Waid, J.L., Ali, N., Cramer, B., Humpf, H.U., Gabrysch, S., 2023. Maternal exposure to multiple mycotoxins and adverse pregnancy outcomes: a prospective cohort study in rural Bangladesh. Arch Toxicol 97, 1795-1812.
Law, C.H., Li, J.M., Chou, H.C., Chen, Y.H., Chan, H.L., 2013. Hyaluronic acid-dependent protection in H9C2 cardiomyocytes: a cell model of heart ischemia-reperfusion injury and treatment. Toxicology 303, 54-71.
Lee, C.H., Lee, C.L., Pan, T.M., 2010. A 90-d toxicity study of monascus-fermented products including high citrinin level. J Food Sci 75, T91-97.
Lehman, S.J., Crocini, C., Leinwand, L.A., 2022. Targeting the sarcomere in inherited cardiomyopathies. Nat Rev Cardiol 19, 353-363.
Lenco, J., Lencova-Popelova, O., Link, M., Jirkovska, A., Tambor, V., Potuckova, E., Stulik, J., Simunek, T., Sterba, M., 2015. Proteomic investigation of embryonic rat heart-derived H9c2 cell line sheds new light on the molecular phenotype of the popular cell model. Exp Cell Res 339, 174-186.
Li, G.B., Zhang, H.W., Fu, R.Q., Hu, X.Y., Liu, L., Li, Y.N., Liu, Y.X., Liu, X., Hu, J.J., Deng, Q., Luo, Q.S., Zhang, R., Gao, N., 2018. Mitochondrial fission and mitophagy depend on cofilin-mediated actin depolymerization activity at the mitochondrial fission site. Oncogene 37, 1485-1502.
Li, X., Tian, L., Oiao, X., Ye, L., Wang, H., Wang, M., Sang, J., Tian, F., Ge, R.S., Wang, Y., 2023. Citrinin inhibits the function of Leydig cells in male rats in prepuberty. Ecotoxicol Environ Saf 252, 114568.
Li, Y., Zhou, Y.C., Yang, M.H., Zhen, O.Y., 2012. Natural occurrence of citrinin in widely consumed traditional Chinese food red yeast rice, medicinal plants and their related products. Food Chem 132, 1040-1045.
Liao, C.D., Chen, Y.C., Lin, H.Y., Chiueh, L.C., Shih, D.Y.C., 2014. Incidence of citrinin in red yeast rice and various commercial products in Taiwan from 2009 to 2012. Food Control 38, 178-183.
Liu, B.H., Yu, F.Y., Wu, T.S., Li, S.Y., Su, M.C., Wang, M.C., Shih, S.M., 2003. Evaluation of genotoxic risk and oxidative DNA damage in mammalian cells exposed to mycotoxins, patulin and citrinin. Toxicol Appl Pharmacol 191, 255-263.
Liu, G.Y., Chen, S.C., Lee, G.H., Shaiv, K., Chen, P.Y., Cheng, H., Hong, S.R., Yang, W.T., Huang, S.H., Chang, Y.C., Wang, H.C., Kao, C.L., Sun, P.C., Chao, M.H., Lee, Y.Y., Tang, M.J., Lin, Y.C., 2022. Precise control of microtubule disassembly in living cells. EMBO J 41, e110472.
Loeb, K.R., Loeb, L.A., 2000. Significance of multiple mutations in cancer. Carcinogenesis 21, 379-385.
Lohmann, C., Huwel, S., Galla, H.J., 2002. Predicting blood-brain barrier permeability of drugs: evaluation of different in vitro assays. J Drug Target 10, 263-276.
Lopez-Suarez, L., Awabdh, S.A., Coumoul, X., Chauvet, C., 2022. The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: Focus on organic pollutants. Neurotoxicology 92, 131-155.
López, P., de Nijs, M., Spanjer, M., Pietri, A., Bertuzzi, T., Starski, A., Postupolski, J., Castellari, M., Hortós, M., 2017. Generation of occurrence data on citrinin in food. EFSA supporting publication.
Lu, Y., Chen, J., Xiao, M., Li, W., Miller, D.D., 2012. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res 29, 2943-2971.
Lu, Z., Kou, W., Du, B., Wu, Y., Zhao, S., Brusco, O.A., Morgan, J.M., Capuzzi, D.M., Chinese Coronary Secondary Prevention Study, G., Li, S., 2008. Effect of Xuezhikang, an extract from red yeast Chinese rice, on coronary events in a Chinese population with previous myocardial infarction. Am J Cardiol 101, 1689-1693.
Luo, Y.S., 2023. Bayesian-Based Probabilistic Risk Assessment of Fipronil in Food: A Case Study in Taiwan. Toxics 11.
Lyon, R.C., Lange, S., Sheikh, F., 2013. Breaking down protein degradation mechanisms in cardiac muscle. Trends Mol Med 19, 239-249.
Mackeh, R., Perdiz, D., Lorin, S., Codogno, P., Pous, C., 2013. Autophagy and microtubules - new story, old players. J Cell Sci 126, 1071-1080.
Maiato, H., Ferras, C., 2017. Actin divides to conquer. Science 357, 756-757.
Malir, F., Louda, M., Ostry, V., Toman, J., Ali, N., Grosse, Y., Malirova, E., Pacovsky, J., Pickova, D., Brodak, M., Pfohl-Leszkowicz, A., Degen, G.H., 2019. Analyses of biomarkers of exposure to nephrotoxic mycotoxins in a cohort of patients with renal tumours. Mycotoxin Res 35, 391-403.
Manka, S.W., Moores, C.A., 2018. Microtubule structure by cryo-EM: snapshots of dynamic instability. Essays Biochem 62, 737-751.
McLendon, P.M., Ferguson, B.S., Osinska, H., Bhuiyan, M.S., James, J., McKinsey, T.A., Robbins, J., 2014. Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proc Natl Acad Sci U S A 111, E5178-5186.
McLendon, P.M., Robbins, J., 2015. Proteotoxicity and cardiac dysfunction. Circ Res 116, 1863-1882.
Meerpoel, C., Vidal, A., Andjelkovic, M., De Boevre, M., Tangni, E.K., Huybrechts, B., Devreese, M., Croubels, S., De Saeger, S., 2021. Dietary exposure assessment and risk characterization of citrinin and ochratoxin A in Belgium. Food Chem Toxicol 147, 111914.
Meerpoel, C., Vidal, A., Huybrechts, B., Tangni, E.K., De Saeger, S., Croubels, S., Devreese, M., 2020. Comprehensive toxicokinetic analysis reveals major interspecies differences in absorption, distribution and elimination of citrinin in pigs and broiler chickens. Food Chem Toxicol 141, 111365.
Mei, F., 1990. Red yeast flavored duck. Fang Mei’s illustrated cookbook of regional Chinese cuisine, 177-188.
Milani-Nejad, N., Janssen, P.M., 2014. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther 141, 235-249.
Miragoli, M., Sanchez-Alonso, J.L., Bhargava, A., Wright, P.T., Sikkel, M., Schobesberger, S., Diakonov, I., Novak, P., Castaldi, A., Cattaneo, P., Lyon, A.R., Lab, M.J., Gorelik, J., 2016. Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes. Cell Rep 14, 140-151.
Mitchell, C.T., Bridgeman, L., Moyano-Lopez, C., Penalva-Olcina, R., Juan, C., Juan-Garcia, A., 2024. Study of cytotoxicity in neuroblastoma cell line exposed to patulin and citrinin. Food Chem Toxicol 186, 114556.
Miura, G.I., Yelon, D., 2011. A guide to analysis of cardiac phenotypes in the zebrafish embryo. Methods Cell Biol 101, 161-180.
Moreira, A.C., Branco, A.F., Sampaio, S.F., Cunha-Oliveira, T., Martins, T.R., Holy, J., Oliveira, P.J., Sardao, V.A., 2014. Mitochondrial apoptosis-inducing factor is involved in doxorubicin-induced toxicity on H9c2 cardiomyoblasts. Biochim Biophys Acta 1842, 2468-2478.
Narvaez, A., Izzo, L., Rodriguez-Carrasco, Y., Ritieni, A., 2021. Citrinin Dietary Exposure Assessment Approach through Human Biomonitoring High-Resolution Mass Spectrometry-Based Data. J Agric Food Chem 69, 6330-6338.
Nguyen, B.Y., Ruiz-Velasco, A., Bui, T., Collins, L., Wang, X., Liu, W., 2019. Mitochondrial function in the heart: the insight into mechanisms and therapeutic potentials. Br J Pharmacol 176, 4302-4318.
NRC, 2009. Science and Decisions: Advancing Risk Assessment. The National Academies Press, Washington (DC).
Peng, K., Yang, L., Wang, J., Ye, F., Dan, G., Zhao, Y., Cai, Y., Cui, Z., Ao, L., Liu, J., Zou, Z., Sai, Y., Cao, J., 2017. The Interaction of Mitochondrial Biogenesis and Fission/Fusion Mediated by PGC-1alpha Regulates Rotenone-Induced Dopaminergic Neurotoxicity. Mol Neurobiol 54, 3783-3797.
Peraica, M., Domijan, A.M., Miletic-Medved, M., Fuchs, R., 2008. The involvement of mycotoxins in the development of endemic nephropathy. Wien Klin Wochenschr 120, 402-407.
Pereira, S.L., Ramalho-Santos, J., Branco, A.F., Sardao, V.A., Oliveira, P.J., Carvalho, R.A., 2011. Metabolic remodeling during H9c2 myoblast differentiation: relevance for in vitro toxicity studies. Cardiovasc Toxicol 11, 180-190.
Petkova-Bocharova, T., Castegnaro, M., Michelon, J., Maru, V., 1991. Ochratoxin A and other mycotoxins in cereals from an area of Balkan endemic nephropathy and urinary tract tumours in Bulgaria. IARC Sci Publ, 83-87.
Pfeiffer, E., Gross, K., Metzler, M., 1998. Aneuploidogenic and clastogenic potential of the mycotoxins citrinin and patulin. Carcinogenesis 19, 1313-1318.
Pfohl-Leszkowicz, A., Petkova-Bocharova, T., Chernozemsky, I.N., Castegnaro, M., 2002. Balkan endemic nephropathy and associated urinary tract tumours: a review on aetiological causes and the potential role of mycotoxins. Food Addit Contam A 19, 282-302.
Pfohl-Leszkowicz, A., Tozlovanu, M., Manderville, R., Peraica, M., Castegnaro, M., Stefanovic, V., 2007. New molecular and field evidences for the implication of mycotoxins but not aristolochic acid in human nephropathy and urinary tract tumor. Mol Nutr Food Res 51, 1131-1146.
Poon, K.L., Brand, T., 2013. The zebrafish model system in cardiovascular research: A tiny fish with mighty prospects. Glob Cardiol Sci Pract 2013, 9-28.
