Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96670
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林居正zh_TW
dc.contributor.advisorJiu-Jenq Linen
dc.contributor.author布娜莎zh_TW
dc.contributor.authorNatharin Boonthaen
dc.date.accessioned2025-02-20T16:27:45Z-
dc.date.available2025-02-21-
dc.date.copyright2025-02-20-
dc.date.issued2025-
dc.date.submitted2025-02-12-
dc.identifier.citation1. Celli BR, MacNee W, Agusti A, et al. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Clin Respir J 2004; 23: 932-946. DOI: 10.1183/09031936.04.00014304.
2. Global initiative for chronic obstructive lung disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease (2020 report), https://goldcopd.org/wp-content/uploads/2019/11/GOLD-2020-REPORT-ver1.0wms.pdf (2020, accessed April, 1 2021).
3. Soriano JB, Kendrick PJ, Paulson KR, et al. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med 2020; 8: 585-596. DOI: 10.1016/S2213-2600(20)30105-3.
4. Andenæs R, Momyr A and Brekke I. Reporting of pain by people with chronic obstructive pulmonary disease (COPD): comparative results from the HUNT3 population-based survey. BMC Public Health 2018; 18: 1-10. DOI: 10.1186/s12889-018-5094-5.
5. Bentsen SB, Rustøen T and Miaskowski C. Prevalence and characteristics of pain in patients with chronic obstructive pulmonary disease compared to the Norwegian general population. J Pain 2011; 12: 539-545. DOI: 10.1016/j.jpain.2010.10.014.
6. Borge CR, Wahl AK and Moum T. Pain and quality of life with chronic obstructive pulmonary disease. Heart Lung 2011; 40: e90-e101. DOI: 10.1016/j.hrtlng.2010.10.009.
7. Chen Y-W, Camp PG, Coxson HO, et al. Comorbidities that cause pain and the contributors to pain in individuals with chronic obstructive pulmonary disease. Arch Phys Med Rehabil 2017; 98: 1535-1543. DOI: 10.1016/j.apmr.2016.10.016.
8. Cheng W, Li X, Duan J, et al. Prevalence and characteristics of pain in patients of chronic obstructive pulmonary disease: A cross-sectional study in china. COPD: J Chronic Obstr Pulm Dis 2020; 17: 90-100. DOI: 10.1080/15412555.2020.1713076.
9. Christensen VL, Holm AM, Kongerud J, et al. Occurrence, characteristics, and predictors of pain in patients with chronic obstructive pulmonary disease. Pain Manag Nurs 2016; 17: 107-118. DOI: 10.1016/j.pmn.2016.01.002.
10. De Miguel-Díez J, López-de-Andrés A, Hernandez-Barrera V, et al. Prevalence of pain in COPD patients and associated factors. Clin J Pain 2018; 34: 787-794. DOI: 10.1097/AJP.0000000000000598.
11. HajGhanbari B, Holsti L, Road JD, et al. Pain in people with chronic obstructive pulmonary disease (COPD). Respir Med 2012; 106: 998-1005. DOI: 10.1016/j.rmed.2012.03.004.
12. Hansen J, Molsted S, Ekholm O, et al. Pain prevalence, localization, and intensity in adults with and without COPD: results from the Danish Health and Morbidity Survey (a Self-reported Survey). Int J Chron Obstruct Pulmon Dis 2020; 15: 3303–3311. DOI: 10.2147/COPD.S275234.
13. Lee AL, Goldstein RS and Brooks D. Chronic pain in people with chronic obstructive pulmonary disease: prevalence, clinical and psychological implications. Chronic Obstr Pulm Dis 2017; 4: 194. DOI: 10.15326/jcopdf.4.3.2016.0172.
14. Lee AL, Goldstein RS, Chan C, et al. Postural deviations in individuals with chronic obstructive pulmonary disease (COPD). Can J Respir Crit 2018; 2: 61-68. DOI: 10.1080/24745332.2017.1409091.
15. Roberts MH, Mapel DW, Hartry A, et al. Chronic pain and pain medication use in chronic obstructive pulmonary disease. A cross-sectional study. Ann Am Thorac Soc 2013; 10: 290-298. DOI: 10.1513/AnnalsATS.201303-040OC.
16. Vardar-Yagli N, Calik-Kutukcu E, Saglam M, et al. The relationship between fear of movement, pain and fatigue severity, dyspnea level and comorbidities in patients with chronic obstructive pulmonary disease. Disabil Rehabil 2019; 41: 2159-2163. DOI: 10.1080/09638288.2018.1459886.
17. Vardar-Yagli N, Saglam M, Calik-Kutukcu E, et al. Increased pain sensitivity, postural abnormalities, and functional balance impairment in obstructive lung disease compared to healthy subjects. Heart Lung 2019; 48: 351-355. DOI: 10.1016/j.hrtlng.2018.12.009.
18. Xiao T, Zhou X, He Y, et al. Pain problems for patients with mild and moderate chronic obstructive pulmonary disease–a community-based study in Shanghai. J Pain Res 2017; 10: 2247. DOI: 10.2147/JPR.S141940.
19. Latiers F, Vandenabeele M, Poncin W, et al. Prevalence and risk factors of musculoskeletal pain in patients with chronic obstructive pulmonary disease: A systematic review. Clin Respir J 2021; 15: 1286-1301. DOI: 10.1111/crj.13443.
20. Tanaka T, Okita M, Jenkins S, et al. Clinical and psychological impact of chronic pain in people with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2022; 17: 893-903. DOI: 10.2147/COPD.S359223.
21. Langer D, Ciavaglia CE, Neder JA, et al. Lung hyperinflation in chronic obstructive pulmonary disease: mechanisms, clinical implications and treatment. Expert Rev Respir Med 2014; 8: 731-749. DOI: 10.1586/17476348.2014.949676.
22. Lee AL, Harrison SL, Goldstein RS, et al. Pain and its clinical associations in individuals with COPD: a systematic review. Chest 2015; 147: 1246-1258. DOI: 10.1378/chest.14-2690.
23. Decramer M. Hyperinflation and respiratory muscle interaction. Eur Clin Respir J 1997; 10: 934-941.
24. Gray JC. Visceral Referred Pain to the Shoulder. In: Donatelli R (ed) Physical Therapy of the Shoulder-E-Book. 5th ed.: Elsevier Health Sciences., 2011, pp.267.
25. Sajadi-Ernazarova KR, Martin J and Gupta N. Acute Pneumothorax Evaluation and Treatment. StatPearls Publishing, 2023.
26. Cassart M, Gevenois PA and Estenne M. Rib cage dimensions in hyperinflated patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1996; 154: 800-805. DOI: 10.1164/ajrccm.154.3.8810622
27. Chavan SD, Patil VS and Patil BK. Comparison of thoracic dimensions of chronic obstructive pulmonary disease patients and healthy controls: A cross-sectional study. Int J Adv Res Med 2021; 3: 75-77. DOI: 10.22271/27069567.2021.v3.i1b.105.
28. Gonçalves MA, Francisco DdS, Medeiros CSd, et al. Postural alignment of patients with chronic obstructive pulmonary disease. Fisioterapia em Movimento 2017; 30: 549-558. DOI: 10.1590/1980-5918.030.003.AO13.
29. Lim SJ, Kim J-Y, Lee SJ, et al. Altered thoracic cage dimensions in patients with chronic obstructive pulmonary disease. Tuberc Respir Dis 2018; 81: 123-131. DOI: 10.4046/trd.2017.0095.
30. Muhammed A, Moiz JA, Singla D, et al. Postural abnormalities in phenotypes of chronic obstructive pulmonary disease. Braz J Phys Ther 2020; 24: 325-332. DOI: 10.1016/j.bjpt.2019.05.002.
31. Orozco-Levi M. Structure and function of the respiratory muscles in patients with COPD: impairment or adaptation? Eur Clin Respir J 2003; 22: 41s-51s. DOI: 10.1183/09031936.03.00004607.
32. Pachioni CAS, Ferrante JA, Panissa TSD, et al. Postural assessment in patients with chronic obstructive pulmonary disease. Fisioter Pesqui 2011; 18: 341-345. DOI: 10.1590/S1809-29502011000400008
33. Morais N, Cruz J and Marques A. The kinematic chain of arm elevation is impaired in patients with chronic obstructive pulmonary disease. COPD: J Chronic Obstr Pulm Dis 2019; 16: 240-245. DOI: 10.1080/15412555.2019.1632281.
34. Kruapanich C, Tantisuwat A, Thaveeratitham P, et al. Effects of different modes of upper limb training in individuals with chronic obstructive pulmonary disease: A systematic review and meta-analysis. Ann Rehabil Med 2019; 43: 592-614. DOI: 10.5535/arm.2019.43.5.592.
35. Spruit MA, Singh SJ, Garvey C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med 2013; 188: e13-e64. DOI: 10.1164/rccm.201309-1634ST.
36. Criner GJ and Celli BR. Effect of unsupported arm exercise on ventilatory muscle recruitment in patients with severe chronic airflow obstruction. Am Rev Respir Dis 1988; 138: 856-861. DOI: 10.1136/bjsports-2014-093702.
37. Lohne V, Heer HCD, Andersen M, et al. Qualitative study of pain of patients with chronic obstructive pulmonary disease. Heart Lung 2010; 39: 226-234. DOI: 10.1016/j.hrtlng.2009.08.002.
38. McKeough ZJ, Alison JA and Bye PT. Arm exercise capacity and dyspnea ratings in subjects with chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev 2003; 23: 218-225. 2003/06/05. DOI: 10.1097/00008483-200305000-00010.
39. Ezzat H. Acquired kyphosis angle in patients with chronic obstructive pulmonary disorder with reference to some physiological and physical variables (Predictive study). J Appl Sports Sci 2015; 5: 113-120. DOI: 10.21608/JASS.2015.84467.
40. Dias CS, Kirkwood RN, Parreira VF, et al. Orientation and position of the scapula, head and kyphosis thoracic in male patients with COPD. Can J Respir Ther 2009; 45: 30-34. Note.
41. Keshavarz R, Tajali SB, Mir SM, et al. The role of scapular kinematics in patients with different shoulder musculoskeletal disorders: a systematic review approach. J Bodyw Mov Ther 2017; 21: 386-400. DOI: 10.1016/j.jbmt.2016.09.002.
42. Hickey D, Solvig V, Cavalheri V, et al. Scapular dyskinesis increases the risk of future shoulder pain by 43% in asymptomatic athletes: a systematic review and meta-analysis. Br J Sports Med 2018; 52: 102-110. DOI: 10.1136/bjsports-2017-097559.
43. Clarsen B, Bahr R, Andersson SH, et al. Reduced glenohumeral rotation, external rotation weakness and scapular dyskinesis are risk factors for shoulder injuries among elite male handball players: a prospective cohort study. Br J Sports Med 2014; 48: 1327-1333. DOI: 10.1136/bjsports-2014-093702.
44. Kawasaki T, Yamakawa J, Kaketa T, et al. Does scapular dyskinesis affect top rugby players during a game season? J Shoulder Elbow Surg 2012; 21: 709-714. DOI: 10.1016/j.jse.2011.11.032.
45. Morais N and Cruz J. The pectoralis minor muscle and shoulder movement-related impairments and pain: Rationale, assessment and management. Phys Ther Sport 2016; 17: 1-13. DOI: 10.1016/j.ptsp.2015.10.003.
46. Chen Y-W, Camp PG, Coxson HO, et al. A comparison of pain, fatigue, dyspnea and their impact on quality of life in pulmonary rehabilitation participants with chronic obstructive pulmonary disease. COPD: J Chronic Obstr Pulm Dis 2018; 15: 65-72. DOI: 10.1080/15412555.2017.1401990.
47. Bates MS, Edwards WT and Anderson KO. Ethnocultural influences on variation in chronic pain perception. Pain 1993; 52: 101-112. DOI: 10.1016/0304-3959(93)90120-E.
48. Nayak S, Shiflett SC, Eshun S, et al. Culture and gender effects in pain beliefs and the prediction of pain tolerance. Cross Cult Res 2000; 34: 135-151. DOI: 10.1177/106939710003400203.
49. Bentsen SB, Miaskowski C and Rustøen T. Demographic and clinical characteristics associated with quality of life in patients with chronic obstructive pulmonary disease. Qual Life Res 2014; 23: 991-998. DOI: 10.1007/s11136-013-0515-5.
50. Janssen D, Wouters E, Parra YL, et al. Prevalence of thoracic pain in patients with chronic obstructive pulmonary disease and relationship with patient characteristics: a cross-sectional observational study. BMC Pulm Med 2016; 16: 1-8. DOI: 10.1186/s12890-016-0210-8.
51. Rasmussen-Barr E, Magnusson C, Nordin M, et al. Are respiratory disorders risk factors for troublesome low-back pain? A study of a general population cohort in Sweden. Eur Spine J 2019; 28: 2502-2509. DOI: 10.1007/s00586-019-06071-5.
52. Sánchez Castillo S, Smith L, Díaz Suárez A, et al. Associations between physical activity and comorbidities in people with COPD residing in Spain: a cross-sectional analysis. Int J Environ Res Public Health 2020; 17: 594. DOI: 10.3390/ijerph17020594.
53. Harrison SL, Lee AL, Elliott-Button HL, et al. The role of pain in pulmonary rehabilitation: a qualitative study. Int J Chron Obstruct Pulmon Dis 2017; 12: 3289. DOI: 10.2147/COPD.S145442.
54. Watchie J. Cardiovascular and pulmonary physical therapy: a clinical manual. Elsevier Health Sciences, 2009.
55. Gilmartin J and Gibson G. Abnormalities of chest wall motion in patients with chronic airflow obstruction. Thorax 1984; 39: 264-271. DOI: 10.1136/thx.39.4.264.
56. Reddy RS, Alahmari KA, Silvian PS, et al. Reliability of chest wall mobility and its correlation with lung functions in healthy nonsmokers, healthy smokers, and patients with COPD. Can Respir J 2019; 2019. DOI: 10.1155/2019/5175949.
57. Malaguti C, Rondelli RR, de Souza LM, et al. Reliability of chest wall mobility and its correlation with pulmonary function in patients with chronic obstructive pulmonary disease. Respir Care 2009; 54: 1703-1711.
58. Bockenhauer SE, Chen H, Julliard KN, et al. Measuring thoracic excursion: reliability of the cloth tape measure technique. J Am Osteopath Assoc 2007; 107: 191-196.
59. Gonçalves MA, Leal BE, Viegas GD-C, et al. The relation between diaphragmatic mobility and spinal curvatures in patients with chronic obstructive pulmonary disease. Fisioter Pesqui 2017; 24: 245-252. DOI: 10.1590/1809-2950/15809024032017.
60. Heneghan N, Adab P, Jackman S, et al. Musculoskeletal dysfunction in chronic obstructive pulmonary disease (COPD): An observational study. Int J Ther Rehabil 2015; 22: 119-128. DOI: 10.12968/ijtr.2015.22.3.119.
61. Lefèvre-Colau M-M, Nguyen C, Palazzo C, et al. Recent advances in kinematics of the shoulder complex in healthy people. Ann Phys Rehabil Med 2018; 61: 56-59. DOI: 10.1016/j.rehab.2017.09.001.
62. Morais N, Cruz J and Marques A. Posture and mobility of the upper body quadrant and pulmonary function in COPD: an exploratory study. Braz J Phys Ther 2016; 20: 345-354. DOI: 10.1590/bjpt-rbf.2014.0162.
63. Lehouck A, Boonen S, Decramer M, et al. COPD, bone metabolism, and osteoporosis. Chest 2011; 139: 648-657. DOI: 10.1378/chest.10-1427.
64. Finley MA and Lee RY. Effect of sitting posture on 3-dimensional scapular kinematics measured by skin-mounted electromagnetic tracking sensors. Arch Phys Med Rehabil 2003; 84: 563-568. DOI: 10.1053/apmr.2003.50087.
65. Kebaetse M, McClure P and Pratt NA. Thoracic position effect on shoulder range of motion, strength, and three-dimensional scapular kinematics. Arch Phys Med Rehabil 1999; 80: 945-950. DOI: 10.1016/S0003-9993(99)90088-6.
66. Frank RM, Ramirez J, Chalmers PN, et al. Scapulothoracic anatomy and snapping scapula syndrome. Anat Res Int 2013; 2013. DOI: 10.1155/2013/635628.
67. Sciascia A and Kibler WB. Current views of scapular dyskinesis and its possible clinical relevance. Int J Sports Phys Ther 2022; 17: 117. DOI: 10.26603/001c.31727.
68. Terry GC and Chopp TM. Functional anatomy of the shoulder. J Athl Train 2000; 35: 248.
69. Giovannetti de Sanctis E, Ciolli G, Mocini F, et al. Evaluation of the range of motion of scapulothoracic, acromioclavicular and sternoclavicular joints: State of the art. Shoulder Elb 2022: 17585732221090226. DOI: 10.1177/1758573222109.
70. Borstad JD and Ludewig PM. Comparison of scapular kinematics between elevation and lowering of the arm in the scapular plane. Clin Biomech 2002; 17: 650-659. DOI: 10.1016/s0268-0033(02)00136-5.
71. Wu G, Van der Helm FC, Veeger HD, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J Biomech 2005; 38: 981-992. DOI: 10.1016/j.jbiomech.2004.05.042.
72. Seth A, Matias R, Veloso AP, et al. A biomechanical model of the scapulothoracic joint to accurately capture scapular kinematics during shoulder movements. PloS one 2016; 11: e0141028. DOI: 10.1371/journal.pone.0141028.
73. Ludewig PM and Lawrence RL. Mechanics of the scapula in shoulder function and dysfunction. In: Kibler BW and Sciascia AD (eds) Disorders of the scapula and their role in shoulder injury. Switzerland: Springer, 2017, pp.7-23.
74. Ludewig PM, Phadke V, Braman JP, et al. Motion of the shoulder complex during multiplanar humeral elevation. J Bone Joint Surg Am 2009; 91: 378. DOI: 10.2106/JBJS.G.01483.
75. Ludewig PM and Reynolds JF. The association of scapular kinematics and glenohumeral joint pathologies. J Orthop Sports Phys Ther 2009; 39: 90-104. DOI: 10.2519/jospt.2009.2808.
76. Umehara J, Yagi M, Hirono T, et al. Relationship between scapular initial position and scapular movement during dynamic motions. PloS one 2019; 14: e0227313. DOI: 10.1371/journal.pone.0227313.
77. Yano Y, Hamada J, Tamai K, et al. Different scapular kinematics in healthy subjects during arm elevation and lowering: glenohumeral and scapulothoracic patterns. J Shoulder Elbow Surg 2010; 19: 209-215. DOI: 10.1016/j.jse.2009.09.007.
78. Aliaj K, Lawrence RL, Foreman KB, et al. Kinematic coupling of the glenohumeral and scapulothoracic joints generates humeral axial rotation. J Biomech 2022: 111059. DOI: 10.1016/j.jbiomech.2022.111059.
79. Sciascia A, Thigpen C, Namdari S, et al. Kinetic chain abnormalities in the athletic shoulder. Sports Med Arthrosc Rev 2012; 20: 16-21. DOI: 10.1097/JSA.0b013e31823a021f.
80. Ebaugh D and Finley M. Muscle activation associated with scapular function and dysfunction. In: Kibler BW and Sciascia AD (eds) Disorders of the scapula and their role in shoulder injury. Switzerland: Springer, 2017, pp.25-33.
81. Mendez-Rebolledo G, Gatica-Rojas V, Martinez-Valdes E, et al. The recruitment order of scapular muscles depends on the characteristics of the postural task. J Electromyogr Kinesiol 2016; 31: 40-47. DOI: 10.1016/j.jelekin.2016.09.001.
82. Neumann DA and Camargo PR. Kinesiologic considerations for targeting activation of scapulothoracic muscles-part 1: serratus anterior. Braz J Phys Ther 2019; 23: 459-466. DOI: 10.1016/j.bjpt.2019.01.008.
83. Camargo PR and Neumann DA. Kinesiologic considerations for targeting activation of scapulothoracic muscles–part 2: trapezius. Braz J Phys Ther 2019; 23: 467-475. DOI: 10.1016/j.bjpt.2019.01.011.
84. Johnson G, Bogduk N, Nowitzke A, et al. Anatomy and actions of the trapezius muscle. Clin Biomech 1994; 9: 44-50. DOI: 10.1016/0268-0033(94)90057-4.
85. Yach B and Linens SW. The relationship between breathing pattern disorders and scapular dyskinesis. Athl Train Sports Health Care 2019; 11: 63-70. DOI: 10.3928/19425864-20180502-01.
86. Dos Reis IMM, Basso-Vanelli RP, Beltrame T, et al. Acute effects of the 6-minute pegboard and ring test in COPD. Respir Care 2020; 65: 198-209. DOI: 10.4187/respcare.06948.
87. Meijer K, Annegarn J, Lima Passos V, et al. Characteristics of daily arm activities in patients with COPD. Eur Clin Respir J 2014; 43: 1631-1641. DOI: 10.1183/09031936.00082513.
88. De Troyer A, Peche R, Yernault JC, et al. Neck muscle activity in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1994; 150: 41-47. Article. DOI: 10.1164/ajrccm.150.1.8025770.
89. Martinez FJ, Couser JI and Celli BR. Factors influencing ventilatory muscle recruitment in patients with chronic airflow obstruction. Am Rev Respir Dis 1990; 142: 276-282. DOI: 10.1164/ajrccm/142.2.276
90. Sahrmann S. Diagnosis and treatment of movement impairment syndromes. 1st ed. St Louis, the United States of America Mosby, 2001.
91. Kim K-S, Lee W-H, Cynn H-S, et al. Influence of sitting posture on tidal volume, respiratory rate, and upper trapezius activity during quiet breathing in patients with chronic obstructive pulmonary disease. Sci Res Essays 2013; 8: 1166-1170. DOI: 10.5897/SRE12.653.
92. Montes AM, Tam C, Crasto C, et al. Forward trunk lean with arm support affects the activity of accessory respiratory muscles and thoracoabdominal movement in healthy individuals. Hum Mov Sci 2018; 61: 167-176. DOI: 10.1016/j.humov.2018.07.011.
93. Huang T-S, Ou H-L, Huang C-Y, et al. Specific kinematics and associated muscle activation in individuals with scapular dyskinesis. J Shoulder Elbow Surg 2015; 24: 1227-1234. DOI: 10.1016/j.jse.2014.12.022.
94. Yeşilyaprak SS, Yüksel E and Kalkan S. Influence of pectoralis minor and upper trapezius lengths on observable scapular dyskinesis. Phys Ther Sport 2016; 19: 7-13. DOI: 10.1016/j.ptsp.2015.08.002.
95. Cleeland CS and Ryan K. The brief pain inventory, https://oml.eular.org/sysModules/obxOml/docs/ID_363/bpi.pdf (1991, accessed February 2023).
96. Cleeland CS. The brief pain inventory user guide, https://www.mdanderson.org/research/departments-labs-institutes/departments-divisions/symptom-research/symptom-assessment-tools.html (2009, accessed April, 30 2022).
97. Chen YW, HajGhanbari B, Road JD, et al. Reliability and validity of the brief pain inventory in individuals with chronic obstructive pulmonary disease. Eur J Pain 2018; 22: 1718-1726. 20180622. DOI: 10.1002/ejp.1258.
98. Chaudakshetrin P. Validation of the Thai version of brief pain inventory (BPI-T) in cancer patients. J Med Assoc Thai 2009; 92: 34-40.
99. Melzack R. The short-form McGill pain questionnaire. Pain 1987; 30: 191-197. DOI: 10.1016/0304-3959(87)91074-8.
100. Hawker GA, Mian S, Kendzerska T, et al. Measures of adult pain: Visual analog scale for pain (vas pain), numeric rating scale for pain (nrs pain), mcgill pain questionnaire (mpq), short‐form mcgill pain questionnaire (sf‐mpq), chronic pain grade scale (cpgs), short form‐36 bodily pain scale (sf‐36 bps), and measure of intermittent and constant osteoarthritis pain (icoap). Arthritis Care Res 2011; 63: S240-S252. DOI: 10.1002/acr.20543.
101. Adelmanesh F, Jalali A, Attarian H, et al. Reliability, validity, and sensitivity measures of expanded and revised version of the short-form McGill Pain Questionnaire (SF-MPQ-2) in Iranian patients with neuropathic and non-neuropathic pain. Pain Med 2012; 13: 1631-1638. DOI: 10.1111/j.1526-4637.2012.01517.x.
102. Kitisomprayoonkul W, Klaphajone J and Kovindha A. Thai short-form McGill pain questionnaire. J Med Assoc Thai 2006; 89: 846.
103. Haefeli M and Elfering A. Pain assessment. Eur Spine J 2006; 15: S17-S24.
104. Gallasch CH and Alexandre NMC. The measurement of musculoskeletal pain intensity: a comparison of four methods. Rev Gaucha Enferm 2007; 28: 260.
105. Chien C-W, Bagraith KS, Khan A, et al. Comparative responsiveness of verbal and numerical rating scales to measure pain intensity in patients with chronic pain. J Pain 2013; 14: 1653-1662. DOI: 10.1016/j.jpain.2013.08.006.
106. Alghadir AH, Anwer S, Iqbal A, et al. Test–retest reliability, validity, and minimum detectable change of visual analog, numerical rating, and verbal rating scales for measurement of osteoarthritic knee pain. J Pain Res 2018; 11: 851. DOI: 10.2147/JPR.S158847.
107. Lee AL, Zabjek K, Goldstein RS, et al. Systematic review of postural assessment in individuals with obstructive respiratory conditions: Measurement and clinical associations. J Cardiopulm Rehabil Prev 2017; 37: 90-102. DOI: 10.1097/HCR.0000000000000207.
108. Johnson J. Postural assessment. Human Kinetics, 2011.
109. Bellemare J-F, Cordeau M-P, Leblanc P, et al. Thoracic dimensions at maximum lung inflation in normal subjects and in patients with obstructive and restrictive lung diseases. Chest 2001; 119: 376-386. DOI: 10.1378/chest.119.2.376.
110. Borstad JD and Ludewig PM. The effect of long versus short pectoralis minor resting length on scapular kinematics in healthy individuals. J Orthop Sports Phys Ther 2005; 35: 227-238. DOI: 10.2519/jospt.2005.35.4.227.
111. Rosa DP, Borstad JD, Pires ED, et al. Reliability of measuring pectoralis minor muscle resting length in subjects with and without signs of shoulder impingement. Braz J Phys Ther 2016; 20: 176-183. DOI: 10.1590/bjpt-rbf.2014.0146.
112. Finley M, Goodstadt N, Soler D, et al. Reliability and validity of active and passive pectoralis minor muscle length measures. Braz J Phys Ther 2017; 21: 212-218. DOI: 10.1016/j.bjpt.2017.04.004.
113. Kibler WB, Ludewig PM, McClure PW, et al. Clinical implications of scapular dyskinesis in shoulder injury: the 2013 consensus statement from the ‘Scapular Summit’. Br J Sports Med 2013; 47: 877-885. DOI: 10.1136/bjsports-2013-092425.
114. Kibler WB and Sciascia A. Current concepts: scapular dyskinesis. Br J Sports Med 2010; 44: 300-305. DOI: 10.1136/bjsm.2009.058834.
115. Struyf F, Nijs J, Meeus M, et al. Does scapular positioning predict shoulder pain in recreational overhead athletes? Int J Sports Med 2014; 35: 75-82. DOI: 10.1055/s-0033-1343409.
116. Ou H-L, Huang T-S, Chen Y-T, et al. Alterations of scapular kinematics and associated muscle activation specific to symptomatic dyskinesis type after conscious control. Man Ther 2016; 26: 97-103. DOI: 10.1016/j.math.2016.07.013.
117. Warner M, Chappell P and Stokes M. Measuring scapular kinematics during arm lowering using the acromion marker cluster. Hum Mov Sci 2012; 31: 386-396. DOI: 10.1016/j.humov.2011.07.004.
118. Warner MB, Chappell PH and Stokes MJ. Measurement of dynamic scapular kinematics using an acromion marker cluster to minimize skin movement artifact. J Vis Exp 2015: e51717. DOI: 10.3791/51717.
119. Kibler WB, Uhl TL, Maddux JW, et al. Qualitative clinical evaluation of scapular dysfunction: a reliability study. J Shoulder Elbow Surg 2002; 11: 550-556. DOI: 10.1067/mse.2002.126766.
120. McClure P, Tate AR, Kareha S, et al. A clinical method for identifying scapular dyskinesis, part 1: reliability. J Athl Train 2009; 44: 160-164. DOI: 10.4085/1062-6050-44.2.160.
121. Tate AR, McClure P, Kareha S, et al. A clinical method for identifying scapular dyskinesis, part 2: validity. J Athl Train 2009; 44: 165-173. DOI: 10.4085/1062-6050-44.2.165.
122. Kibler WB. The role of the scapula in athletic shoulder function. Am J Sports Med 1998; 26: 325-337. DOI: 10.1177/03635465980260022801.
123. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 2010; 8: 336-341. DOI: 10.1016/j.ijsu.2010.02.007.
124. Law M, Stewart D, Pollock N, et al. Critical review form-quantitative studies. McMaster University: Occupational therapy evidence-based practice research group, https://healthsci.mcmaster.ca/srs/research/evidence-based-practice-research-group (1998, accessed June, 12 2021).
125. Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634. DOI: 10.1136/bmj.315.7109.629
126. Suurmond R, van Rhee H and Hak T. Introduction, comparison, and validation of Meta‐Essentials: a free and simple tool for meta‐analysis. Res Synth Methods 2017; 8: 537-553. DOI: 10.1002/jrsm.1260.
127. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis Management and Prevention of Chronic Obstructive Pulmonary Disease. (2023 Report), https://goldcopd.org/2023-gold-report-2/ (2023, accessed October, 24 2023).
128. Graham BL, Steenbruggen I, Miller MR, et al. Standardization of spirometry 2019 update. An official American thoracic society and European respiratory society technical statement. Am J Respir Crit Care Med 2019; 200: e70-e88. DOI: 10.1164/rccm.201908-1590ST.
129. Cleeland C and Ryan K. Pain assessment: Global use of the Brief Pain Inventory. Ann Acad Med Singap 1994; 23: 129-138.
130. Cramer E, Ziadni M, Scherrer KH, et al. CHOIRBM: An R package for exploratory data analysis and interactive visualization of pain patient body map data. PLoS Comput Biol 2022; 18: e1010496. DOI: 10.1371/journal.pcbi.1010496.
131. Scherrer KH, Ziadni MS, Kong J-T, et al. Development and validation of the Collaborative Health Outcomes Information Registry body map. PAIN Reports 2021; 6: e880. DOI: 10.1097/pr9.0000000000000880.
132. Breckenridge JD and McAuley JH. Shoulder pain and disability index (SPADI). J Physiother 2011; 57: 197-197. DOI: 10.1016/S1836-9553(11)70045-5.
133. Phongamwong C and Choosakde A. Reliability and validity of the Thai version of the Shoulder Pain and Disability Index (Thai SPADI). Health Qual Life Outcomes 2015; 13: 1-4. DOI: 10.1186/s12955-015-0333-2.
134. Kori S. Kinesiophobia: a new view of chronic pain behavior. Pain Manag 1990; 3: 35-43.
135. Vlaeyen JW, Kole-Snijders AM, Boeren RG, et al. Fear of movement/(re) injury in chronic low back pain and its relation to behavioral performance. Pain 1995; 62: 363-372. DOI: 10.1016/0304-3959(94)00279-N.
136. Areeudomwong P and Buttagat V. Reliability and validity of the cross-culturally adapted thai version of the tampa scale for kinesiophobia in knee osteoarthritis patients. Malays J Med Sci 2017; 24: 61. DOI: 10.21315/mjms2017.24.2.8.
137. MacDermid JC, Walton DM, Avery S, et al. Measurement properties of the neck disability index: a systematic review. J Orthop Sports Phys Ther 2009; 39: 400-417. DOI: 10.2519/jospt.2009.2930.
138. Vernon H and Mior S. The neck disability index: a study of reliability and validity. J Manipulative Physiol Ther 1991.
139. Luksanapruksa P, Wathana-apisit T, Wanasinthop S, et al. Reliability and validity study of a Thai version of the Neck Disability Index in patients with neck pain. J Med Assoc Thai 2012; 95: 681-688.
140. Jones P, Harding G, Berry P, et al. Development and first validation of the COPD Assessment Test. Eur Respir J 2009; 34: 648-654. DOI: 10.1183/09031936.00102509.
141. Pothirat C, Kiatboonsri S and Chuchottaworn C. Validation of the new COPD assessment test translated into Thai in patients with chronic obstructive pulmonary disease. BMC Pulm Med 2014; 14: 1-6. DOI: 10.1186/1471-2466-14-193.
142. Mahler DA and Wells CK. Evaluation of clinical methods for rating dyspnea. Chest 1988; 93: 580-586.
143. Bestall J, Paul E, Garrod R, et al. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax 1999; 54: 581-586. DOI: 10.1136/thx.54.7.581.
144. Reese NB and Bandy WD. Joint range of motion and muscle length testing. 3rd ed. China: Elsevier Health Sciences, 2017.
145. Lascurain-Aguirrebeña I, Newham DJ, Irazusta J, et al. Reliability of a method to measure neck surface electromyography, kinematics, and pain occurrence in participants with neck pain. J Manipulative Physiol Ther 2018; 41: 413-424. DOI: 10.1016/j.jmpt.2017.10.013.
146. De Abreu DC, Da Silva KM, De Souza YR, et al. Postural assessment of patients with COPD: A look at muscle strength, shoulder protraction and body center of gravity. Am J Respir Crit Care Med 2018; 197: A5876.
147. Keles E, Ozalevli S and Alpaydin AO. The relationship between proximal limb and trunk muscle strength and respiratory parameters in chronic obstructive pulmonary disease (COPD). Eur Clin Respir J 2015; 46: PA2207. Conference Abstract. DOI: 10.1183/13993003.congress2015.PA2207.
148. Morais N, Cruz J and Marques A. Compensatory movement strategies during movements of the upper quadrant in patients with COPD. Eur Clin Respir J 2017; 50: PA2542. DOI: 10.1183/1393003.congress-2017.PA2542.
149. Sa RB, Campos SL, Pessoa M, et al. Chest wall muscles stretching promotes changes in electromyographic activity and volume variation of thoracoabdominal wall in COPD elderly. Am J Respir Crit Care Med 2013; 187: A1794.
150. Vardar-Yagli N, Saglam M, Inal-Ince D, et al. Upper extremity pain sensitivity and postural abnormalities in obstructive lung disease. Eur Clin Respir J 2017; 50: PA4704. DOI: 10.1183/1393003.congress-2017.PA4704.
151. Liu K, Yu XJ, Cui XF, et al. Effects of proprioceptive neuromuscular facilitation stretching combined with aerobic training on pulmonary function in COPD patients: a randomized controlled trial. Int J Chron Obstruct Pulmon Dis 2021; 16: 969-977. DOI: 10.2147/copd.S300569.
152. Sharp JT, Drutz WS, Moisan T, et al. Postural relief of dyspnea in severe chronic obstructive pulmonary disease. Am Rev Respir Dis 1980; 122: 201-211. DOI: 10.1164/arrd.1980.122.2.201.
153. Ricci-Vitor AL, Bonfim R, Fosco LC, et al. Influence of the resistance training on heart rate variability, functional capacity and muscle strength in the chronic obstructive pulmonary disease. Eur J Phys Rehabil Med 2013; 49: 793-801.
154. Roberts MH, Mapel DW and Thomson HN. The impact of chronic pain on direct medical utilization and costs in chronic obstructive pulmonary disease. Clinicoecon Outcomes Res 2015; 7: 173. DOI: 10.2147/CEOR.S80424.
155. Lee AL, Zabjek K, Chan C, et al. Postural abnormalities in people with chronic obstructive pulmonary disease (COPD). Respirology 2017; 22: 144. Conference Abstract. DOI: 10.1111/resp.13010.
156. Eggermont LH, Bean JF, Guralnik JM, et al. Comparing pain severity versus pain location in the MOBILIZE Boston study: chronic pain and lower extremity function. J Gerontol A Biol Sci Med Sci 2009; 64: 763-770. DOI: 10.1093/gerona/glp016.
157. Janssens L, Brumagne S, Polspoel K, et al. The effect of inspiratory muscles fatigue on postural control in people with and without recurrent low back pain. Spine 2010; 35: 1088-1094. DOI: 10.1097/BRS.0b013e3181bee5c3.
158. Lima VP, Iamonti VC, Velloso M, et al. Physiological responses to arm activity in individuals with chronic obstructive pulmonary disease compared with healthy controls: a systematic review. J Cardiopulm Rehabil Prev 2016; 36: 402-412. DOI: 10.1097/HCR.0000000000000190.
159. Ronish BE, Couper DJ, Barjaktarevic IZ, et al. Forced expiratory flow at 25%-75% Links COPD physiology to emphysema and disease severity in the SPIROMICS cohort. Chronic Obstr Pulm Dis 2022; 9: 111. DOI: 10.15326/jcopdf.2021.0241.
160. Netter FH. Atlas of human anatomy, Professional Edition E-Book: including NetterReference. com Access with full downloadable image Bank. Elsevier health sciences, 2014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96670-
dc.description.abstract背景:疼痛和慢性阻塞性肺病(COPD)共存已被研究指出,但該族群中疼痛的盛行率和影響因素仍不清楚。慢性阻塞性肺病患者的疼痛與姿勢異常、肌肉骨骼問題和肩胛運動障礙之關聯尚未被充分理解。這些問題可能是由於肺部過度充氣和肌肉功能障礙造成的,增加了頸部肩部疾病的風險,凸顯了進一步研究肩胛骨控制障礙的必要性。
研究目的:1) 系統性地評估患有 COPD 和無患病的個體的肩胛控制障礙,2) 評估患有 COPD和未患病的個體的疼痛強度、疼痛干擾或疼痛部位的數量,3) 評估患有COPD個體的疼痛特徵、COPD 評估測試 (CAT)、改良版醫學研究委員會呼吸困難量表 (mMRC)、頸部失能指數問卷 (NDI)、肩部疼痛與失能指數 (SPADI) 及改良版動作恐懼量表(mTSK)、肺功能和肩疼痛量表間的關聯性,4) 比較患有和未患有 COPD 的個體在安靜呼吸、完全吸氣和呼氣條件下的肩胛骨/鎖骨運動學和胸腔壁特徵,5) 比較患有和不患有 COPD 的個體在肩胛平面上手臂抬高時的肩胛骨和鎖骨運動學。
方法:針對目標 1,檢索了 7 個資料庫,兩位研究人員篩選研究、擷取資料並評估品質。使用標準化均差 (SMD)、I2 和卡方統計資料的統合分析比較了研究之間的異質性。對於目標 2 和 3,使用卡方檢定疼痛盛行率、獨立 t 檢定或 Mann-Whitney U 檢定進行組別比較以及邏輯回歸對自我報告的問卷和臨床數據進行糾正和分析,以探索與慢性阻塞性肺病患者常見疼痛區域相關的關聯因素。對於目標 4 和 5,所有參與者完成了與研究目標 2 和 3 相同的研究流程,並結合肩部活動範圍和肩胛運動障礙測試。使用基於反光標記的運動分析系統記錄上半身運動學。任務包括三種呼吸條件和手臂抬高。使用雙向重複測量變異數分析分析組和條件比較。
結果:針對目標 1,7項研究被納入回顧,總計287位參與者,其中量性研究包含190位參與者。由於研究之間存在顯著異質性,亞組分析顯示 COPD 患者肩胛骨前傾減少(SMD:0.46;95% CI:0.01 至 0.09)。相反,在 COPD 參與者中觀察到更大的肩胛上抬(SMD:-1.03;95% CI:-1.69 至 -0.73)、內旋(SMD:-1.65;95% CI:-3.19 至 -0.10)和肩部前伸(SMD:-0.73; 95% CI:-1.18 至 -0.32)。對於目標 2 和 3,對 71 名 COPD 患者和 71 名年齡和性別匹配的對照組進行比較,結果顯示疼痛發生率(75.3% 對比 42.4%,p < 0.001)、疼痛嚴重程度(3.9 ± 3.1 對比 2.1 ± 2.8,p < 0.001)、疼痛部位(median 0 [IQR 0.0–2.0] 對比 2 [IQR 0–4.0], p < 0.001) 、疼痛干擾(0 [IQR 0.0–0.9] 與 0.71 [IQR 0–2.6],p = 0.007)、NDI(1.9 ± 5.3 對比0.3 ± 1.7,p < 0.001)與 SPADI 分數(10.1 ± 17.4 versus 4.4 ± 10.6, p < 0.001)。肩部是最常被回報的疼痛部位,其次是胸椎區域和下肢。 COPD 患者的肩痛與多重疼痛部位相關(調整後 OR:1.82,95% CI:1.25-2.66,p = 0.002)、較高的 SPADI 分數(調整後 OR:1.07,95% CI:1.01-1.13,p = 0.017)和減少的預測FEV1 百分比(調整後 OR: 0.96, 95% CI: 0.92–0.99, p = 0.026)。對於目標 4 和 5,患有 COPD 的個體(n=14,平均年齡 71.8 ± 1.7 歲)表現出顯著較高的鎖骨抬高 (CE)(平均差值 (SE) = 3.292 (1.526),p = 0.041)和 SUR(組間差值 (SE) = 4.696 (1.633), p = 0.008),但在所有呼吸階段,COPD患者CP均低於(Mean difference (SE) = 3.625 (1.401), p = 0.016)無 COPD 者 (n=12,平均年齡 69.7 ± 2.2 歲)。然而,各組在胸腔壁橫向尺寸或 SIR 和 SPt 方面並沒有統計上顯著差異。兩組均記錄完全吸氣時最寬的胸壁橫向尺寸和完全呼氣時的最窄胸壁橫向尺寸。在非 COPD 組中,數值分別為 322.57 ± 25.92 和 310.71 ± 26.92,p < 0.001。同樣,在 COPD 組中,數值分別為 322.57 ± 25.92 和 310.71 ± 26.92,p = 0.002。與無 COPD 的患者相比,COPD患者在所有肩部運動範圍內也表現出較高的 CE(平均差 (SE) = 4.477 (1.244),p = 0.001)和 SUR(平均差 (SE) = 4.787 (1.06),p < 0.001),但較低的CP (Mean difference (SE) = 5.623 (1.359), p < 0.001)。
結論:統合分析顯示,肩胛骨控制障礙在慢性阻塞性肺病患者中更為常見。第二項研究證實,與對照組相比,慢性阻塞性肺病患者的疼痛發生率較高,尤其是在肩部區域。 COPD 患者的肩痛與多個疼痛部位、SPADI 評分和預測 FEV1 百分比有關。在最後一項研究中,完全吸氣會導致最大的胸壁擴張。手臂仰角和呼吸階段會影響 CE、CP 和 SUR。

關鍵字: 慢性阻塞性肺臟疾病;鎖骨運動學;殘疾;運動障礙;薈萃分析;肌肉活動;疼痛;患病率;肩胛;肩部疼痛;肩胛運動學
zh_TW
dc.description.abstractBackground: The coexistence of pain and chronic obstructive pulmonary disease (COPD) has been recognized, but the prevalence and contributing factors of pain in this population remain unclear. Pain in COPD patients, linked to abnormal posture, musculoskeletal issues, and scapular dyskinesis, is not well understood. These problems, likely due to lung hyperinflation and muscle dysfunction, increase the risk of neck and shoulder disorders, highlighting the need for further investigation into scapular control impairments.
Aims of the study: 1) to systematically review the scapular control impairments in individuals with and without COPD, 2) to assess the prevalence of pain intensity, pain interference, or the number of pain locations in individuals with and without COPD, 3) to assess the association among pain characteristics, the COPD assessment test (CAT), modified Medical Research Council Dyspnea Scale (mMRC), Neck Disability Index questionnaire (NDI), the Shoulder Pain and Disability Index (SPADI), the modified Tampa Scale for Kinesiophobia (mTSK), pulmonary function, and shoulder pain in individuals with COPD, 4) to compare scapular / clavicle kinematics, and chest wall characteristics in quiet breathing, full inhalation, and exhalation conditions between individuals with and without COPD, and 5) to compare scapular and clavicle kinematics during arm elevations in scapular plane in individuals with and without COPD.
Methods: For aim 1, seven databases were searched, and two investigators screened studies, extracted data, and evaluated quality. Meta-analysis with standardized mean difference (SMD), I², and Chi-squared statistics compared heterogeneity across studies. For aims 2 and 3, Self-reported questionnaires and clinical data were corrected and analyzed using Chi-squared tests for pain prevalence, independent t-tests or Mann–Whitney U-tests for group comparisons, and logistic regression to explore association factors related to common pain areas in individuals with COPD. For aims 4 and 5, all participants completed the same methods as study aims 2 and 3 combined with shoulder range of motions and scapular dyskinesis tests. Upper quadrant kinematics were recorded using a reflective marker-based motion analysis system. Tasks included three breathing conditions and arm elevations. Groups and conditions comparisons were analyzed using two-way repeated-measures ANOVA.
Results: For aim 1. Seven studies were reviewed with 287 participants, including 190 in the quantitative analysis. Due to significant heterogeneity among studies, subgroup analyses revealed reduced scapular anterior tilting (SMD: 0.46; 95% CI: 0.01 to 0.90) in COPD patients. Conversely, greater scapular elevation (SMD: -1.03; 95% CI: -1.69 to -0. 73), internal rotation (SMD: -1.65; 95% CI: -3.19 to -0.10), and shoulder protraction (SMD: -0.73; 95% CI: -1.18 to -0.32) were observed in COPD participants. For aims 2 and 3, a comparison of 71 individuals with COPD and 71 age- and gender-matched controls revealed significantly higher pain prevalence (75.3% versus 42.4%, p < 0.001), pain severity (3.9 ± 3.1 versus 2.1 ± 2.8, p < 0.001), pain locations (median 0 [IQR 0.0–2.0] versus 2 [IQR 0–4.0], p < 0.001), pain interference (0 [IQR 0–0.9] versus 0.71 [IQR 0–2.6], p = 0.007), NDI (1.9 ± 5.3 versus 0.3 ± 1.7, p < 0.001), and SPADI scores (10.1 ± 17.4 versus 4.4 ± 10.6, p < 0.001) in the COPD group. The shoulder was the most commonly reported pain site, followed by the thoracic region and lower extremities. Shoulder pain in COPD patients was associated with multiple pain locations (adjusted OR: 1.82, 95% CI: 1.25–2.66, p = 0.002), higher SPADI scores (adjusted OR: 1.07, 95% CI: 1.01–1.13, p = 0.017), and reduced % predicted FEV1 (adjusted OR: 0.96, 95% CI: 0.92–0.99, p = 0.026). For aims 4 and 5, individuals with COPD (n=14, mean age 71.8 ± 1.7 years) showed significantly greater clavicle elevation (CE) (Mean difference (SE) = 3.292 (1.526), p = 0.041) and SUR (Mean difference between groups (SE) = 4.696 (1.633), p = 0.008) but lower CP (Mean difference (SE) = 3.625 (1.401), p = 0.016) across all breathing phases than those without COPD (n=12, mean age 69.7 ± 2.2 years). However, the groups had no statistically significant difference in the chest wall lateral dimension or SIR and SPt. The widest chest wall lateral dimension during full inhalation and the narrowest dimension during full exhalation were recorded in both groups. In the non-COPD group, the values were 322.57 ± 25.92 and 310.71 ± 26.92, respectively, with p < 0.001. Similarly, in the COPD group, the values were 322.57 ± 25.92 and 310.71 ± 26.92, respectively, with p = 0.002. They also exhibited greater CE (Mean difference (SE) = 4.477 (1.244), p = 0.001) and SUR (Mean difference (SE) = 4.787 (1.06), p < 0.001) but lower CP (Mean difference (SE) = 5.623 (1.359), p < 0.001) across all shoulder range of motions than those without COPD.
Conclusion: The meta-analysis revealed that scapular control impairments were more prevalent among individuals with COPD. The second study confirmed a higher prevalence of pain in individuals with COPD compared to controls, particularly in the shoulder region. Shoulder pain in COPD was associated with multiple pain locations, SPADI scores, and %predicted FEV1. In the last study, full inhalation led to the greatest chest wall expansion. Arm elevation angles and breathing phases can influence CE, CP, and SUR.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:27:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-20T16:27:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
中文摘要 II
ABSTRACT V
TABLE OF CONTENTS VIII
LIST OF FIGURES XI
LIST OF TABLES XIII
LIST OF APPENDIXES XV
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 STUDY PURPOSES 4
1.3 HYPOTHESES 5
CHAPTER 2 LITERATURE REVIEW 6
2.1 PREVALENCE OF PAIN IN PATIENTS WITH COPD 6
2.2 GEOMETRICAL CHANGES IN THE UPPER QUADRANT OF INDIVIDUALS WITH COPD. 8
2.3 SCAPULA CONTROL 11
2.4 PAIN ASSESSMENTS 16
2.5 UPPER QUADRANT POSTURAL ASSESSMENTS 18
2.6 CHEST WALL CHARACTERISTICS ASSESSMENT 19
2.7 PECTORALIS MINOR MUSCLE LENGTH 20
2.8 SCAPULA CONTROL ASSESSMENTS 21
CHAPTER 3 METHODS 25
3.1 STUDY OF AIM 1: 25
3.1.1 Study design 25
3.1.2 Selection Criteria 25
3.1.3 Search Strategy and Study Selection 26
3.1.4 Data Extraction and Study Quality Assessment 26
3.1.5 Statistical Analysis 27
3.2 STUDY OF AIM 2 AND AIM 3: 28
3.2.1 Study design and procedure 28
3.2.2 Participants 28
3.2.3 Instruments 29
3.2.4 Statistical analysis 32
3.3 STUDY OF AIM 4 AND AIM 5: 34
3.3.1 Study design and procedure 34
3.3.2 Participants 34
3.3.3 Measurements and instruments 34
3.3.4 Data reduction 38
3.3.5 Statistical analysis 39
CHAPTER 4 RESULTS 41
4.1. STUDY OF AIM 1: 41
4.1.1 Study Selection 41
4.1.2 Characteristics of the Studies 41
4.1.3 Quality Assessment and Risk of Bias 42
4.1.4 Muscle Activity during Upper Limbs Activities 42
4.1.5 Meta-Analysis 42
4.2 STUDY OF AIM 2 AND AIM 3: 44
4.2.1 Demographic data 44
4.2.2 Pain characteristics 44
4.2.3 Factors associated with shoulder pain in COPD patients 45
4.3 STUDY OF AIM 4 AND AIM 5: 46
4.3.1 Demographic and clinical characteristics 46
4.3.2 Comparison of scapular kinematics, clavicle kinematics, and chest wall characteristics (lateral diameter) in quiet breathing, full inhalation, and exhalation conditions between the individuals with and without COPD 46
4.3.3 Comparison of scapular kinematics and clavicle kinematics during arm elevations at 15°, 30°, 60°, 90°, and 120° in a scapular plane between the individuals with and without chronic obstructive pulmonary disease 47
CHAPTER 5 DISCUSSION 49
5.1 STUDY OF AIM 1: 49
5.2 STUDY OF AIM 2 AND AIM 3: 51
5.3 STUDY OF AIM 4 AND AIM 5: 55
5.4 Clinical Implications 57
5.5 Limitations and Future Directions 58
CHAPTER 6 CONCLUSIONS 59
REFERENCES 60
-
dc.language.isoen-
dc.subject殘疾zh_TW
dc.subject肩胛運動學zh_TW
dc.subject肩部疼痛zh_TW
dc.subject肩胛zh_TW
dc.subject患病率zh_TW
dc.subject疼痛zh_TW
dc.subject肌肉活動zh_TW
dc.subject薈萃分析zh_TW
dc.subject慢性阻塞性肺臟疾病zh_TW
dc.subject鎖骨運動學zh_TW
dc.subject運動障礙zh_TW
dc.subjectchronic obstructive pulmonary diseaseen
dc.subjectmuscle activityen
dc.subjectpainen
dc.subjectprevalenceen
dc.subjectscapularen
dc.subjectshoulder painen
dc.subjectscapular kinematicsen
dc.subjectmeta-analysisen
dc.subjectdyskinesisen
dc.subjectdisabilityen
dc.subjectclavicle kinematicsen
dc.title慢性阻塞性肺疾病患者肩胛骨控制受損zh_TW
dc.titleImpairment of scapular control in individuals with chronic obstructive pulmonary diseaseen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee徐瑋勵;王儷穎;Ubon Pirunsan;陳曉宜zh_TW
dc.contributor.oralexamcommitteeWei-Li Hsu;Li-Ying Wang;Ubon Pirunsan;Shiauyee Chenen
dc.subject.keyword慢性阻塞性肺臟疾病,鎖骨運動學,殘疾,運動障礙,薈萃分析,肌肉活動,疼痛,患病率,肩胛,肩部疼痛,肩胛運動學,zh_TW
dc.subject.keywordchronic obstructive pulmonary disease,clavicle kinematics,disability,dyskinesis,meta-analysis,muscle activity,pain,prevalence,scapular,shoulder pain,scapular kinematics,en
dc.relation.page156-
dc.identifier.doi10.6342/NTU202500637-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-02-13-
dc.contributor.author-college醫學院-
dc.contributor.author-dept物理治療學研究所-
dc.date.embargo-lift2025-02-21-
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved