Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96666
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭景暉zh_TW
dc.contributor.advisorJiiang-Huei Jengen
dc.contributor.author廖婉萱zh_TW
dc.contributor.authorWan-Chuen Liaoen
dc.date.accessioned2025-02-20T16:26:42Z-
dc.date.available2025-02-21-
dc.date.copyright2025-02-20-
dc.date.issued2025-
dc.date.submitted2025-01-20-
dc.identifier.citation1. Rivera E, Walton R. Cracking the cracked tooth code: detection and treatment of various longitudinal tooth fractures. Am Assoc Endodontists Colleagues for Excellence News Lett. 2008;2:1-19.
2. Cohen S, Berman LH, Blanco L, et al. A demographic analysis of vertical root fractures. J Endod. 2006;32(12):1160-1163.
3. Cameron CE. Cracked-tooth syndrome. J Am Dent Assoc. 1964;68(3):405-411.
4. Ehrmann E, Tyas M. Cracked tooth syndrome: diagnosis, treatment and correlation between symptoms and post‐extraction findings. Aust Dent J. 1990;35(2):105-112.
5. Kahler W. The cracked tooth conundrum: terminology, classification, diagnosis, and management. Am J Dent. 2008;21(5):275-282.
6. Kang SH, Kim BS, Kim Y. Cracked teeth: distribution, characteristics, and survival after root canal treatment. J Endod. 2016;42(4):557-562.
7. Lubisich EB, Hilton TJ, Ferracane J. Cracked teeth: a review of the literature. J Esthet Restor Dent. 2010;22(3):158-167.
8. Khovidhunkit SoP, Songmanee S. Prevalence of cracked tooth in a group of patients at the Faculty of Dentistry, Mahidol University. M Dent J. 2014;34:234-242.
9. Kim SY, Kim SH, Cho SB, et al. Different treatment protocols for different pulpal and periapical diagnoses of 72 cracked teeth. J Endod. 2013;39(4):449-452.
10. Krell KV, Rivera EM. A six year evaluation of cracked teeth diagnosed with reversible pulpitis: treatment and prognosis. J Endod. 2007;33(12):1405-1407.
11. Ogundare TO, Ajayi DM, Idon PI, et al. Prevalence and distribution of cracked posterior teeth among adult patients. Open J Stomatol. 2020;10(5):74-86.
12. Nocini R, Lippi G, Mattiuzzi C. Increased burden of cracked teeth in US and UK during the COVID-19 pandemic: evidence from an infodemiological analysis. J Dent Sci. 2023;18(3):1398-1399.
13. Ozuna J, Barborka B, Abubakr NH. A retrospective evaluation of the prevalence of cracked teeth among an adult population in Nevada. Eur Endod J. 2021;6(2):160-163.
14. Banerji S, Mehta SB, Millar BJ. Cracked tooth syndrome. Part 1: aetiology and diagnosis. Br Dent J. 2010;208(10):459-463.
15. Udoye CI, Jafarzadeh H. Cracked tooth syndrome: characteristics and distribution among adults in a Nigerian teaching hospital. J Endod. 2009;35(3):334-336.
16. Rosen H. Cracked tooth syndrome. J Prosthet Dent. 1982;47(1):36-43.
17. Seo D, Yi Y, Shin S, et al. Analysis of factors associated with cracked teeth. J Endod. 2012;38(3):288-292.
18. Pu Y, Wang M, Hong Y, et al. Prognostic factors associated with pulp status in patients with cracked teeth treated with occlusal veneer: a 6- through 24-month prospective clinical study. J Am Dent Assoc. 2024;155(5):390-390.
19. Zhao WJ, Luo J, Zhang SS, et al. Occlusal veneer restoration treatment outcomes of cracked tooth syndrome: a 22.4-month follow-up study. Clin Oral Investig. 2024;28(7):368.
20. Malentacca A, Zaccheo F, Scialanca M, et al. Repair of teeth with cracks in crowns and roots: an observational clinical study. Int Endod J. 2021;54(10):1738-1753.
21. Sim IG, Lim TS, Krishnaswamy G, et al. Decision making for retention of endodontically treated posterior cracked teeth: a 5-year follow-up study. J Endod. 2016;42(2):225-229.
22. Helkimo E, Ingervall B. Bite force and functional state of the masticatory system in young men. Swed Dent J. 1978;2(5):167-175.
23. Kanamaru J, Tsujimoto M, Yamada S, et al. The clinical findings and managements in 44 cases of cracked vital molars. J Dent Sci. 2017;12(3):291-295.
24. Krell KV, Caplan DJ. 12-month success of cracked teeth treated with orthograde root canal treatment. J Endod. 2018;44(4):543-548.
25. Davis MC, Shariff SS. Success and survival of endodontically treated cracked teeth with radicular extensions: a 2- to 4-year prospective cohort. J Endod. 2019;45(7):848-855.
26. Chen YT, Hsu TY, Liu H, et al. Factors related to the outcomes of cracked teeth after endodontic treatment. J Endod. 2021;47(2):215-220.
27. Hilton TJ, Funkhouser E, Ferracane JL, et al. Baseline characteristics as 3-year predictors of tooth fracture and crack progression: findings from The National Dental Practice-Based Research Network. J Am Dent Assoc. 2021;152(2):146-156.
28. de Toubes KMS, Soares CJ, Soares RV, et al. The correlation of crack lines and definitive restorations with the survival and success rates of cracked teeth: a long-term retrospective clinical study. J Endod. 2022;48(2):190-199.
29. Lynch CD, McConnell RJ. The cracked tooth syndrome. J Can Dent Assoc 2002;68(8):470-475.
30. Geurtsen W. The cracked-tooth syndrome: clinical features and case reports. Int J Periodontics Restorative Dent. 1992;12(5):395-405.
31. Yang SE, Jo AR, Lee HJ, et al. Analysis of the characteristics of cracked teeth and evaluation of pulp status according to periodontal probing depth. BMC Oral Health. 2017;17(1):135.
32. Kakka A, Gavriil D, Whitworth J. Treatment of cracked teeth: a comprehensive narrative review. Clin Exp Dent Res. 2022;8(5):1218-1248.
33. Trushkowsky R. Restoration of a cracked tooth with a bonded amalgam. Quintessence Int. 1991;22(5):397-400.
34. Lee J, Kim S, Kim E, et al. Survival and prognostic factors of managing cracked teeth with reversible pulpitis: a 1- to 4-year prospective cohort study. Int Endod J. 2021;54(10):1727-1737.
35. Boushell LW. Cracked tooth. J Esthet Restor Dent. 2009;21(1):68-69.
36. Cambruzzi JV, Marshall FJ, Pappin JB. Methylene blue dye: an aid to endodontic surgery. J Endod. 1985;11(7):311-314.
37. Ghorbanzadeh A, Aminifar S, Shadan L, et al. Evaluation of three methods in the diagnosis of dentin cracks caused by apical resection. J Dent (Tehran). 2013;10(2):175-185.
38. Yuan M, Gao AT, Wang TM, et al. Using Meglumine Diatrizoate to improve the accuracy of diagnosis of cracked teeth on Cone-beam CT images. Int Endod J. 2020;53(5):709-714.
39. Tan L, Chen NN, Poon CY, et al. Survival of root filled cracked teeth in a tertiary institution. Int Endod J. 2006;39(11):886-889.
40. Clark DJ, Sheets CG, Paquette JM. Definitive diagnosis of early enamel and dentinal cracks based on microscopic evaluation. J Esthet Restor Dent. 2003;15(7):391-401.
41. Banerji S, Mehta SB, Millar BJ. The management of cracked tooth syndrome in dental practice. Br Dent J. 2017;222(9):659-666.
42. Mamoun JS, Napoletano D. Cracked tooth diagnosis and treatment: an alternative paradigm. Eur J Dent. 2015;9(2):293-303.
43. Alaugaily I, Azim AA. CBCT patterns of bone loss and clinical predictors for the diagnosis of cracked teeth and teeth with vertical root fracture. J Endod. 2022;48(9):1100-1106.
44. Qian Y, Zhou X, Yang J. Correlation between cuspal inclination and tooth cracked syndrome: a three-dimensional reconstruction measurement and finite element analysis. Dent Traumatol. 2013;29(3):226-233.
45. Hiatt WH. Incomplete crown‐root fracture in pulpal‐periodontal disease. J Periodontol 1973;44(6):369-379.
46. Koester KJ, Ager JW, Ritchie RO. The effect of aging on crack-growth resistance and toughening mechanisms in human dentin. Biomater 2008;29(10):1318-1328.
47. Nazari A, Bajaj D, Zhang D, et al. Aging and the reduction in fracture toughness of human dentin. J Mech Behav Biomed Mater. 2009;2(5):550-559.
48. Ivancik J, Majd H, Bajaj D, et al. Contributions of aging to the fatigue crack growth resistance of human dentin. Acta Biomater. 2012;8(7):2737-2746.
49. Chai H, Lee JJW, Lawn BR. Fracture of tooth enamel from incipient microstructural defects. J Mech Behav Biomed Mater. 2010;3(1):116-120.
50. Ausiello P, Apicella A, Davidson CL. Effect of adhesive layer properties on stress distribution in composite restorations-a 3D finite element analysis. Dent Mater. 2002;18(4):295-303.
51. Swepston JH, Miller AW. The incompletely fractured tooth. J Prosthet Dent. 1986;55(4):413-416.
52. Ratcliff S, Becker IM, Quinn L. Type and incidence of cracks in posterior teeth. J Prosthet Dent. 2001;86(2):168-172.
53. Arnold M. Bruxism and the occlusion. Dent Clin North Am. 1981;25(3):395-407.
54. Brown WS, Jacobs HR, Thompson RE. Thermal fatigue in teeth. J Dent Res. 1972;51(2):461-467.
55. Qiao F, Chen M, Hu X, et al. Cracked teeth and poor oral masticatory habits: a matched case-control study in China. J Endod. 2017;43(6):885-889.
56. Cobb DS, Denehy GE, Vargas MA. Adhesive composite inlays for the restoration of cracked posterior teeth associated with a tongue bar. Pract Periodontics Aesthet Dent. 1998;10(4):453-460.
57. Zahir MS. Cracked teeth: a review of the literature. J Bahrain Med Soc. 2020;32(2):34-40.
58. Mittal N, Sharma V, Minocha A. Management of cracked teeth-a case report. Endodontology. 2007;19(1):39-44.
59. Seet RF, Chan PY, Khoo S-T, et al. Characteristics of cracked teeth with reversible pulpitis after orthodontic banding-a prospective cohort study. J Endod. 2022;48(12):1476-1476.
60. Nguyen Thi W, Jansson L. Survival rate after endodontic treatment in general dentistry for cracked teeth with different coronal restorations. Acta Odontol Scand. 2021;79(4):256-261.
61. Roh BD, Lee YE. Analysis of 154 cases of teeth with cracks. Dent Traumatol. 2006;22(3):118-123.
62. Cameron CE. The cracked tooth syndrome: additional findings. J Am Dent Assoc. 1976;93(5):971-975.
63. Brannstrom M. The hydrodynamic theory of dentinal pain: sensation in preparations, caries, and the dentinal crack syndrome. J Endod. 1986;12(10):453-457.
64. Brännström M, Aström A. The hydrodynamics of the dentine; its possible relationship to dentinal pain. Int Dent J. 1972;22(2):219-227.
65. Hilton TJ, Funkhouser E, Ferracane JL, et al. Associations of types of pain with crack-level, tooth-level and patient-level characteristics in posterior teeth with visible cracks: findings from the National Dental Practice-Based Research Network. J Dent. 2018;70:67-73.
66. Ricucci D, Siqueira JF, Jr., Loghin S, et al. The cracked tooth: histopathologic and histobacteriologic aspects. J Endod. 2015;41(3):343-352.
67. Kahler B, Moule A, Stenzel D. Bacterial contamination of cracks in symptomatic vital teeth. Aust Endod J. 2000;26(3):115-118.
68. Bernardes RA, de Moraes IG, Húngaro Duarte MA, et al. Use of cone-beam volumetric tomography in the diagnosis of root fractures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(2):270-277.
69. Wu S, Lew HP, Chen NN. Incidence of pulpal complications after diagnosis of vital cracked teeth. J Endod. 2019;45(5):521-525.
70. Zhang S, Xu Y, Ma Y, et al. The treatment outcomes of cracked teeth: a systematic review and meta-analysis. J Dent. 2024;142:104843.
71. Pitts DL, Natkin E. Diagnosis and treatment of vertical root fractures. J Endod. 1983;9(8):338-346.
72. Agar JR, Weller RN. Occlusal adjustment for initial treatment and prevention of the cracked tooth syndrome. J Prosthet Dent. 1988;60(2):145-147.
73. Braly BV, Maxwell EH. Potential for tooth fracture in restorative dentistry. J Prosthet Dent. 1981;45(4):411-414.
74. Banerji S, Mehta SB, Millar BJ. Cracked tooth syndrome. Part 2: restorative options for the management of cracked tooth syndrome. Br Dent J. 2010;208(11):503-514.
75. Fox K, Youngson CC. Diagnosis and treatment of the cracked tooth. Prim Dent Care. 1997;4(3):109-113.
76. Berman LH, Kuttler S. Fracture necrosis: diagnosis, prognosis assessment, and treatment recommendations. J Endod. 2010;36(3):442-446.
77. Touré B, Faye B, Kane AW, et al. Analysis of reasons for extraction of endodontically treated teeth: a prospective study. J Endod. 2011;37(11):1512-1515.
78. Ferracane JL, Hilton TJ, Funkhouser E, et al. Outcomes of treatment and monitoring of posterior teeth with cracks: three-year results from the National Dental Practice-Based Research Network. Clin Oral Investig. 2022;26(3):2453-2463.
79. Liu HH, Sidhu SK. Cracked teeth-treatment rationale and case management: case reports. Quintessence Int. 1995;26(7):485-492.
80. Abbott P, Leow N. Predictable management of cracked teeth with reversible pulpitis. Aust Dent J. 2009;54(4):306-315.
81. Warfvinge J, Bergenholtz G. Healing capacity of human and monkey dental pulps following experimentally‐induced pulpitis. Dent Traumatol. 1986;2(6):256-262.
82. Signore A, Benedicenti S, Covani U, et al. A 4- to 6-year retrospective clinical study of cracked teeth restored with bonded indirect resin composite onlays. Int J Prosthodont. 2007;20(6):609-616.
83. Leong DJX, de Souza NN, Sultana R, et al. Outcomes of endodontically treated cracked teeth: a systematic review and meta-analysis. Clin Oral Investig. 2020;24(1):465-473.
84. Olivieri JG, Elmsmari F, Miró Q, et al. Outcome and survival of endodontically treated cracked posterior permanent teeth: a systematic review and meta-analysis. J Endod. 2020;46(4):455-463.
85. Abulhamael AM, Tandon R, Alzamzami ZT, et al. Treatment decision-making of cracked teeth: survey of American Endodontists. J Contemp Dent Pract. 2019;20(5):543-547.
86. Clark LL, Caughman WF. Restorative treatment for the cracked tooth. Oper Dent. 1984;9(4):136-142.
87. Opdam NJ, Roeters JJ, Loomans BA, et al. Seven-year clinical evaluation of painful cracked teeth restored with a direct composite restoration. J Endod. 2008;34(7):808-811.
88. European Society of Endodontology. Quality guidelines for endodontic treatment: consensus report of the European Society of Endodontology. Int Endod J. 2006;39(12):921-930.
89. Li F, Diao Y, Wang J, et al. Review of cracked tooth syndrome: etiology, diagnosis, management, and prevention. Pain Res Manag. 2021;2021(1):3788660.
90. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009;151(4):W-65-W-94.
91. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155-163.
92. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.
93. Wells G, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2012. [Available from: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp] Accessed 10 August 2024.
94. Holm-Pedersen P, Lang NP, Müller F. What are the longevities of teeth and oral implants? Clin Oral Implants Res. 2007;18(s3):15-19.
95. Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane handbook for systematic reviews of interventions version 6.4. 2023. [Available from: www.training.cochrane.org/handbook] Accessed 10 August 2024.
96. de Toubes KMS, Corrêa IS, Valadares RCL, et al. Managing cracked teeth with root extension: a prospective preliminary study using Biodentine™ material. Int J Dent. 2024;2024:1-8.
97. Liao WC, Tsai YL, Chen KL, et al. Cracked teeth: distribution and survival at 6 months, 1 year and 2 years after treatment. J Formos Med Assoc. 2022;121(1, Part 2):247-257.
98. Homewood CI. Cracked tooth syndrome-incidence, clinical findings and treatment. Aust Dent J. 1998;43(4):217-222.
99. Abou-Rass M. Crack lines: the precursors of tooth fractures-their diagnosis and treatment. Quintessence Int Dent Dig. 1983;14(4):437-447.
100. Qing S, Hong T, Shihai Y. Clinical analysis of the most commonly affected teeth of the cracked tooth syndrome and its symmetry. West China J Stomatol. 2002;20:151-152.
101. Ellis S. Incomplete tooth fracture-proposal for a new definition. Br Dent J. 2001;190(8):424-428.
102. Zimet PO. Cracked tooth syndrome. Aust Endod J. 1998;24(1):33-37.
103. Marquis VL, Dao T, Farzaneh M, et al. Treatment outcome in endodontics: the Toronto Study. Phase III: initial treatment. J Endod. 2006;32(4):299-306.
104. Gutmann JL, Rakusin H. Endodontic and restorative management of incompletely fractured molar teeth. Int Endod J. 1994;27(6):343-348.
105. Hauman C, Chandler N, Tong D. Endodontic implications of the maxillary sinus: a review. Int Endod J. 2002;35(2):127-141.
106. Rosano G, Taschieri S, Gaudy J-F, et al. Maxillary sinus vascularization: a cadaveric study. J Craniofac Surg. 2009;20(3):940-943.
107. Sobiesk JL, Munakomi S. Anatomy, head and neck, nasal cavity: StatPearls Publishing 2023.
108. Tian XM, Qian L, Xin XZ, et al. An analysis of the proximity of maxillary posterior teeth to the maxillary sinus using cone-beam computed tomography. J Endod. 2016;42(3):371-377.
109. Jun BC, Song SW, Park CS, et al. The analysis of maxillary sinus aeration according to aging process; volume assessment by 3-dimensional reconstruction by high-resolutional CT scanning. Otolaryngol Head Neck Surg. 2005;132(3):429-434.
110. Von Arx T, Fodich I, Bornstein MM. Proximity of premolar roots to maxillary sinus: a radiographic survey using cone-beam computed tomography. J Endod. 2014;40(10):1541-1548.
111. Ince Yusufoglu S, Hasanoglu Erbasar GN, Gülen O. Evaluation of the effect of periapical lesions and other odontogenic conditions on maxillary sinus mucosal thickness characteristics and mucosal appearance: a CBCT study. J Dent Res Dent Clin Dent Prospects. 2021;15(3):163-171.
112. Pagin O, Centurion BS, Rubira-Bullen IR, et al. Maxillary sinus and posterior teeth: accessing close relationship by cone-beam computed tomographic scanning in a Brazilian population. J Endod. 2013;39(6):748-751.
113. Somayaji K, Muliya VS, Kg MR, et al. A literature review of the maxillary sinus with special emphasis on its anatomy and odontogenic diseases associated with it. Egypt J Otolaryngol. 2023;39(1):173.
114. Son WS, Kim YI, Kim SS, et al. Anatomical relationship between the maxillary posterior teeth and the sinus floor according to an anterior overbite. Orthod Craniofac Res. 2020;23(2):160-165.
115. Watzek G, Bernhart T, Ulm C. Complications of sinus perforations and their management in endodontics. Dent Clin North Am. 1997;41(3):563-583.
116. Wehrbein H, Diedrich P. Progressive pneumatisation of the basal maxillary sinus after extraction and space closure. Fortschr Kieferorthop. 1992;53:77-83.
117. Arx T, Käch S, Suter VGA, et al. Perforation of the maxillary sinus floor during apical surgery of maxillary molars: a retrospective analysis using cone beam computed tomography. Aust Endod J. 2020;46(2):176-183.
118. Lu Y, Liu Z, Zhang L, et al. Associations between maxillary sinus mucosal thickening and apical periodontitis using cone-beam computed tomography scanning: a retrospective study. J Endod. 2012;38(8):1069-1074.
119. Yamaguchi K, Matsunaga T, Hayashi Y. Gross extrusion of endodontic obturation materials into the maxillary sinus: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104(1):131-134.
120. Kang SH, Kim BS, Kim Y. Proximity of posterior teeth to the maxillary sinus and buccal bone thickness: a biometric assessment using cone-beam computed tomography. J Endod. 2015;41(11):1839-1846.
121. Um M, Johnson B, Fayad M. Buccal plate thickness as a predictor for endodontic microsurgery outcomes: a retrospective cohort study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2023;135(3):324-332.
122. Jung YH, Cho BH. Assessment of the relationship between the maxillary molars and adjacent structures using cone beam computed tomography. Imaging Sci Dent. 2012;42(4):219-224.
123. Porto OCL, Silva BSF, Silva JA, et al. CBCT assessment of bone thickness in maxillary and mandibular teeth: an anatomic study. J Appl Oral Sci. 2020;28:e20190148.
124. Adiguzel O, Aktuna Belgin C, Falakaloglu S, et al. Maxillary cortical bone thickness in a South-Eastern Anatolian population: a cone-beam computed tomography study. Med Sci Monit. 2017;23:5812-5817.
125. Motoyoshi M, Yoshida T, Ono A, et al. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants. 2007;22(5):779-784.
126. Lim JE, Lim WH, Chun YS. Quantitative evaluation of cortical bone thickness and root proximity at maxillary interradicular sites for orthodontic mini-implant placement. Clin Anat. 2008;21(6):486-491.
127. Constantine S, Clark B, Kiermeier A, et al. Panoramic radiography is of limited value in the evaluation of maxillary sinus disease. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;127(3):237-246.
128. Nedbalski TR, Laskin DM. Use of panoramic radiography to predict possible maxillary sinus membrane perforation during dental extraction. Quintessence Int. 2008;39(8):661-664.
129. Sharan A, Madjar D. Correlation between maxillary sinus floor topography and related root position of posterior teeth using panoramic and cross-sectional computed tomography imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102(3):375-381.
130. Patel S, Dawood A, Whaites E, et al. New dimensions in endodontic imaging: part 1. Conventional and alternative radiographic systems. Int Endod J. 2009;42(6):447-462.
131. An JH, Kim YI, Kim SS, et al. Root proximity of miniscrews at a variety of maxillary and mandibular buccal sites: reliability of panoramic radiography. Angle Orthod. 2019;89(4):611-616.
132. Howe RB. First molar radicular bone near the maxillary sinus: a comparison of CBCT analysis and gross anatomic dissection for small bony measurement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(2):264-269.
133. Georgescu CE, Rusu MC, Sandulescu M, et al. Quantitative and qualitative bone analysis in the maxillary lateral region. Surg Radiol Anat. 2012;34:551-558.
134. Eberhardt JA, Torabinejad M, Christiansen EL. A computed tomographic study of the distances between the maxillary sinus floor and the apices of the maxillary posterior teeth. Oral Surg Oral Med Oral Pathol. 1992;73(3):345-347.
135. Estrela C, Nunes CA, Guedes OA, et al. Study of anatomical relationship between posterior teeth and maxillary sinus floor in a subpopulation of the Brazilian central region using cone-beam computed tomography-part 2. Braz Dent J. 2016;27:9-15.
136. Jang J, Kwak S, Ha J, et al. Anatomical relationship of maxillary posterior teeth with the sinus floor and buccal cortex. J Oral Rehabil. 2017;44(8):617-625.
137. Kilic C, Kamburoglu K, Yuksel SP, et al. An assessment of the relationship between the maxillary sinus floor and the maxillary posterior teeth root tips using dental cone-beam computerized tomography. Eur J Dent. 2010;4(04):462-467.
138. Kwak H, Park H, Yoon H, et al. Topographic anatomy of the inferior wall of the maxillary sinus in Koreans. Int J Oral Maxillofac Surg. 2004;33(4):382-388.
139. Razumova S, Brago A, Howijieh A, et al. Evaluation of the relationship between the maxillary sinus floor and the root apices of the maxillary posterior teeth using cone-beam computed tomographic scanning. J Conserv Dent. 2019;22(2):139-143.
140. Chand A, Ronghe B, Byakod G, et al. Relationship between inferior wall of maxillary sinus and maxillary posterior teeth using cone-beam computed tomography in healthy and chronic periodontitis patients. J Indian Soc Periodontol. 2017;21(6):466-472.
141. Yoshimine SI, Nishihara K, Nozoe E, et al. Topographic analysis of maxillary premolars and molars and maxillary sinus using cone beam computed tomography. Implant Dent. 2012;21(6):528-535.
142. Abdulwahed A, Mustafa M, Karobari MI, et al. Anatomical evaluation of posterior maxillary roots in relation to the maxillary sinus floor in a Saudi sub-population: a cross-sectional cone-beam computed tomography study. Healthc (Basel). 2023;11(1):150.
143. Altaweel AA, Sowairi SMS, Sapri AMS, et al. Assessment of the relationship between maxillary posterior teeth and maxillary sinus using cone-beam computed tomography. Int J Dent. 2022;2022:6254656.
144. Hameed KS, Elsantawy A, Alasmari D. Radiographic evaluation of the anatomical relationship of maxillary sinus floor with maxillary posterior teeth apices in the population of Al-Qassim, Saudi Arabia, using cone beam computed tomography. Saudi Dent J. 2020;33(7):769-774.
145. Kim HJ, Yoon HR, Kim KD, et al. Personal-computer-based three-dimensional reconstruction and simulation of maxillary sinus. Surg Radiol Anat. 2003;24(6):393-399.
146. Gosau M, Rink D, Driemel O, et al. Maxillary sinus anatomy: a cadaveric study with clinical implications. Anat Rec (Hoboken). 2009;292(3):352-354.
147. Sahlstrand-Johnson P, Jannert M, Strömbeck A, et al. Computed tomography measurements of different dimensions of maxillary and frontal sinuses. BMC Med Imaging. 2011;11:1-7.
148. Chourasia HR, Odabi AI, Owis AA, et al. Evaluation of root canal morphology of maxillary second premolars and its relation to maxillary sinus in a Saudi Arabian population. J Contemp Dent Pract. 2023;24(1):35-41.
149. Yan YJ, Li JL, Zhu HL, et al. CBCT evaluation of root canal morphology and anatomical relationship of root of maxillary second premolar to maxillary sinus in a western Chinese population. BMC Oral Health. 2021;21(1):358.
150. Arshad N, Amin E, Malik A, et al. Proximity of roots of posterior teeth to maxillary sinus in different facial biotypes. J Coll Physicians Surg Pak. 2023;33(7):732-737.
151. Fayed MMS, Pazera P, Katsaros C. Optimal sites for orthodontic mini-implant placement assessed by cone beam computed tomography. Angle Orthod. 2010;80(5):939-951.
152. Ono A, Motoyoshi M, Shimizu N. Cortical bone thickness in the buccal posterior region for orthodontic mini-implants. Int J Oral Maxillofac Surg. 2008;37(4):334-340.
153. Jin GC, Kim KD, Roh BD, et al. Buccal bone plate thickness of the Asian people. J Endod. 2005;31(6):430-434.
154. Gu Y, Sun C, Wu D, et al. Evaluation of the relationship between maxillary posterior teeth and the maxillary sinus floor using cone-beam computed tomography. BMC Oral Health. 2018;18(1):1-7.
155. Ok E, Güngör E, Colak M, et al. Evaluation of the relationship between the maxillary posterior teeth and the sinus floor using cone-beam computed tomography. Surg Radiol Anat. 2014;36:907-914.
156. Wallace JA. Transantral endodontic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;82(1):80-83.
157. Themkumkwun S, Kitisubkanchana J, Waikakul A, et al. Maxillary molar root protrusion into the maxillary sinus: a comparison of cone beam computed tomography and panoramic findings. Int J Oral Maxillofac Surg. 2019;48(12):1570-1576.
158. Zhang X, Li Y, Zhang Y, et al. Investigating the anatomical relationship between the maxillary molars and the sinus floor in a Chinese population using cone-beam computed tomography. BMC Oral Health. 2019;19(1):1-8.
159. Neelakantan P, Subbarao C, Ahuja R, et al. Cone-beam computed tomography study of root and canal morphology of maxillary first and second molars in an Indian population. J Endod. 2010;36(10):1622-1627.
160. Silva EJNL, Nejaim Y, Silva AIV, et al. Evaluation of root canal configuration of maxillary molars in a Brazilian population using cone-beam computed tomographic imaging: an in vivo study. J Endod. 2014;40(2):173-176.
161. Regnstrand T, Torres A, Petitjean E, et al. CBCT‐based assessment of the anatomic relationship between maxillary sinus and upper teeth. Clin Exp Dent Res. 2021;7(6):1197-1204.
162. Atallah HN, Ali MS, Abd Noor HJ, et al. Evaluation of the relation between the maxillary sinus and the posterior teeth using digital panoramic radiography. J Med Life. 2023;16(8):1240-1244.
163. Qin Y, Shu G, Xu T. Evaluation of the relationship between maxillary sinus wall and maxillary canines and posterior teeth using cone-beam computed tomography. Med Sci Monit. 2020;26:e925384.
164. Ragab MH, Abdalla AY, Sharaan MES. Location of the maxillary posterior tooth apices to the sinus floor in an Egyptian subpopulation using cone-beam computed tomography. Iran Endod J. 2022;17(1):7-12.
165. Oishi S, Ishida Y, Matsumura T, et al. A cone-beam computed tomographic assessment of the proximity of the maxillary canine and posterior teeth to the maxillary sinus floor: lessons from 4778 roots. Am J Orthod Dentofacial Orthop. 2020;157(6):792-802.
166. Shrestha B, Shrestha R, Hongfei L, et al. Relationship of the maxillary posterior teeth and maxillary sinus floor in different skeletal growth patterns: a cone-beam computed tomographic study of 1600 roots. Imaging Sci Dent. 2022;52(1):19-25.
167. Regnstrand T, Ezeldeen M, Shujaat S, et al. Three-dimensional quantification of the relationship between the upper first molar and maxillary sinus. Clin Exp Dent Res. 2022;8(3):750-756.
168. Aguori EAB, Ersan N, Dölekoglu ZS, et al. Proximity of healthy posterior teeth to the maxillary sinus floor in relation to mucosal thickening: a CBCT study. Oral Radiol. 2023;39(3):536-543.
169. Ren S, Zhao H, Liu J, et al. Significance of maxillary sinus mucosal thickening in patients with periodontal disease. Int Dent J. 2015;65(6):303-310.
170. Tsesis I, Rosen E, Beitlitum I, et al. Influence of the periapical status of the posterior maxillary teeth on the width of the Schneiderian membrane of the maxillary sinus mucosa. Appl Sci (Basel). 2021;11(9):3908.
171. Tsesis I. Complications in endodontic surgery: prevention, identification and management: Springer 2014.
172. Rak KM, Newell JD, Yakes WF, et al. Paranasal sinuses on MR images of the brain: significance of mucosal thickening. Am J Roentgenol. 1991;156(2):381-384.
173. Gürhan C, Sener E, Mert A, et al. Evaluation of factors affecting the association between thickening of sinus mucosa and the presence of periapical lesions using cone beam CT. Int Endod J. 2020;53(10):1339-1347.
174. Aksoy U, Orhan K. Association between odontogenic conditions and maxillary sinus mucosal thickening: a retrospective CBCT study. Clin Oral Investig. 2019;23(1):123-131.
175. Maillet M, Bowles WR, McClanahan SL, et al. Cone-beam computed tomography evaluation of maxillary sinusitis. J Endod. 2011;37(6):753-757.
176. Rodrigues PD, Pinheiro VV, de Moura JDM, et al. Anatomical proximity of maxillary teeth and local factors associated with the thickness of the maxillary sinus mucosa: a retrospective study. G Ital Endod. 2021;35(2):44-51.
177. Kaimal VG, Patil B. Evaluation of association between maxillary posterior teeth periapical pathologies and maxillary sinus mucosal changes-a cone-beam computed tomography (CBCT) study. Indian J Radiol Imaging. 2024;34(02):246-253.
178. Rey-Martínez MH, Ruiz-Sáenz PL, Martínez-Rodríguez N, et al. Analysis of the radiological changes of the sinus membrane using cone beam computed tomography and its relationship with dental treatments. A retrospective study. Biol (Basel). 2022;11(2):165.
179. Xu J, Reh D, Carey J, et al. Technical assessment of a cone‐beam CT scanner for otolaryngology imaging: image quality, dose, and technique protocols. Med Phys. 2012;39(8):4932-4942.
180. Morsy EK, El Dessouky SH, Abdel Ghafar EA. Assessment of proximity of the maxillary premolars roots to the maxillary sinus floor in a sample of Egyptian population using CBCT: an observational cross-sectional study. J Int Oral Health. 2022;14(3):306-315.
181. Shanbhag S, Karnik P, Shirke P, et al. Association between periapical lesions and maxillary sinus mucosal thickening: a retrospective cone-beam computed tomographic study. J Endod. 2013;39(7):853-857.
182. Shahbazian M, Vandewoude C, Wyatt J, et al. Comparative assessment of panoramic radiography and CBCT imaging for radiodiagnostics in the posterior maxilla. Clin Oral Investig. 2014;18:293-300.
183. Punwutikorn J, Waikakul A, Pairuchvej V. Clinically significant oroantral communications-a study of incidence and site. Int J Oral Maxillofac Surg. 1994;23(1):19-21.
184. Tanasiewicz M, Bubilek-Bogacz A, Twardawa H, et al. Foreign body of endodontic origin in the maxillary sinus. J Dent Sci. 2017;12(3):296-300.
185. Nosrat A, Yu P, Verma P, et al. Was the coronavirus disease 2019 pandemic associated with an increased rate of cracked teeth? J Endod. 2022;48(10):1241-1247.
186. Craig JR, Tataryn RW, Sibley HC, et al. Expected costs of primary dental treatments and endoscopic sinus surgery for odontogenic sinusitis. Laryngoscope. 2022;132(7):1346-1355.
187. Methley AM, Campbell S, Chew-Graham C, et al. PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv Res. 2014;14:579.
188. Pei J, Liu J, Chen Y, et al. Relationship between maxillary posterior molar roots and the maxillary sinus floor: cone-beam computed tomography analysis of a western Chinese population. J Int Med Res. 2020;48(6):300060520926896.
189. Akotiya BR, Surana A, Chauhan P, et al. Morphometric analysis of the relationship between maxillary posterior teeth and maxillary sinus floor in central Indian population: a cone-beam computed tomography study. J Conserv Dent Endod. 2024;27(4):373-377.
190. Motiwala MA, Arif A, Ghafoor R. A CBCT based evaluation of root proximity of maxillary posterior teeth to sinus floor in a subset of Pakistani population. J Pak Med Assoc. 2021;71(8):1992-1995.
191. Goyal SN, Karjodkar FR, Sansare K, et al. Proximity of the roots of maxillary posterior teeth to the floor of maxillary sinus and cortical plate: a cone-beam computed tomography assessment. Indian J Dent Res. 2020;31(6):911-915.
192. Gulati S, Mulay SA, Raut V, et al. Analysis of apical third root canal morphology of the palatal root of maxillary first molar and its proximity to maxillary sinus: a cone-beam computed tomographic study. Endodontology. 2023;35(3):262-266.
193. Haghanifar S, Moudi E, Bijani A, et al. Relationship between the maxillary molars roots and sinus in a selected Iranian population: a CBCT study. J Res Med Dent Sci. 2018;6(2):544-549.
194. Lee HS, Kim D, Kim SK. Proximity of maxillary molar apexes to the cortical bone surface and the maxillary sinus. Restor Dent Endod. 2022;47(3):e33.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96666-
dc.description.abstract本論文共分為五個章節,各章節針對研究關鍵成果進行探討。第一章提供兩個主要研究主題的概述:裂齒的存活及上顎後牙牙根尖與上顎竇之間的解剖關係,簡介其臨床價值與意義,並說明本論文的研究設計。

第二章專注於第一個研究問題,檢視裂齒的分布與接受不同治療方式後的存活,同時進行了系統性回顧和統合分析,以綜合過去文獻現有數據並提供有關裂齒預後因子的最新證據。本文共納入15篇具有中等誤差風險的世代研究(包括4,160位患者和4,193顆裂齒)分析,合併存活率和成功率分別為88% (95%信賴區間: 80%, 95%; I²: 91%)和87% (95%信賴區間: 80%, 94%; I²: 92%)。合併拔牙率顯示當裂齒為牙弓中末端支台齒(勝算比: 2.35; 95%信賴區間: 1.09, 5.06; I²<0.1%)和具有裂紋往牙齦下或牙根方向延伸的裂齒(勝算比: 3.47; 95%信賴區間: 1.47, 8.18; I²<0.1%)會顯著增加拔牙的風險。合併成功率顯示當裂齒具有≥5 mm牙周探測囊袋時,具有顯著較低的成功率(勝算比: 0.20; 95%信賴區間: 0.09, 0.44; I²: 10%)。

此外,本文也進行一個回顧性定量研究,收集有關裂齒的資料,包括人口學、臨床與放射線特徵,以評估裂齒的存活率,並分析結果預測因子。本研究於2014年至2018年間共檢查65位患者的77顆裂齒,裂齒主要出現在下顎大臼齒(42.86%)和具有近遠心方向上的裂紋(53顆裂齒, 68.83%, p<0.01)。裂齒顯著地具有敲擊痛(49顆裂齒, 63.64%, p<0.05)、無或僅有微小的動搖度(59顆裂齒, 76.62%, p<0.01)和具有咬痛(57顆裂齒, 74.03%, p<0.01)。裂齒的存活率在六個月、一年和兩年的追蹤分別為87.72%、76.00%和62.86%。當裂齒具有牙髓活性(p<0.01)、無觸診痛(p<0.05)、無自發性疼痛(p<0.05)和僅具有微小的動搖度(p<0.05)時呈現出顯著較佳的存活率。

第三章轉向第二個研究問題的論述,關於上顎小臼齒、大臼齒與上顎竇之間的解剖構造關係,進行另一個回顧性定量研究,以測量牙根尖與上顎竇及頰側皮質骨外緣之最短距離。本研究同時檢視牙根尖與上顎竇底部之間的水平和垂直空間關係,測量上顎竇底部皮質骨與黏膜厚度,並將數據資料與年齡、性別和牙位等變數進行相關性分析。

本研究共收集94位患者478顆上顎後牙的997個牙根錐狀射束電腦斷層掃描影像,結果發現上顎大臼齒和單牙根上顎第二小臼齒相較於上顎第一小臼齒顯著地更接近上顎竇(p<0.01),兩牙根上顎第一小臼齒的頰側牙根顯著地最接近頰側皮質骨外緣(p<0.01)。在上顎小臼齒,上顎竇底部最低點通常位於顎側,而在上顎大臼齒,通常位於頰側和顎側牙根之間(p<0.01)。上顎小臼齒牙根大部分位於上顎竇之外,上顎大臼齒牙根通常會接觸或是延伸進上顎竇(p<0.01)。在另檢查的285個牙根中,95.79%具有正常的上顎竇底部黏膜厚度(0-2 mm),4.21%具有中度增厚(2-10 mm)。隨著年齡的增加,上顎後牙牙根尖到上顎竇底部的距離和皮質與黏膜厚度均會增加,但是到頰側皮質骨外緣的距離會減少。男性相較於女性具有較厚的頰側皮質骨和黏膜厚度,上顎後牙牙根尖到上顎竇底部和頰側皮質骨外緣的距離在左右側顯示正相關性。

第四章總結本論文的主要發現與結論,並提出相關研究的未來展望。第五章列出與本論文相關的發表,以及其他在國際同儕審查期刊刊登之文章。
zh_TW
dc.description.abstractThis dissertation is organized into five chapters, each addressing key aspects and outputs of the research. Chapter I provides an overview of the two primary research topics: the survival of cracked teeth and the anatomical relationship between the maxillary posterior root apices and the maxillary sinus. Outline their clinical value and significance, and introduce the research design of this dissertation.

Chapter II focuses on the first research question, examining the distribution and survival of cracked teeth under various treatments. A systematic review and meta-analysis were conducted to synthesize current data and provide contemporary evidence on the prognostic factors of cracked teeth. A total of 15 cohort studies (4,160 patients with 4,193 cracked teeth) with medium risk of bias were analyzed. The pooled survival and success rates of cracked teeth were 88% (95% confidence interval [95%CI]: 80%, 95%; I²: 91%) and 87% (95%CI: 80%, 94%; I²: 92%), respectively. The pooled extraction rate showed that cracked teeth located as terminal abutments (odds ratio [OR]: 2.35; 95%CI: 1.09, 5.06; I²<0.1%) and those with subgingival or radicular extensions (OR: 3.47; 95%CI: 1.47, 8.18; I²<0.1%) significantly increased the risk of extraction. The pooled success rate also showed that cracked teeth with a periodontal probing depth of ≥5 mm had a significantly lower success rate (OR: 0.20; 95%CI: 0.09, 0.44; I²: 10%).

Additionally, a retrospective quantitative study was conducted to collect data on cracked teeth, including demographic, clinical, and radiographic characteristics, in order to evaluate survival rates and analyze outcome predictors. A total of 77 cracked teeth from 65 patients were examined between 2014 and 2018. Cracked teeth were primarily found in mandibular molars (42.86%) and predominantly exhibited cracks in the mesiodistal direction (53 teeth, 68.83%, p<0.01). Cracked teeth were significantly associated with percussion pain (49 teeth, 63.64%, p<0.05), no or minimal mobility (59 teeth, 76.62%, p<0.01), and biting pain (57 teeth, 74.03%, p<0.01). The survival rates of cracked teeth were 87.72%, 76.00%, and 62.86% at six-month, one-year, and two-year follow-ups, respectively. Cracked teeth that were vital (p<0.01) and exhibited no palpation pain (p<0.05), no spontaneous pain (p<0.05), and minimal mobility (p<0.05) had significantly better survival rates.