Popova, N.V., Jucker, M., 2022. The Functional Role of Extracellular Matrix Proteins in Cancer. Cancers (Basel) 14.
Pu, J., Guardia, C.M., Keren-Kaplan, T., Bonifacino, J.S., 2016. Mechanisms and functions of lysosome positioning. J Cell Sci 129, 4329-4339.
Qingqing, H., Linbo, Y., Yunqian, G., Shuqiang, L., 2012. Toxic effects of citrinin on the male reproductive system in mice. Exp Toxicol Pathol 64, 465-469.
Ravelli, R.B., Gigant, B., Curmi, P.A., Jourdain, I., Lachkar, S., Sobel, A., Knossow, M., 2004. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428, 198-202.
Reddy, R.V., Mayura, K., Hayes, A.W., Berndt, W.O., 1982. Embryocidal, teratogenic and fetotoxic effects of citrinin in rats. Toxicology 25, 151-160.
Reddy, R.V., Taylor, M.J., Sharma, R.P., 1988. Evaluation of Citrinin Toxicity on the Immune Functions of Mice (1). J Food Prot 51, 32-36.
Righetti, L., Dall'Asta, C., Bruni, R., 2021. Risk Assessment of RYR Food Supplements: Perception vs. Reality. Front Nutr 8, 792529.
Risinger, A.L., Giles, F.J., Mooberry, S.L., 2009. Microtubule dynamics as a target in oncology. Cancer Treat Rev 35, 255-261.
RIVM, 2017. Assessment of the toxicity of citrinin, in: N. National Institute for Public Health and the Environment (Ed.).
Robison, P., Caporizzo, M.A., Ahmadzadeh, H., Bogush, A.I., Chen, C.Y., Margulies, K.B., Shenoy, V.B., Prosser, B.L., 2016. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science 352, aaf0659.
Rumora, L., Domijan, A.M., Zanic Grubisic, T., Segvic Klaric, M., 2014. Differential activation of MAPKs by individual and combined ochratoxin A and citrinin treatments in porcine kidney PK15 cells. Toxicon 90, 174-183.
Sahadevan, R., Binoy, A., Shajan, I., Sadhukhan, S., 2023. Mitochondria-targeting EGCG derivatives protect H9c2 cardiomyocytes from H(2)O(2)-induced apoptosis: design, synthesis and biological evaluation. RSC Adv 13, 29477-29488.
Sansing, G.A., 1977. Citrinin mycotoxicosis in the guinea-pig. Food Cosmet Toxicol 15, 553-561.
Saotome, M., Safiulina, D., Szabadkai, G., Das, S., Fransson, A., Aspenstrom, P., Rizzuto, R., Hajnoczky, G., 2008. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci U S A 105, 20728-20733.
Sarvi, F., Jain, K., Arbatan, T., Verma, P.J., Hourigan, K., Thompson, M.C., Shen, W., Chan, P.P., 2015. Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Adv Healthc Mater 4, 77-86.
Schulz, M.C., Schumann, L., Rottkord, U., Humpf, H.U., Gekle, M., Schwerdt, G., 2018. Synergistic action of the nephrotoxic mycotoxins ochratoxin A and citrinin at nanomolar concentrations in human proximal tubule-derived cells. Toxicol Lett 291, 149-157.
Sequeira, V., Nijenkamp, L.L., Regan, J.A., van der Velden, J., 2014. The physiological role of cardiac cytoskeleton and its alterations in heart failure. Biochim Biophys Acta 1838, 700-722.
Shao, K., Shapiro, A.J., 2018. A Web-Based System for Bayesian Benchmark Dose Estimation. Environ Health Perspect 126, 017002.
Shi, X., Chen, R., Zhang, Y., Yun, J., Brand-Arzamendi, K., Liu, X., Wen, X.Y., 2018. Zebrafish heart failure models: opportunities and challenges. Amino Acids 50, 787-798.
Shi, X., Jiang, X., Chen, C., Zhang, Y., Sun, X., 2022. The interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases: Implications for therapy. Pharmacol Res 184, 106452.
Shinohara, Y., Arai, M., Hirao, K., Sugihara, S., Nakanishi, K., 1976. Combination effect of citrinin and other chemicals on rat kidney tumorigenesis. Gan 67, 147-155.
Silva, L.J.G., Pereira, A., Pena, A., Lino, C.M., 2020. Citrinin in Foods and Supplements: A Review of Occurrence and Analytical Methodologies. Foods 10.
Singh, N.D., Sharma, A.K., Dwivedi, P., Leishangthem, G.D., Rahman, S., Reddy, J., Kumar, M., 2016. Effect of feeding graded doses of citrinin on apoptosis and oxidative stress in male Wistar rats through the F1 generation. Toxicol Ind Health 32, 385-397.
Singh, N.D., Sharma, A.K., Dwivedi, P., Patil, R.D., Kumar, M., 2007. Citrinin and endosulfan induced teratogenic effects in Wistar rats. J Appl Toxicol 27, 143-151.
Singh, N.D., Sharma, A.K., Patil, R.D., Rahman, S., Leishangthem, G.D., Kumar, M., 2014. Effect of feeding graded doses of Citrinin on clinical and teratology in female Wistar rats. Indian J Exp Biol 52, 159-167.
Sipido, K.R., Marban, E., 1991. L-type calcium channels, potassium channels, and novel nonspecific cation channels in a clonal muscle cell line derived from embryonic rat ventricle. Circ Res 69, 1487-1499.
Sivandzade, F., Bhalerao, A., Cucullo, L., 2019. Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. Bio Protoc 9.
Stengel, R., Rivera-Milla, E., Sahoo, N., Ebert, C., Bollig, F., Heinemann, S.H., Schonherr, R., Englert, C., 2012. Kcnh1 voltage-gated potassium channels are essential for early zebrafish development. J Biol Chem 287, 35565-35575.
Stepanenko, A.A., Dmitrenko, V.V., 2015. HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene 569, 182-190.
Suhaeri, M., Subbiah, R., Van, S.Y., Du, P., Kim, I.G., Lee, K., Park, K., 2015. Cardiomyoblast (h9c2) differentiation on tunable extracellular matrix microenvironment. Tissue Eng Part A 21, 1940-1951.
Sun, M.H., Li, X.H., Xu, Y., Xu, Y., Pan, Z.N., Sun, S.C., 2020. Citrinin exposure disrupts organelle distribution and functions in mouse oocytes. Environ Res 185, 109476.
Suzuki, Y., Tanaka, N., Akiyama, H., 2020. Attempt of Bayesian Estimation from Left-censored Data Using the Markov Chain Monte Carlo Method: Exploring Cr(VI) Concentrations in Mineral Water Products. Food Saf (Tokyo) 8, 67-89.
Tsai, J.F., Wu, T.S., Huang, Y.T., Lin, W.J., Yu, F.Y., Liu, B.H., 2023a. Exposure to Mycotoxin Citrinin Promotes Carcinogenic Potential of Human Renal Cells. J Agric Food Chem 71, 19054-19065.
Tsai, J.F., Wu, T.S., Yu, F.Y., Liu, B.H., 2023b. Neurotoxicity of mycotoxin citrinin: Novel evidence in developing zebrafish and underlying mechanisms in human neuron cells. Food Chem Toxicol 171, 113543.
Tsai, J.F., Yu, F.Y., Liu, B.H., 2024. Citrinin disrupts microtubule assembly in cardiac cells: Impact on mitochondrial organization and function. Chemosphere 365, 143352.
Tu, S., Chi, N.C., 2012. Zebrafish models in cardiac development and congenital heart birth defects. Differentiation 84, 4-16.
Tzanakakis, G., Kavasi, R.M., Voudouri, K., Berdiaki, A., Spyridaki, I., Tsatsakis, A., Nikitovic, D., 2018. Role of the extracellular matrix in cancer-associated epithelial to mesenchymal transition phenomenon. Dev Dyn 247, 368-381.
Udagawa, S., Tatsuno, T., 2004. [Safety of rice grains and mycotoxins - a historical review of yellow rice mycotoxicoses]. Yakushigaku Zasshi 39, 321-342.
Vrabcheva, T., Usleber, E., Dietrich, R., Martlbauer, E., 2000. Co-occurrence of ochratoxin A and citrinin in cereals from Bulgarian villages with a history of Balkan endemic nephropathy. J Agric Food Chem 48, 2483-2488.
Wang, D., Xu, Q., Yuan, Q., Jia, M., Niu, H., Liu, X., Zhang, J., Young, C.Y., Yuan, H., 2019. Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. Oncogene 38, 3458-3474.
Wang, Y.L., Wang, Y., Tong, L., Wei, Q., 2008. Overexpression of calcineurin B subunit (CnB) enhances the oncogenic potential of HEK293 cells. Cancer Sci 99, 1100-1108.
Watkins, S.J., Borthwick, G.M., Arthur, H.M., 2011. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim 47, 125-131.
Wen, J.H., He, X.H., Feng, Z.S., Li, D.Y., Tang, J.X., Liu, H.F., 2023. Cellular Protein Aggregates: Formation, Biological Effects, and Ways of Elimination. Int J Mol Sci 24.
WHO/IPCS, 2018. Guidance document on evaluating and expressing uncertainty in hazard characterization– 2nd edition. World Health Organization, Geneva.
Witman, N., Zhou, C., Grote Beverborg, N., Sahara, M., Chien, K.R., 2020. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 100, 29-51.
Wu, C.L., Kuo, Y.H., Lee, C.L., Hsu, Y.W., Pan, T.M., 2011. Synchronous high-performance liquid chromatography with a photodiode array detector and mass spectrometry for the determination of citrinin, monascin, ankaflavin, and the lactone and acid forms of monacolin K in red mold rice. J AOAC Int 94, 179-190.
Wu, D., Yang, C., Yang, M., Wu, Y., Mao, Y., Zhou, X., Wang, J., Yuan, Z., Wu, J., 2022a. Citrinin-Induced Hepatotoxicity in Mice Is Regulated by the Ca(2+)/Endoplasmic Reticulum Stress Signaling Pathway. Toxins (Basel) 14.
Wu, J., Yang, C., Yang, M., Liang, Z., Wu, Y., Kong, X., Fan, H., Wang, S., Ning, C., Xiao, W., Jin, Y., Yi, J., Yuan, Z., 2022b. The role of ER stress and ATP/AMPK in oxidative stress meditated hepatotoxicity induced by citrinin. Ecotoxicol Environ Saf 237, 113531.
Wu, T.S., Yang, J.J., Yu, F.Y., Liu, B.H., 2012. Evaluation of nephrotoxic effects of mycotoxins, citrinin and patulin, on zebrafish (Danio rerio) embryos. Food Chem Toxicol 50, 4398-4404.
Wu, T.S., Yang, J.J., Yu, F.Y., Liu, B.H., 2013. Cardiotoxicity of mycotoxin citrinin and involvement of microRNA-138 in zebrafish embryos. Toxicol Sci 136, 402-412.
Wu, Y., Jin, Y., Sun, T., Zhu, P., Li, J., Zhang, Q., Wang, X., Jiang, J., Chen, G., Zhao, X., 2020. p62/SQSTM1 accumulation due to degradation inhibition and transcriptional activation plays a critical role in silica nanoparticle-induced airway inflammation via NF-kappaB activation. J Nanobiotechnology 18, 77.
Wu, Y., Zhang, N., Li, Y.H., Zhao, L., Yang, M., Jin, Y., Xu, Y.N., Guo, H., 2017. Citrinin exposure affects oocyte maturation and embryo development by inducing oxidative stress-mediated apoptosis. Oncotarget 8, 34525-34533.
Xiao, B., Goh, J.Y., Xiao, L., Xian, H., Lim, K.L., Liou, Y.C., 2017. Reactive oxygen species trigger Parkin/PINK1 pathway-dependent mitophagy by inducing mitochondrial recruitment of Parkin. J Biol Chem 292, 16697-16708.
Yang, C., Ning, X., Wang, B., Tian, T., Chen, Y., Ma, L., Wang, L., 2024. Association between spectrum of mycotoxins and semen quality: A cross-sectional study in Beijing, China. J Hazard Mater 476, 135124.
Yoneyama, M., Sharma, R.P., Kleinschuster, S.J., 1986. Cytotoxicity of citrinin in cultured kidney epithelial cell systems. Ecotoxicol Environ Saf 11, 100-111.
Yu, F.Y., Liao, Y.C., Chang, C.H., Liu, B.H., 2006. Citrinin induces apoptosis in HL-60 cells via activation of the mitochondrial pathway. Toxicol Lett 161, 143-151.
Zhang, H., Ahima, J., Yang, Q., Zhao, L., Zhang, X., Zheng, X., 2021. A review on citrinin: Its occurrence, risk implications, analytical techniques, biosynthesis, physiochemical properties and control. Food Res Int 141, 110075.
Zhu, B., Qi, F., Wu, J., Yin, G., Hua, J., Zhang, Q., Qin, L., 2019. Red Yeast Rice: A Systematic Review of the Traditional Uses, Chemistry, Pharmacology, and Quality Control of an Important Chinese Folk Medicine. Front Pharmacol 10, 1449.
Zordoky, B.N., El-Kadi, A.O., 2007. H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart. J Pharmacol Toxicol Methods 56, 317-322.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96674-
dc.description.abstract橘黴素(Citrinin, CTN)是一種由青黴菌屬、麴菌屬及紅麴菌屬真菌產生並廣泛污染各類穀物的黴菌毒素(Mycotoxin)。世界各地的玉米、小麥、大麥、堅果、香料等食品中橘黴素的殘留量可達0.08–25,000 μg/kg,尤其是由紅麴發酵所製成的紅麴產品或保健食品中橘黴素的殘留量可以高達70–189,000 μg/kg、檢出率也高達33%–78%,可能對人類健康產生潛在的危害與風險。目前已知橘黴素具有腎毒性與生殖毒性,其作用機制為誘導氧化壓力、造成粒線體損傷、細胞凋亡,以及染色體不穩定、干擾微管與細胞週期停滯等。然而有關橘黴素的心臟毒性、神經毒性、致癌性的作用與機制尚不清楚,目前也缺乏較新的橘黴素健康風險評估報告,因此本研究將分成四大部分逐一探討上述議題。
首先在【橘黴素的心臟毒性作用與機制】方面,微管與粒線體分別作為維持心肌型態與心肌的重要能量來源,有必要探討橘黴素的潛在心臟毒性及其作用機制。本研究將大鼠心肌母細胞H9c2處理橘黴素後,發現橘黴素(25–75 μM)會產生與秋水仙素相似的微管骨架破壞作用,而解體的微管會使依附其上的粒線體分布異常、錯位、功能失調,並且這些損傷的粒線體會在細胞中堆積。同時,橘黴素也阻礙了H9c2細胞內自噬作用的進行,並造成溶酶體和泛素化蛋白的累積,使受損胞器或蛋白質廢物無法清除。除此之外,橘黴素(2–50 μM)會降低許多肌節基因的表現,並干擾分化中與分化後心肌細胞的型態與肌節蛋白表現;而胚胎斑馬魚模型也顯示暴露橘黴素(25–50 μM)後會顯著減弱心臟跳動與心率,並使心臟收縮功能指標下降。綜上所述,本研究鑑定並闡述了橘黴素的體外心臟毒性作用機制以及體內心臟收縮不良的現象,除了揭開橘黴素同時對細胞內微管與粒線體的作用,也更加證實了橘黴素的心臟毒性危害。
第二部分【橘黴素的神經毒性作用與機制】中,由於粒線體也在神經細胞中扮演重要的功能性角色,因此本研究使用人類神經母細胞SH-SY5Y作為體外神經細胞模型來鑑定橘黴素的神經毒性。在處理橘黴素(10–20 μM)後,其轉錄體數據發現橘黴素下調了神經軸突發育、神經投射引導、神經分化等相關路徑,並上調氧化壓力、電子傳遞鏈等路徑。橘黴素(2–20 μM)顯著降低了神經分化與神經投射引導相關基因的表現量,且抑制了SH-SY5Y細胞的分化與神經軸突的延展與生長,而氧化壓力相關基因、粒線體氧化壓力與粒線體功能僅在高濃度處理下(50 μM)才有影響,這說明神經軸突生長與分化比粒線體失能對橘黴素的暴露更為敏感。這些結果首次揭露了橘黴素的體外神經毒性作用與機制,拓展了我們對橘黴素的基本了解。
第三部分是探索有關【橘黴素的潛在基因毒性與致癌分子特徵】。有鑑於染色體不穩定性是致癌性的標誌之一,本研究將HEK293以短期或長期處理橘黴素後探討其潛在的染色體不穩定性與潛在致癌機制。其中短期處理包含3天的橘黴素暴露加27天的正常培養(無暴露);而長期處理則是連續30天的橘黴素暴露。結果發現,橘黴素短期與長期處理(10–20 μM)皆會造成有絲分裂時的紡錘絲型態異常,顯示其具有染色體不穩定性;而轉錄體分析顯示細胞週期、RTK/KRAS/RAF/MAPK訊號路徑的富集,並且轉錄體變化與資料庫中許多癌症相關基因表現變化樣態高度吻合,且發現許多關鍵致癌分子特徵,並且橘黴素的致癌跡象是不可逆的。這些結果初步提供了橘黴素的潛在基因毒性與致癌跡象。
最後本研究以基於貝氏機率的方法執行了【橘黴素的機率健康風險評估】。因為過去橘黴素的毒性起始劑量具有許多不確定性,本研究以貝式機率方法為橘黴素推估了新的毒性起始劑量(45.73 μg/kg bw/day)並訂定了新的人類健康參考劑量(0.08 μg/kg bw/day),減低了許多不確定性。此外也利用橘黴素殘留量資料、各類食品攝食量資料以及臺灣族群的人口學數據進行機率性暴露評估。初步的試算結果顯示,在最壞情境下對於頻繁食用紅麴食品的族群來說,可能會有高達約40%的人將面臨健康風險。然而由於缺乏紅麴的攝食量資料,本研究在暴露評估上有許多不確定性與其限制,因此這些結果將無法作為建議,期望未來有更精準的紅麴攝食風險評估以釐清臺灣食用紅麴族群中攝入橘黴素的健康風險。
總結來說,本研究(1)廣泛地闡述了橘黴素的心臟毒性機制,包含微管、粒線體與受損胞器/蛋白質清除的損害或受阻,以及肌節結構的干擾、造成心臟收縮功能衰弱;(2)首次鑑定了橘黴素的神經毒性作用與機制,並且神經分化與投射引導的干擾作用比粒線體毒性與氧化壓力更為敏感;(3)初步探索橘黴素的潛在致癌跡象;(4)精準且完整地訂定了橘黴素的毒性起始劑量與人類健康參考劑量。這些研究成果將拓展橘黴素的基礎毒理學認識,並為後續橘黴素的相關毒性研究提供重要資訊,期望能維護大眾的健康福祉。
zh_TW
dc.description.abstractCitrinin (CTN) is a mycotoxin produced from Penicillium, Aspergillus, and Monascus fungi. CTN widely and frequently contaminates a variety of grains including corn, wheat, barley, nuts, and spices, leading to global residual levels ranging from 0.08 to 25,000 μg/kg in foods. Notably, the residual levels in Monascus-fermented red yeast rice foods and health supplements can reach 70 to 189,000 μg/kg, with detection rates of 33% to 78%. These observations suggest that CTN may pose potential hazards and risks to human health. CTN is well known for its nephrotoxicity and reproductive toxicity by inducing oxidative stress, mitochondrial damage, apoptosis, chromosomal instability, microtubule disruption, and cell cycle arrest. However, the cardiotoxicity, neurotoxicity, and genotoxicity and carcinogenic characteristics of CTN along with their underlying mechanisms remain unclear. Additionally, an up-to-date health risk assessment for CTN is currently lacking. This study is structured into four sections to address these issues as follows.
The first section focuses on the [Cardiotoxic Effects and Mechanisms of CTN]. Based on the critical roles of microtubules and mitochondria in maintaining cardiac morphology and energy supply, it is essential to investigate the potential cardiotoxicity and its underlying mechanisms of CTN. In this study, rat cardiomyoblast H9c2 was used as an in vitro model. The results showed that CTN (25–75 μM) disrupted microtubule cytoskeleton assembly as colchicine did, and the disassembled microtubules thus resulted in mitochondrial misalignment and dysfunction, with those damaged mitochondria accumulated in the cells. Additionally, CTN impaired autophagy in H9c2 cells and triggered the accumulation of lysosomes and ubiquitinated proteins, hindering the clearance of damaged organelles and protein aggregates. Furthermore, CTN (2–50 μM) downregulated the expression of sarcomere genes and interfered the morphology and sarcomere protein expression during and after the H9c2 differentiation. Exposure of CTN (25–50 μM) to an embryonic zebrafish model demonstrated significantly weakened heart contraction and cardiac function indices of the embryonic hearts. Collectively, these data identify and elucidate the in vitro cardiotoxic mechanisms of CTN which involves both microtubules and mitochondria, and CTN-triggered cardiac malfunction was also observed in vivo.
The second section includes the [Neurotoxic Effects and Mechanisms of CTN]. Given the essential role of mitochondria in neuronal functioning, this study employed human neuroblastoma cell SH-SY5Y as an in vitro model to assess CTN's neurotoxicity. The transcriptomic profile of CTN (10–20 μM)-treated SH-SY5Y cells revealed downregulation of axon development, neuron projection guidance, and neuron differentiation, as well as upregulation of oxidative stress and electron transport chain. Further experiments confirmed that CTN (2–20 μM) significantly downregulated genes associated with neural differentiation and projection guidance, and inhibited the differentiation and neurite outgrowth of SH-SY5Y cells. Notably, mitochondrial oxidative stress and mitochondrial function were only affected at higher concentration (50 μM), suggesting that neurite outgrowth and differentiation is more sensitive to CTN exposure than mitochondrial dysfunction. These findings present novel evidence of in vitro neurotoxicity of CTN, which expands our fundamental understanding of CTN.
The third section explores the [Potential Genotoxicity and Carcinogenic Molecular Characteristics of CTN]. As chromosomal instability is a hallmark of carcinogenesis, this study explored the potential in vitro chromosomal instability and carcinogenic characteristics of CTN by using HEK293 cells that were subjected to either short-term or long-term treatment of CTN, where short-term means 3-day exposure to CTN followed by 27 days of normal culture while long-term denotes continuous 30-day exposure to CTN. The results showed that both short- and long-term treatments (10–20 μM) triggered the formation of abnormal mitotic spindles, a sign of chromosomal instability. RNA sequencing analyses showed enrichment of cell cycle and RTK/KRAS/RAF/MAPK signaling, and the transcriptomic profile closely aligned to various cancer-related gene expression patterns and matched several key molecular characteristics of carcinogenicity. Notably, this genotoxic and carcinogenic potential of CTN was irreversible. These findings provide preliminary evidence for the potential signs of genotoxicity and carcinogenicity of CTN.
Finally, this study performed a [Probabilistic Health Risk Assessment of CTN] using a Bayesian-based probabilistic approach. Since high uncertainties existed during the then determination of point of departure for CTN, this study set a new Bayesian-based probabilistic point of departure (45.73 μg/kg bw/day) and human reference dose (0.08 μg/kg bw/day) for CTN with reduced uncertainties. In addition, the probabilistic exposure assessment was conducted using food residual data, food consumption data, and demographic data in Taiwan. The preliminary results showed that up to 40% of the Taiwanese people who frequently consume red yeast rice may face unacceptable risk in a worst-case scenario. However, due to the lack of red yeast rice consumption data, large uncertainties and limitations existed in the exposure assessment of this study so that the risk characterization results cannot be used for recommendations. It is hoped that a more precise risk assessment will be performed in the future to clarify the health risks for Taiwanese people who consume CTN-contaminated red yeast rice.
In summary, this study (1) comprehensively elucidates the cardiotoxic effects and mechanisms of CTN which involve the damage of microtubules and mitochondria, the hindered clearance of damaged organelles/proteins, and the impaired cardiac contractile function; (2) identifies for the first time the neurotoxic effects and mechanisms of CTN by demonstrating that neural differentiation and projection guidance are more sensitive to CTN exposure than mitochondrial toxicity and oxidative stress; (3) preliminarily explores the potential genotoxic and carcinogenic characteristics of CTN; and (4) precisely establishes a new probabilistic point of departure and human reference dose for CTN. These findings broaden the foundational understanding of CTN toxicity and offer valuable information for future toxicological studies on citrinin, with the aim of safeguarding public health and welfare.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:28:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-20T16:28:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書 i
誌謝 ii
中文摘要(Chinese Abstract) iii
英文摘要(English Abstract) v
目次 viii
圖次 xii
表次 xvi
第一章 緒論(Introduction) 1
1.1 黴菌毒素橘黴素的背景介紹 1
1.2 橘黴素的殘留情形與殘留量管制規定 2
1.3 橘黴素的毒理研究 4
1.3.1 系統性文獻回顧 4
1.3.2 橘黴素的人類流行病學研究 4
1.3.3 橘黴素的動物研究 5
1.3.4 橘黴素的體外機制研究 7
1.3.5橘黴素的毒物動力學研究 8
1.4 實驗模型介紹 9
1.4.1 H9c2心肌細胞模型 9
1.4.2 胚胎斑馬魚模型 9
1.4.3 SH-SY5Y神經細胞模型 10
1.4.4 高通量轉錄體學 11
1.5 機率性健康風險評估介紹 12
1.6 研究動機與目的 13
第二章 材料與方法(Materials and Methods) 16
2.1 實驗材料 16
2.1.1 藥品 16
2.1.2 試劑 18
2.1.3 細胞培養材料 19
2.1.4 細胞株 19
2.1.5 斑馬魚 20
2.1.6 定量聚合酶鏈鎖反應引子 20
2.1.7 抗體 20
2.1.8 儀器設備 20
2.2 實驗方法 20
2.2.1 細胞培養、繼代與計數 20
2.2.2 細胞分化 21
2.2.3 細胞之橘黴素處理 22
2.2.4 細胞型態觀察與細胞存活率分析 22
2.2.5 RNA萃取 23
2.2.6 轉錄體定序與原始序列資料處理 23
2.2.7 轉錄體生物資訊分析 24
2.2.8 反轉錄-定量聚合酶鏈鎖反應 27
2.2.9 免疫螢光染色 28
2.2.10 粒線體染色 28
2.2.11 粒線體DNA拷貝數測定 29
2.2.12 粒線體超氧化物偵測 30
2.2.13 粒線體膜電位偵測 31
2.2.14 細胞蛋白質萃取 31
2.2.15 十二烷基硫酸鈉-聚丙烯醯胺凝膠電泳與西方墨點法 32
2.2.16 溶酶體與細胞顆粒度測定 33
2.2.17 蛋白泛素化偵測 34
2.2.18 分子對接分析 35
2.2.19 斑馬魚飼養與胚胎收集 36
2.2.20 胚胎斑馬魚之橘黴素暴露以及存活率與型態觀察 36
2.2.21 胚胎斑馬魚心跳動態分析 37
2.2.22 胚胎斑馬魚心臟功能分析 38
2.2.23 危害辨識與毒性資料 38
2.2.24 動物試驗之毒理學機率性劑量-反應評估 40
2.2.25 人類機率性劑量-反應推估 41
2.2.26 臺灣食品中橘黴素殘留量收集 42
2.2.27 臺灣食品中橘黴素殘留量數據重建 42
2.2.28 機率性暴露評估 43
2.2.29 機率性健康風險特徵化 44
2.2.30 統計分析與繪圖 45
第三章 結果(Results) 46
3.1 【橘黴素的心臟毒性與機制】 46
3.1.1 橘黴素對心肌細胞存活率及型態之影響 47
3.1.2 處理橘黴素後心肌細胞的轉錄體概廓及功能性分析 47
3.1.3 橘黴素與秋水仙素對心肌細胞產生相似的型態變化 48
3.1.4 橘黴素破壞心肌細胞的微管骨架組織 49
3.1.5 橘黴素與微管蛋白二聚體的分子對接分析 49
3.1.6 橘黴素使心肌細胞內的粒線體沿著微管的排列紊亂與累積 50
3.1.7 橘黴素使微管解體的心肌細胞中粒線體功能失調 50
3.1.8 橘黴素使微管解體的心肌細胞中溶酶體與泛素化蛋白堆積 51
3.1.9 橘黴素阻礙心肌細胞內的自噬作用 52
3.1.10 處理橘黴素後心肌細胞肌節相關轉錄體功能性分析與基因
表現分析 53
3.1.11 橘黴素干擾心肌細胞中肌節結構、離子通道與發育調節相關
基因 53
3.1.12 橘黴素對分化中與分化後心肌細胞存活率與肌節基因之影響
55
3.1.13 橘黴素干擾分化中與分化後心肌細胞肌節型態與蛋白表現 55
3.1.14 橘黴素引起胚胎斑馬魚心臟發育型態缺陷 56
3.1.15 橘黴素使胚胎斑馬魚心臟收縮功能衰弱 56
3.2 【橘黴素的神經毒性與機制】 58
3.2.1 橘黴素對神經細胞存活率及型態之影響 58
3.2.2 處理橘黴素後神經細胞的轉錄體概廓及功能性分析 58
3.2.3 橘黴素對神經細胞中神經軸突與氧化壓力相關基因表現之影響
60
3.2.4 橘黴素對分化中與分化後神經細胞存活率與軸突基因之影響 61
3.2.5 橘黴素使神經細胞中粒線體超氧化物產生與膜電位喪失 62
3.3 【橘黴素的潛在基因毒性與致癌分子特徵】 63
3.3.1 橘黴素誘發HEK293細胞分裂中紡錘絲型態異常 63
3.3.2 處理橘黴素後HEK293細胞的轉錄體概廓及功能性分析 64
3.4 【橘黴素的機率健康風險評估】 67
3.4.1 橘黴素的危害鑑定評估 68
3.4.2 橘黴素的機率性劑量反應評估 68
3.4.2.1 機率性毒性起始劑量之決定 68
3.4.2.2機率性人類參考劑量之決定 69
3.4.3 橘黴素的機率性暴露量評估 70
3.4.3.1 紅麴食品中橘黴素的殘留量重建 70
3.4.3.2 臺灣族群中橘黴素的機率性暴露量推估 71
3.4.4 臺灣族群中橘黴素的機率性健康風險特徵化 72
第四章 討論(Discussion) 74
4.1 【橘黴素的心臟毒性與機制】 74
4.2 【橘黴素的神經毒性與機制】 81
4.3 【橘黴素的潛在基因毒性與致癌分子特徵】 85
4.4 【橘黴素的機率健康風險評估】 90
第五章 結論(Conclusion) 93
參考文獻(References) 173
附錄(Appendices) 190
-
dc.language.isozh_TW-
dc.subject心臟毒性zh_TW
dc.subject微管zh_TW
dc.subject粒線體zh_TW
dc.subject神經毒性zh_TW
dc.subject致癌性zh_TW
dc.subject健康風險評估zh_TW
dc.subject橘黴素zh_TW
dc.subjectHealth risk assessmenten
dc.subjectCitrininen
dc.subjectCardiotoxicityen
dc.subjectMicrotubuleen
dc.subjectMitochondriaen
dc.subjectNeurotoxicityen
dc.subjectCarcinogenicityen
dc.title探討黴菌毒素橘黴素的心臟和神經毒性機轉並評估其健康風險zh_TW
dc.titleStudying the cardiotoxic and neurotoxic mechanisms of mycotoxin citrinin and assessing its health risken
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee李青澔;林嬪嬪;羅宇軒;魏嘉徵zh_TW
dc.contributor.oralexamcommitteeChing-Hao Li;Pinpin Lin;Yu-Syuan Luo;Chia-Cheng Weien
dc.subject.keyword橘黴素,心臟毒性,微管,粒線體,神經毒性,致癌性,健康風險評估,zh_TW
dc.subject.keywordCitrinin,Cardiotoxicity,Microtubule,Mitochondria,Neurotoxicity,Carcinogenicity,Health risk assessment,en
dc.relation.page257-
dc.identifier.doi10.6342/NTU202404332-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-11-28-
dc.contributor.author-college醫學院-
dc.contributor.author-dept毒理學研究所-
dc.date.embargo-lift2026-11-11-
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
41.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved