請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96672完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林居正 | zh_TW |
| dc.contributor.advisor | Jiu-Jenq Lin | en |
| dc.contributor.author | 蕭卲軒 | zh_TW |
| dc.contributor.author | shao-husan Hsiao | en |
| dc.date.accessioned | 2025-02-20T16:28:17Z | - |
| dc.date.available | 2025-02-21 | - |
| dc.date.copyright | 2025-02-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-01-20 | - |
| dc.identifier.citation | Burden EG, Batten TJ, Smith CD, Evans JP. Reverse total shoulder arthroplasty. Bone Joint J. 2021;103-b:813-821.
2. Lee DH, Choi YS, Potter HG, et al. Reverse total shoulder arthroplasty: an imaging overview. Skeletal Radiol. 2020;49:19-30. 3. Craig RS, Goodier H, Singh JA, Hopewell S, Rees JL. Shoulder replacement surgery for osteoarthritis and rotator cuff tear arthropathy. Cochrane Database Syst Rev. 2020;4:CD012879. 4. Goetti P, Denard PJ, Collin P, et al. Biomechanics of anatomic and reverse shoulder arthroplasty. EFORT Open Rev. 2021;6:918-931. 5. François S, Luc F, Oudet D, et al. Grammont inverted total shoulder arthroplasty in the treatment of glenohumeral osteoarthritis with massive rupture of the cuff. Results of a multicentre study of 80 shoulders. J Bone Joint Surg Br. 2004;86:388-395. 6. Berliner JL, Regalado-Magdos A, Ma CB, Feeley BT. Biomechanics of reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2015;24:150-160. 7. Kennedy J, Klifto CS, Ledbetter L, Bullock GS. Reverse total shoulder arthroplasty clinical and patient-reported outcomes and complications stratified by preoperative diagnosis: a systematic review. J Shoulder Elbow Surg. 2021;30:929-941. 8. Tashjian RZ, Hillyard B, Childress V, et al. Outcomes after a Grammont-style reverse total shoulder arthroplasty? J Shoulder Elbow Surg. 2021;30:e10-e17. 9. Bedeir YH, Gawish HM, Grawe BM. Outcomes of Reverse Total Shoulder Arthroplasty in Patients 60 Years of Age or Younger: A Systematic Review. J Hand Surg Am. 2020;45:254.e251-254.e258. 10. Palsis JA, Simpson KN, Matthews JH, et al. Current Trends in the Use of Shoulder Arthroplasty in the United States. Orthopedics. 2018;41:e416-e423. 11. William WS, Benedict UN, Stephen L, Edward VC, Lawrence VG. National utilization of reverse total shoulder arthroplasty in the United States. J Shoulder Elbow Surg. 2015;24:91-97. 12. Kim MS, Jeong HY, Kim JD, et al. Difficulty in performing activities of daily living associated with internal rotation after reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2020;29:86-94. 13. Rojas J, Joseph J, Liu B, Srikumaran U, McFarland EG. Can patients manage toileting after reverse total shoulder arthroplasty? A systematic review. Int Orthop. 2018;42:2423-2428. 14. Triplet JJ, Everding NG, Levy JC, Moor MA. Functional internal rotation after shoulder arthroplasty: a comparison of anatomic and reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2015;24:867-874. 15. Namdari S, Yagnik G, Ebaugh DD, et al. Defining functional shoulder range of motion for activities of daily living. J Shoulder Elbow Surg. 2012;21:1177-1183. 16. Castricini R, Gasparini G, Di Luggo F, et al. Health-related quality of life and functionality after reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2013;22:1639-1649. 17. Rohman E, King JJ, Roche CP, et al. Factors Associated with Improvement or Loss of Internal Rotation After Reverse Shoulder Arthroplasty. J Shoulder Elbow Surg. 2022;31:e346-e358. 18. Kim SC, Lee JE, Lee SM, Yoo JC. Factors affecting internal rotation after reverse shoulder arthroplasty. J Orthop Sci. 2022;27:131-138. 19. Gruber MD, Kirloskar KM, Werner BC, Lädermann A, Denard PJ. Factors Associated with Internal Rotation After Reverse Shoulder Arthroplasty: A Narrative Review. JSES Reviews, Reports, and Techniques. 2022;2:117-124. 20. Hochreiter B, Hasler A, Hasler J, et al. Factors influencing functional internal rotation after reverse total shoulder arthroplasty. JSES Int. 2021;5:679-687. 21. Reid JJ, Kunkle BF, Kothandaraman V, et al. Effects of obesity on clinical and functional outcomes following anatomic and reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2022;31:17-25. 22. Monroe EJ, Hardy R, Holmquist J, Brand JC. Obesity and Reverse Total Shoulder Arthroplasty. Curr Rev Musculoskelet Med. 2022;15:180-186. 23. Eichinger JK, Rao MV, Lin JJ, et al. The effect of body mass index on internal rotation and function following anatomic and reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2021;30:265-272. 24. Richard JF, Pierre-Henri F, Thomas WW, Joseph DZ, Christopher PR. Comparison of reverse total shoulder arthroplasty outcomes with and without subscapularis repair. J Shoulder Elbow Surg. 2017;26:662-668. 25. Ginn KA, Cohen ML, Herbert RD. Does hand-behind-back range of motion accurately reflect shoulder internal rotation? J Shoulder Elbow Surg. 2006;15:311-314. 26. Rojas J, Joseph J, Srikumaran U, McFarland EG. How internal rotation is measured in reverse total shoulder arthroplasty: a systematic review of the literature. JSES Int. 2020;4:182-188. 27. Constant CR, Murley AH. A clinical method of functional assessment of the shoulder. Clin Orthop Relat Res. 1987:160-164. 28. Antonia MZ, Christopher BK, Suk-Hwan J, et al. Scapular and humeral elevation coordination patterns used before vs. after Reverse Total Shoulder Arthroplasty. J Biomech. 2021;125:110550. 29. Ryan AS, Katherine W, Augustus DM, et al. Kinematics and EMG activity in Reverse Total Shoulder Arthroplasty. J Orthop. 2020;22:165-169. 30. Terrier A, Scheuber P, Pioletti DP, Farron A. Activities of daily living with reverse prostheses: importance of scapular compensation for functional mobility of the shoulder. J Shoulder Elbow Surg. 2013;22:948-953. 31. Bullock GS, Garrigues GE, Ledbetter L, Kennedy J. A Systematic Review of Proposed Rehabilitation Guidelines Following Anatomic and Reverse Shoulder Arthroplasty. J Orthop Sports Phys Ther. 2019;49:337-346. 32. Hochreiter B, Wyss S, Gerber C. Extension of the shoulder is essential for functional internal rotation after reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2021;31:1166-1174. 33. Sabari JS, Maltzev I, Lubarsky D, Liszkay E, Homel P. Goniometric assessment of shoulder range of motion: Comparison of testing in supine and sitting positions. Arch Phys Med Rehabil. 1998;79:647-651. 34. Gajdosik RL, Bohannon RW. Clinical Measurement of Range of Motion: Review of Goniometry Emphasizing Reliability and Validity. Phys Ther. 1987;67:1867-1872. 35. Wilk KE, Reinold MM, Macrina LC, et al. Glenohumeral internal rotation measurements differ depending on stabilization techniques. Sports Health. 2009;1:131-136. 36. Boon AJ, Smith J. Manual scapular stabilization: Its effect on shoulder rotational range of motion. Arch Phys Med Rehabil. 2000;81:978-983. 37. Rojas J, Bitzer A, Joseph J, Srikumaran U, McFarland EG. Toileting ability of patients after primary reverse total shoulder arthroplasty. JSES Int. 2020;4:174-181. 38. Roche CP. Reverse Shoulder Arthroplasty Biomechanics. J Funct Morphol Kinesiol. 2022;7:13. 39. Frank JK, Siegert P, Plachel F, et al. The Evolution of Reverse Total Shoulder Arthroplasty—From the First Steps to Novel Implant Designs and Surgical Techniques. J Clin Med. 2022;11:1512. 40. Flatow EL, Harrison AK. A History of Reverse Total Shoulder Arthroplasty. Clin Orthop Relat Res. 2011;469:2432-2439. 41. Friedman RJ, Barcel DA, Eichinger JK. Scapular Notching in Reverse Total Shoulder Arthroplasty. J Am Acad Orthop Surg. 2019;27:200-209. 42. Routman HD, Flurin PH, Wright TW, et al. Reverse Shoulder Arthroplasty Prosthesis Design Classification System. Bull Hosp Jt Dis (2013). 2015;73 Suppl 1:S5-14. 43. Best MJ, Aziz KT, Wilckens JH, McFarland EG, Srikumaran U. Increasing incidence of primary reverse and anatomic total shoulder arthroplasty in the United States. J Shoulder Elbow Surg. 2021;30:1159-1166. 44. Wylie JD, Beckmann JT, Granger E, Tashjian RZ. Functional outcomes assessment in shoulder surgery. World J Orthop. 2014;5:623-633. 45. Galvin JW, Kim R, Ment A, et al. Outcomes and complications of primary reverse shoulder arthroplasty with minimum of 2 years' follow-up: a systematic review and meta-analysis. J Shoulder Elbow Surg. 2022;31:e534-e544. 46. Schoch BS, King JJ, Zuckerman J, et al. Anatomic versus reverse shoulder arthroplasty: a mid-term follow-up comparison. Shoulder Elbow. 2021;13:518-526. 47. Kiet TK, Feeley BT, Naimark M, et al. Outcomes after shoulder replacement: comparison between reverse and anatomic total shoulder arthroplasty. J Shoulder Elbow Surg. 2015;24:179-185. 48. Werner BC, Lederman E, Gobezie R, Denard PJ. Glenoid lateralization influences active internal rotation after reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2021;30:2498-2505. 49. Oh JH, Sharma N, Rhee SM, Park JH. Do individualized humeral retroversion and subscapularis repair affect the clinical outcomes of reverse total shoulder arthroplasty? J Shoulder Elbow Surg. 2020;29:821-829. 50. Vourazeris JD, Wright TW, Struk AM, King JJ, Farmer KW. Primary reverse total shoulder arthroplasty outcomes in patients with subscapularis repair versus tenotomy. J Shoulder Elbow Surg. 2017;26:450-457. 51. de Boer FA, van Kampen PM, Huijsmans PE. The influence of subscapularis tendon reattachment on range of motion in reversed shoulder arthroplasty: a clinical study. Musculoskelet Surg. 2016;100:121-126. 52. Triditt PD. The Relationship between Motion of the Shoulder and the Stated Ability to Perform Activities of Daily Living. J Bone Joint Surg Am. 1998;80:41-46. 53. Rundquist PJ, Obrecht C, Woodruff L. Three-Dimensional Shoulder Kinematics to Complete Activities of Daily Living. Am J Phys Med Rehabil. 2009;88:623-629. 54. Han SH, Oh KS, Han KJ, Jo J, Lee DH. Accuracy of Measuring Tape and Vertebral-level Methods to Determine Shoulder Internal Rotation. Clin Orthop Relat Res. 2012;470:562-566. 55. Hayes K, Walton JR, Szomor ZL, Murrell GAC. Reliability of five methods for assessing shoulder range of motion. Aust J Physiother. 2001;47:289-294. 56. Muir SW, Corea CL, Beaupre L. Evaluating change in clinical status: reliability and measures of agreement for the assessment of glenohumeral range of motion. N Am J Sports Phys Ther. 2010;5:98-110. 57. Awan R, Smith J, Boon AJ. Measuring shoulder internal rotation range of motion: A comparison of 3 techniques. Arch Phys Med Rehabil. 2002;83:1229-1234. 58. Ludewig PM, Phadke V, Braman JP, et al. Motion of the shoulder complex during multiplanar humeral elevation. J Bone Joint Surg Am. 2009;91:378-389. 59. Kolz CW, Sulkar HJ, Aliaj K, et al. Age-related differences in humerothoracic, scapulothoracic, and glenohumeral kinematics during elevation and rotation motions. J Biomech. 2021;117:110266. 60. Young WK, Vivek JP, Jangwhon Y, et al. Kinematic analysis of dynamic shoulder motion in patients with reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2012;21:1184-1190. 61. Sulkar HJ, Aliaj K, Tashjian RZ, et al. Reverse Total Shoulder Arthroplasty Alters Humerothoracic, Scapulothoracic, and Glenohumeral Motion During Weighted Scaption. Clin Orthop Relat Res. 2022;480:2254-2265. 62. Wu G, van der Helm FCT, Veeger HEJ, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38:981-992. 63. Yang JL, Jan MH, Chang CW, Lin JJ. Effectiveness of the end-range mobilization and scapular mobilization approach in a subgroup of subjects with frozen shoulder syndrome: A randomized control trial. Man Ther. 2012;17:47-52. 64. Simovitch R, Flurin P-H, Wright T, Zuckerman JD, Roche CP. Quantifying success after total shoulder arthroplasty: the minimal clinically important difference. J Shoulder Elbow Surg. 2018;27:298-305. 65. Franchignoni F, Vercelli S, Giordano A, et al. Minimal Clinically Important Difference of the Disabilities of the Arm, Shoulder and Hand Outcome Measure (DASH) and Its Shortened Version (QuickDASH). J Orthop Sports Phys Ther. 2013;44:30-39. 66. Sulkar HJ, Aliaj K, Tashjian RZ, et al. High and low performers in internal rotation after reverse total shoulder arthroplasty: a biplane fluoroscopic study. J Shoulder Elbow Surg. 2023;32:e133-e144. 67. Lauria M, Hastings M, DiPaola MJ, Duquin TR, Ablove RH. Factors Affecting Internal Rotation Following Total Shoulder Arthroplasty. JSES Reviews, Reports, and Techniques. 2022. 68. Kim E, Jang T, Park HJ, et al. In vivo three-dimensional scapular kinematic alterations after reverse total shoulder arthroplasty. J Orthop Surg (Hong Kong). 2020;28:2309499020921979. 69. Kwang-Won L, Yong In K, Ha Yong K, et al. Three-Dimensional Scapular Kinematics in Patients with Reverse Total Shoulder Arthroplasty during Arm Motion. Clin Orthop Surg. 2016. 70. Kuhn JE, Huston LJ, Soslowsky LJ, Shyr Y, Blasier RB. External rotation of the glenohumeral joint: Ligament restraints and muscle effects in the neutral and abducted positions. J Shoulder Elbow Surg. 2005;14:S39-S48. 71. McCully SP, Kumar N, Lazarus MD, Karduna AR. Internal and external rotation of the shoulder: Effects of plane, end-range determination, and scapular motion. J Shoulder Elbow Surg. 2005;14:602-610. 72. Ludewig PM, Cook TM, Shields RK. Comparison of Surface Sensor and Bone-Fixed Measurement of Humeral Motion. J. Appl. Biomech. 2002;18:163-170. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96672 | - |
| dc.description.abstract | 背景:反置式肩關節置換術廣泛應用於修復旋轉袖破裂關節病變和嚴重肩關節炎等情況。雖然反置式肩關節置換術後在功能性活動範圍,尤其是屈曲和外展方面的提升較為常見,但內轉活動度的恢復卻較難預測。手背觸背測試常用於評估內轉角度,然而其準確性可能不足。肩胛骨運動學對反置式肩關節置換術患者的手背觸背動作起著至關重要的作用,但目前尚未完全理解。本研究聚焦於手背觸背動作中肩胛骨運動的角色。
目的:(1) 描述反置式肩關節置換術患者相較於年齡及慣用手匹配的對照組在手背觸背動作和手臂上舉時肩胛骨及肱骨的運動學特徵;(2) 識別於內轉關節活動度受損相關的潛在因素。 方法:本橫斷面觀察性研究招募了31名反置式肩關節置換術後患者及28名對照組。收集受試者的人口統計資料、肩關節被動關節活動度、手背觸背動作量表(手背觸背比值)、以及患者報告的結果,所有資料均由同一評估員測量。隨後,使用電磁追蹤系統測量肩胛骨在各種功能性動作(有無負重的手臂上舉)中的運動學。採用雙因子變藝術分析檢測兩組間的肩胛骨運動學差異,並使用線性回歸分析反置式肩關節置換術患者手背觸背動作的影響因素。 結果:本橫斷面觀察性研究共納入31名反置式肩關節置換術後患者及28名對照組。在有無負重的手臂上舉動作中,兩組在肩胛骨三維運動(特別是上旋和後傾)方面存在顯著差異(p<0.05);然而,在手背觸背動作中未發現顯著差異。反置式肩關節置換術組手背觸背比值的回歸方程式如下: 手背觸背比值 = 1.036 + 0.016×(BMI)−0.005×(ERabd45)−0.007×(IRabd90) 其中,BMI為體重指數,ERabd45為手臂外展45度時的肩關節外旋,IRabd90為手臂外展90度時的肩關節內轉。 臨床意義:闡明反置式肩關節置換術患者手背觸背動作中的肩胛骨與肱骨運動,並識別與手背觸背動作相關的因素,可幫助臨床醫生制定最佳策略,以提升反置式肩關節置換術患者的滿意度。 結論:反置式肩關節置換術患者在手臂上舉時展現出更多的肩胛骨上旋和後傾作為代償策略。對於手背觸背動作,除了肩關節內轉,外旋也是一個重要的影響因素。 | zh_TW |
| dc.description.abstract | Background: Reverse Total Shoulder Arthroplasty (RTSA) is widely used for conditions like cuff-tear arthropathy and severe shoulder arthritis. Although gains in functional range of motion (ROM), especially in flexion and abduction, are common post-RTSA, internal rotation (IR) ROM remains less predictable. The hand-behind-back (HBB) test is often used to measure IR, though it may have lacked accuracy. Scapular kinematics play a critical role in HBB movement for RTSA patients yet are not fully understood. This study focused on the role of scapular movement during HBB.
Purposes: Aims of this study were:(1) to characterize scapular and humeral kinematics in patients with RTSA relative to involved hand- and age- matched control group during HBB movement and elevation; (2) identify potential factors related to impaired IR ROM. Methods: Thirty-one subjects after RTSA and 28 controls were recruited in this cross-sectional observational study. Subjects’ data included demographic data, GH joint passive ROM (pROM), HBB movement scale (HBB ratio), patient-reported outcomes were collected by the same assessor. After that, scapular kinematics during various functional movements (arm elevation with and without weight) were measured by using an electromagnetic tracking system. Two-way ANOVA will be used to test scapular kinematics between two groups and linear regression were be used to identify the factors HBB movement in patients with RTSA. Results: Thirty-one subjects after RTSA and 28 controls were recruited in this cross-sectional observational study. Significant differences were found between two groups in the three-dimensional scapular movements during arm elevation with and without weight, specifically in upward rotation (6.81±2.65, p<0.05) and posterior tilting (5.24±3.93, p<0.05). However, there was no significant difference in HBB movement. The regression equation of HBB ratio in RTSA group was as follows: HBBRTSA ratio= 1.036 +0.016×(BMI) −0.005×(ERabd45) −0.007×(IRabd90), in which BMI indicated body mass index; ERabd45 indicated GH joint external rotation when arm abduction 45 degrees; IRabd90 indicated GH joint internal rotation when arm abduction 90 degrees. Clinical significance: Clarifying scapular and humeral motions during HBB movement in patients with RTSA and identifying factors associated with HBB movement can guide clinicians to make optimal decisions to enhance patient satisfaction following RTSA surgery. Conclusions: Patients with RTSA exhibited greater scapular upward rotation and posterior tilting as compensatory strategies during arm elevation. For HBB movement, in addition to considering GH joint IR, ER should also be a contributing factor. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:28:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-20T16:28:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT IV CHAPTER 1 – NATURE OF THE STUDY 1 1.1 BACKGROUND 1 1.2 STATEMENT OF PROBLEMS 3 1.3 PURPOSES OF THE STUDY 3 1.4 HYPOTHESES 3 CHAPTER 2 – LITERATURE REVIEW 5 2.1 BIOMECHANICS AND APPLICATION OF REVERSE TOTAL SHOULDER ARTHROPLASTY 5 2.2 OUTCOMES MEASURE IN PATIENTS AFTER RTSA 7 2.3 FACTORS RELATED TO SHOULDER INTERNAL ROTATION IN PATIENTS AFTER RTSA 9 2.4 CLINICAL MEASUREMENTS FOR SHOULDER INTERNAL ROTATION RANGE OF MOTION 10 2.5 ALTERATION OF SHOULDER KINEMATICS AFTER RTSA DURING FUNCTIONAL TASK 12 CHAPTER 3 – METHODS 14 3.1 STUDY DESIGN 14 3.2 SUBJECTS 14 3.1.1 sample size estimate 14 3.1.2 inclusion and exclusion criteria 14 3.2 INSTRUMENTATION 14 3.2.1 range of motion measurement tool 14 3.2.2 three-dimensional kinematics tracking system 15 3.3 PROCEDURES 16 3.4 OUTCOME MEASURES AND DATA REDUCTION 19 3.4.1 pROM of GH joint 19 3.4.2 kinematics data 19 3.4.3 HBB ratio 19 3.4.4 self-reported questionnaires 20 3.5 STATISTICAL ANALYSIS 21 CHAPTER 4 – RESULTS 22 4.1 DEMOGRAPHIC DATA 22 4.2 PROM OF GH JOINT, HBB MOVEMENT, AND SELF-REPORTED QUESTIONNAIRES 22 4.3 SCAPULAR KINEMATICS DATA OF ARM ELEVATION 23 4.3.1 handling of missing Data 23 4.3.2 arm elevation without weight (task A) 23 4.3.2 arm elevation with weight (task B) 24 4.4 SCAPULAR KINEMATICS DATA OF HBB MOVEMENT (TASKS C AND D) 24 4.5 LINEAR REGRESSION MODEL OF HBB RATIO 25 CHAPTER 5 – DISCUSSION 27 CONCLUSIONS 31 REFERENCES 32 FIGURE 1: FLOW CHART OF THE EXPERIMENT 38 FIGURE 2: PASSIVE RANGE OF MOTION OF GH JOINT ABDUCTION 39 FIGURE 3: PASSIVE RANGE OF MOTION OF GH JOINT EXTENSION 40 FIGURE 4: PASSIVE RANGE OF MOTION OF GH JOINT EXTERNAL ROTATION 41 FIGURE 5: PASSIVE RANGE OF MOTION OF GH JOINT INTERNAL ROTATION 42 FIGURE 6: SENSORS PLACEMENT OF 3 SPACE MOTION FASTRAK SYSTEM 43 FIGURE 7: HAND-BEHIND-BACK MOVEMENT MEASUREMENT (DISTANCE FROM C7 TO STYLOID PROCESS) 44 FIGURE 8: SCAPULAR UPWARD ROTATION IN ARM ELEVATION WITHOUT WEIGHT (TASK A) 45 FIGURE 9: SCAPULAR POSTERIOR TIPPING IN ARM ELEVATION WITHOUT WEIGHT (TASK A) 46 FIGURE 10: SCAPULAR INTERNAL ROTATION IN ARM ELEVATION WITHOUT WEIGHT (TASK A); 47 FIGURE 11: SCAPULAR UPWARD ROTATION IN ARM ELEVATION WITH WEIGHT (TASK B); 48 FIGURE 12: SCAPULAR POSTERIOR TILTING IN ARM ELEVATION WITH WEIGHT (TASK B); 49 FIGURE13: SCAPULAR INTERNAL ROTATION IN ARM ELEVATION WITH WEIGHT (TASK B); 50 TABLE 1: DEMOGRAPHIC DATA OF THE TWO GROUPS (MEAN ± STANDARD DEVIATION) 51 TABLE 2: PASSIVE RANGE OF MOTION OF GLENOHUMERAL JOINT AND HAND-BEHIND-BACK MOVEMENT (MEAN ± STANDARD DEVIATION) 52 TABLE 3: DATA MISSING PRESENTATION 53 TABLE 4: SHOULDER KINEMATICS CHANGES IN HAND-BEHIND-BACK MOVEMENT AT THE HIGHEST LEVEL (TASK C) AND L5 LEVEL (TASK D) 54 TABLE 5: SIMPLE LINEAR REGRESSION MODEL OF SUBJECTS’ PARAMETERS FOR HAND-BEHIND-BACK RATIO IN RTSA AND CONTROL GROUP 55 APPENDICES 56 APPENDIX 1: DISABILITIES OF THE ARM, SHOULDER AND HAND OUTCOME MEASURE (DASH) 56 APPENDIX 2: CONSTAN-MURLEY SCORE 60 APPENDIX 3: PERMISSION OF INSTITUTIONAL REVIEW BOARD AND CONSENT 61 | - |
| dc.language.iso | en | - |
| dc.subject | 肩關節運動學 | zh_TW |
| dc.subject | 影響因素 | zh_TW |
| dc.subject | 手背觸背 | zh_TW |
| dc.subject | 內轉 | zh_TW |
| dc.subject | 反置式肩關節置換術 | zh_TW |
| dc.subject | factors | en |
| dc.subject | Reverse total shoulder arthroplasty | en |
| dc.subject | internal rotation | en |
| dc.subject | hand behind back | en |
| dc.subject | shoulder kinematics | en |
| dc.title | 反置式肩關節置換術個案之肩膀運動學及內轉缺失之因子 | zh_TW |
| dc.title | Shoulder Kinematics and Factors Related to Internal Rotation Deficiency in Patients with Reverse Total Shoulder Arthroplasty | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張宗訓;陳譽仁 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Hsun Chang;Yu-Jen Chen | en |
| dc.subject.keyword | 反置式肩關節置換術,內轉,手背觸背,肩關節運動學,影響因素, | zh_TW |
| dc.subject.keyword | Reverse total shoulder arthroplasty,internal rotation,hand behind back,shoulder kinematics,factors, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202500196 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-01-21 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 物理治療學研究所 | - |
| dc.date.embargo-lift | 2025-02-21 | - |
| 顯示於系所單位: | 物理治療學系所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