Chapter III shifts focus to the second research question, which examines the anatomical and structural relationship between the maxillary premolars and molars and the maxillary sinus. Another retrospective quantitative study was conducted to measure the shortest distance between the root apex and the maxillary sinus, as well as the external buccal cortical margin. This investigation also identified the horizontal and vertical dimensional relationships between the root apex and the maxillary sinus floor, assessed the cortical bone and mucosal thicknesses of the maxillary sinus floor, and correlated these findings with variables such as age, gender, and tooth position.

We analyzed cone-beam computed tomography images of 997 roots from 478 maxillary posterior teeth in 94 patients. The results showed that maxillary molars and single-rooted second premolars were significantly nearer to the maxillary sinus than maxillary first premolars (p<0.01). The buccal root of two-rooted maxillary first premolars was significantly closest to the external buccal cortical margin (p<0.01). In maxillary premolars, the sinus floor was usually lowest on the palatal side, whereas in maxillary molars, it was between the buccal and palatal root apices (p<0.01). Maxillary premolar roots were mostly outside the maxillary sinus, whereas maxillary molar roots often contacted or intruded into it (p<0.01). Among 285 roots, 95.79% had normal mucosal thickening (0-2 mm), while 4.21% had moderate thickening (2-10 mm) of the maxillary sinus floor. Age increased the distance from the maxillary posterior root apex to the maxillary sinus floor, as well as cortical and mucosal thickness, but decreased the distance to the external buccal cortical margin. Males had thicker buccal cortical bone and mucosa than females. The distances from the maxillary posterior root apex to the maxillary sinus floor and the external buccal cortical margin showed a positive correlation between the right and left sides.

Chapter IV summarizes the main findings and conclusions of this dissertation and presents future outlooks for related research. Chapter V lists the relevant publications that have emerged from this work, as well as other articles published by the author in international peer-reviewed journals.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:26:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-20T16:26:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
中文摘要 ii
Abstract v
Table of Content viii
List of Figures xviii
List of Tables xx
Chapter I Introduction 1
1.1 Introduction 1
1.2 Organization of Dissertation 2
Chapter II Distribution and Survival of Cracked Teeth 4
2.1 Background and Literature Review 4
2.1.1 Definition and classification 4
2.1.2 Prevalence and demographic trends 4
2.1.2.1 Prevalence 4
2.1.2.1.1 Asia 5
2.1.2.1.2 North America 5
2.1.2.1.3 Africa 5
2.1.2.1.4 Europe 5
2.1.2.2 Age 5
2.1.2.3 Gender 6
2.1.2.4 Tooth distribution 6
2.1.3 Diagnosis and diagnostic methods 7
2.1.3.1 Dental history 7
2.1.3.2 Biting test 7
2.1.3.3 Thermal test 8
2.1.3.4 Dye staining 8
2.1.3.5 Transillumination and magnification 9
2.1.3.6 Radiographs 9
2.1.4 Etiology 9
2.1.4.1 Morphological factors 9
2.1.4.2 Physiological factors 10
2.1.4.3 Developmental factors 10
2.1.4.4 Restorative factors 11
2.1.4.5 Occlusal factors 11
2.1.4.6 Other factors 12
2.1.5 Clinical features 13
2.1.5.1 Characteristics of cracks 13
2.1.5.2 Restoration condition 14
2.1.5.3 Symptom and sign 14
2.1.5.4 Location of cracked teeth in the dental arch and their occluding teeth 15
2.1.6 Radiographic characteristics 15
2.1.7 Histology 16
2.1.8 Treatment 16
2.1.8.1 Changes in pulpal condition over time 16
2.1.8.2 Management 16
2.1.8.2.1 Immediate treatment approach 17
2.1.8.2.2 Managing cracked teeth without symptoms 18
2.1.8.2.3 Managing cracked teeth with reversible pulpitis 18
2.1.8.2.4 Managing cracked teeth with irreversible pulpitis or pulp necrosis 19
2.1.8.2.5 Managing cracked teeth previously treated 20
2.1.8.2.6 Managing cracked teeth with radicular cracks 20
2.1.8.2.7 Timing of final restoration fabrication 20
2.1.8.2.8 Managing cracked teeth with complex conditions 21
2.1.8.3 Prognostic factors 21
2.1.8.3.1 Preoperative factors 21
2.1.8.3.2 Postoperative factors 23
2.1.8.4 Outcome and prognosis 24
2.1.9 Prevention 25
2.1.10 Summary 26
2.2 Preliminary Work: A Systematic Review and Meta-analysis 27
2.2.1 Background 27
2.2.2 Aim 27
2.2.2.1 Aim 27
2.2.2.2 Objectives 27
2.2.3 Methods 27
2.2.3.1 Selection criteria 27
2.2.3.1.1 Type of studies 28
2.2.3.1.2 Type of participants 28
2.2.3.1.3 Type of interventions 28
2.2.3.1.4 Type of outcome measures 28
2.2.3.2 Data sources and search strategies 29
2.2.3.3 Study selection 29
2.2.3.4 Data extraction and management 29
2.2.3.5 Risk of bias assessment 30
2.2.3.6 Data analysis and presentation 30
2.2.4 Results 31
2.2.4.1 Selection of study 31
2.2.4.2 Characteristics of study 31
2.2.4.3 Quality assessment 32
2.2.4.4 Survival and success rate 32
2.2.4.5 Prognostic predictors 33
2.2.4.5.1 Prognostic predictors for extraction rate 33
2.2.4.5.2 Prognostic predictors for success rate 33
2.2.5 Summary 33
2.3 Research Purposes 36
2.3.1 Aim 36
2.3.2 Objectives 36
2.4 Materials and Methods 37
2.4.1 Study design 37
2.4.2 Inclusion and exclusion criteria 37
2.4.3 Clinical parameters 37
2.4.3.1 Demographic information 37
2.4.3.2 Clinical data 38
2.4.3.3 Recall 41
2.4.4 Data presentation and statistical analysis 41
2.5 Results 43
2.5.1 Patient characteristics 43
2.5.2 Tooth distribution and clinical features 43
2.5.3 Treatment 44
2.5.4 Recall and survival rate 44
2.5.5 Prognostic factor analysis 44
2.6 Discussion 45
2.6.1 Main findings of the study 45
2.6.2 Gender 45
2.6.3 Age 45
2.6.4 Tooth type 45
2.6.5 Restorations 46
2.6.6 Clinical symptoms and signs 46
2.6.7 Treatment options for cracked teeth 47
2.6.8 Recall and survival rate 48
2.6.9 Prognostic factors 48
2.6.10 Strength of the study 49
2.6.11 Limitations of the study 50
2.6.12 Recommendations for future research 50
2.6.13 Implications for clinical practice 51
2.7 Conclusions 52
Chapter III Root Proximity to the Maxillary Sinus and Buccal Cortical Plate 53
3.1 Background and Literature Review 53
3.1.1 Maxillary sinus 53
3.1.1.1 Anatomical structure 53
3.1.1.2 Development 53
3.1.1.3 Possible complications and clinical significance 53
3.1.1.3.1 Non-surgical interventions 54
3.1.1.3.2 Surcial interventions 54
3.1.2 Buccal cortical bone thickness 55
3.1.3 CBCT 56
3.1.4 The shortest distance from the root apex to the nearest margin of the maxillary sinus 57
3.1.4.1 Ethnicity 57
3.1.4.2 Age 58
3.1.4.3 Gender 58
3.1.4.4 Tooth type 59
3.1.4.5 Facial biotypes 59
3.1.5 The distance from the root apex to the external buccal cortical margin 59
3.1.5.1 Age 60
3.1.5.2 Gender 60
3.1.5.3 Tooth type 60
3.1.6 The horizontal dimensional relationship between the maxillary posterior root apex and the maxillary sinus floor 61
3.1.6.1 Classification 61
3.1.6.2 Lowest point of the maxillary sinus floor 61
3.1.7 The vertical dimensional relationship between the maxillary posterior root apex and the maxillary sinus floor 62
3.1.7.1 Classification 62
3.1.7.2 Tooth type 62
3.1.7.2.1 Intrusion into the maxillary sinus 62
3.1.7.2.2 Contact with the maxillary sinus 63
3.1.7.3 Root type 63
3.1.7.3.1 Intrusion into the maxillary sinus 63
3.1.7.3.2 Contact with the maxillary sinus 63
3.1.7.4 Gender 64
3.1.8 Cortical and mucosal thicknesses of the maxillary sinus floor 64
3.1.8.1 Cortical thickness of the maxillary sinus floor 64
3.1.8.2 Mucosal thickness of the maxillary sinus floor 65
3.1.9 Summary 67
3.2 Research Purposes 68
3.2.1 Aim 68
3.2.2 Objectives 68
3.3 Materials and Methods 69
3.3.1 Study design 69
3.3.2 Inclusion and exclusion criteria 69
3.3.2.1 Patients 69
3.2.2.2 CBCT image 70
3.3.3 CBCT image collections 70
3.3.4 CBCT image evaluation 70
3.3.4.1 The shortest distance from the root apex to the nearest margin of the maxillary sinus 70
3.3.4.2 The distance from the root apex to the external buccal cortical margin 71
3.3.4.3 The horizontal dimensional relationship between the maxillary posterior root apex and the maxillary sinus floor 71
3.3.4.4 The vertical dimensional relationship between the maxillary posterior root apex and the maxillary sinus floor 71
3.3.4.5 Cortical and mucosal thickness of the maxillary sinus floor 72
3.3.5 Data presentation and statistical analysis 72
3.4 Results 74
3.4.1 Patient characteristics 74
3.4.2 The shortest distance from the root apex to the nearest margin of the maxillary sinus 74
3.4.2.1 Maxillary premolar 74
3.4.2.1.1 Single-rooted 74
3.4.2.1.2 Two-rooted 74
3.4.2.2 Maxillary molar 75
3.4.2.3 Statistical analysis 75
3.4.3 The distance from the root apex to the external buccal cortical margin 75
3.4.3.1 Maxillary premolar 75
3.4.3.1.1 Single-rooted 75
3.4.3.1.2 Two-rooted 76
3.4.3.2 Maxillary molar 76
3.4.3.3 Statistical analysis 76
3.4.4 The horizontal dimensional relationship between the maxillary posterior root apex and the maxillary sinus floor 77
3.4.4.1 Maxillary premolar 77
3.4.4.2 Maxillary molar 77
3.4.4.3 Statistical analysis 77
3.4.5 The vertical dimensional relationship between the maxillary posterior root apex and the maxillary sinus floor 78
3.4.5.1 Distribution 78
3.4.5.2 Statistical analysis 78
3.4.6 Cortical and mucosal thickness of the maxillary sinus floor 78
3.4.6.1 Cortical thickness of the maxillary sinus floor 79
3.4.6.2 Mucosal thickness of the maxillary sinus floor 79
3.4.7 Age and gender analysis 79
3.4.7.1 The shortest distance from the root apex to the nearest margin of the maxillary sinus 79
3.4.7.2 The distance from the root apex to the external buccal cortical margin 80
3.4.7.3 Cortical thickness of the maxillary sinus floor 80
3.4.7.4 Mucosal thickness of the maxillary sinus floor 80
3.4.8 Bilateral correlation analysis 81
3.4.8.1 The shortest distance from the root apex to the nearest margin of the maxillary sinus 81
3.4.8.2 The distance from the root apex to the external buccal cortical margin 81
3.5 Discussion 82
3.5.1 Main findings of the study 82
3.5.2 CBCT 82
3.5.3 The shortest distance from the root apex to the nearest margin of the maxillary sinus 83
3.5.4 Correlation between demographic factors and the shortest distance from the root apex to the nearest margin of the maxillary sinus 84
3.5.5 The distance from the root apex to the external buccal cortical margin 85
3.5.6 Correlation between demographic factors and the shortest distance from the root apex to the external buccal cortical margin 85
3.5.7 The horizontal dimensional relationship between the maxillary posterior root apex and the maxillary sinus floor 85
3.5.8 The vertical dimensional relationship between the maxillary posterior root apex and the maxillary sinus floor 86
3.5.9 Cortical and mucosal thickness of the maxillary sinus floor 87
3.5.10 Bilateral correlation analysis 88
3.5.11 Strength of the study 89
3.5.12 Limitations of the study 90
3.5.13 Recommendations for future research 90
3.5.14 Implications for clinical practice 91
3.5.14.1 Management of maxillary premolars 91
3.5.14.2 Management of maxillary molars 91
3.5.14.3 Management of patients across different ages and genders 92
3.6 Conclusions 94
Chapter IV Conclusions and Outlook 95
4.1 Conclusions 95
4.2 Outlook 95
Chapter V List of Publications 97
5.1 Peer-reviewed publications 97
5.2 International and domestic conference presentations 101
5.3 Professional contributions and guidelines 102
References 104
Figures 125
Tables 136
Appendix 179
-
dc.language.isoen-
dc.title裂齒存活率與預後因子暨上顎後牙牙根尖與上顎竇距離之臨床牙髓病學研究zh_TW
dc.titlePractice-Based Endodontic Research on the Survival and Prognostic Factors of Cracked Teeth and the Distance of the Maxillary Posterior Teeth Root Apex to the Maxillary Sinusen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee張美姬;張曉華;黃恆立;張淑惠;蔡宜玲zh_TW
dc.contributor.oralexamcommitteeMei-Chi Chang;Hsiao-Hua Chang;Heng-Li Huang;Shu-Hui Chang;Yi-Ling Tsaien
dc.subject.keyword裂齒,預後,存活率,上顎竇,鄰近上顎竇,zh_TW
dc.subject.keywordCracked tooth,Prognosis,Survival rate,Maxillary sinus,Sinus proximity,en
dc.relation.page209-
dc.identifier.doi10.6342/NTU202500137-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-01-21-
dc.contributor.author-college醫學院-
dc.contributor.author-dept口腔生物科學研究所-
dc.date.embargo-lift2025-02-21-
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf6.5 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved